Skip to main content
Log in

Influence of lateral acceleration on capillary interfaces between parallel plates

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

The paper considers limits for the refill of capillary liquid vanes of propellant management systems for low gravity applications under the influence of residual acceleration. The limit of existence of a connected capillary liquid interfaces in the vanes is analyzed. A mathematical approach to describe the characteristics of a liquid meniscus in the vane is derived under the assumptions of a quasi static interface and negligible viscous and inertia forces. Analytical considerations allow to determine the maximum width of the liquid column within the vane that can be stabilized by capillary forces. If the width of the capillary vanes exceeds this limit, the vane will be only partially filled. The consecutive equation is solved analytically with the approximation that the lateral acceleration does not distort the asymptotic shape of the free surface extended along the edges of the vanes from a circular cylindrical shap. The resulting relations can readily be analyzed and provide very clear insight into the di.erent limits for the meniscus to exist. The results of the approximate solution are compared with numerical solutions considering the actual shape of the distorted free surface. Although the global shape of the existence chart and the lower limits of existence are rather well predicted by the approximate solution, considerable deviations from the numerical solution can be observed for the upper limits with repect to Bond number and maximum width of the vanes. The numerical solution therefore should be preferred. Additionally, the numerical solution does not provide mere existence criteria but real static (geometric) stability criteria. Experimentally, the behaviour of liquid interfaces in vanes was studied under microgravity conditions in a drop tower, using a micro-g centrifuge to impose variable lateral accelerations on the liquid column between the vanes. The results of the experiment are shown to be in very good agreement with the analytical predictions. The analytical approach presented thus yields a powerful means to determine static stability limits of interface configurations subject to lateral forces for arbitrary geometries of the supporting capillary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brakke, K.: Surface Evolver Manual, Version 1.99. The Geometry Center, Minneapolis (1995)

    Google Scholar 

  2. Chapter, J. J., Rider, S. B.: Surface tension propellant management system computerized flow analysis. 16th Joint Propulsion Conference, AIAA 80-1098 (1980).

  3. Concus, P., Finn, R.: On capillary free surfaces in the absence of gravity. Acta Mathematica, vol. 132, p.174 (1974)

    Google Scholar 

  4. Concus, P., Finn, R.: Capillary wedges revisited. SIAM J. Math. Anal., vol. 27, p. 56 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dominick, S., Driscoll, S.: Fluid acquisition and resupply experimant (fare i) flight results. 29th Joint Propulsion Conference, AIAA 93-2424 (1993).

  6. Dominick, S., Tegart, J.: Orbital test results of a vaned liquid acquisition device. 30th Joint Propulsion Conference, AIAA 94-3027 (1994).

  7. Dowdy, M. W., Hise, R. E., Peterson, R. G.: Surface tension propellant control for viking 75 orbiter. 12th Propulsion Conference, AIAA 76-596 (1976).

  8. Dreyer, M., Delgado, A., Rath, H. J.: Fluid motion in capillary vanes under reduced gravity. Microgravity sci. technol., vol. V, p. 203 (1993)

    Google Scholar 

  9. Dreyer, M., Delgado, A., Rath, H. J.: Capillary rise of liquid between paral lel plates under microgravity. J. Colloid Interf. Sci., vol. 163, p. 158 (1994)

    Article  Google Scholar 

  10. Dreyer, M. E., Gerstmann, J., Stange, M., Rosendahl, U., Wölk, G., Rath, H. J.: Capilary effects under low gravity, part I: Surface settling, capillary rise and critical velocities. Space Forum, vol. 3, p. 87 (1998)

    Google Scholar 

  11. Finn, R., Neel, R. W.: Singular solutions of the capillary problem. J. reine Angew. Math., vol 51, p. 1 (1999)

    MathSciNet  Google Scholar 

  12. Friz, G.: Über den dynamischen Randwinkel im Fall der vollständigen Benetzung. Z. Ang. Phy., vol. 19, p. 374 (1965)

    Google Scholar 

  13. Giusti, E.: Generalized solutions for the mean curvature equation. Pacific J. Math., vol. 88, p. 297 (1980)

    MATH  MathSciNet  Google Scholar 

  14. Habip, L. M.: On the mechanics of liquids in subgravity. Astronautica Acta, vol. 11, p. 401 (1965)

    Google Scholar 

  15. Hoffman, R. L.: A study of the advancing interface: I. interface shape in liquid-gas systems. J. Colloid Interf. Sci., vol. 50, p. 228 (1975)

    Article  Google Scholar 

  16. Jaekle, Jr, D. E.: Propellant management device conceptual design and analysis: vanes. 27th Joint Propulsion Conference, AIAA-91-2172 (1991)

  17. Jaekle, Jr, D. E.: Propellant management device conceptual design and analysis: sponges. 29th Joint Propulsion Conference, AIAA-93-1970 (1993)

  18. Jiang, T.-S., Oh, S.-G., Slattery, J. C.: Correlation for dynamic contact angle. J. Colloid Interf. Sci., vol. 69, p. 74 (1979)

    Article  Google Scholar 

  19. Kim, I.-K., Bennett, Jr, F.: Modeling of fluid transfer in orbit. 27th Joint Propulsion Conference, AIAA 87-1763 (1987)

  20. Langbein, D.: The shape and stability of liquid menisci at solid edges. J. Fluid Mech., vol. 213, p. 251 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. de Lazzer, A.: Zum Verhalten kapillarer Flüssigkeitsgrenzflächen in Ecken und Kanten. Fortschritt-Berichte VDI, Ser. 7, Vol. 345, VDI-Verlag Düsseldorf (1998)

  22. de Lazzer, A., Dreyer, M., Rath, H. J.: Capillary effects under low gravity part ii: Analytic considerations on equilibrium capillary surfaces. Space Forum, vol. 3, p. 137 (1998)

    Google Scholar 

  23. de Lazzer, A., Langbein, D.: Liquid surface in regular n-pods. J. Fluid Mech., vol. 358, p. 203 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. de Lazzer, A., Langbein, D., Dreyer, M., Rath, H. J.: Mean curvature of liquid surfaces in cylindrical containers of arbitrary cross-section. Microgravity sci. technol., vol IX, p. 208 (1996)

    Google Scholar 

  25. Lucas, R.: Über das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Z, vol. 23, p. 15 (1918)

    Article  Google Scholar 

  26. Miranda, M.: Superficie minime illimitate. Ann. Scoula Norm. Sup. Pisa, Ser. 4, vol. 4, p. 313 (1977)

    MATH  MathSciNet  Google Scholar 

  27. Otto, E. W.: Static and dynamic behavior of the liquid-vapor interface during weightlessness. Chem. Eng. Prog. Symp. Ser., vol. 62, p. 158 (1966)

    Google Scholar 

  28. Padday, J. F., Pitt, A.: The stability of axisymmetric menisci. Phil. Trans. Roy. Soc. London, vol. 275, p. 489 (1973)

    Article  Google Scholar 

  29. Reynolds, W. C., Satterlee, H. M.: Liquid propellant behavior at low and zero g. In: The Dynamics of Liquids in Moving Containers With Applications to Space Vehicle Techology, NASA SP-106. NASA, Washington D.C., p. 387 (1966)

    Google Scholar 

  30. Rollins, J. R., Grove, R. K., Jaekle, Jr, D. E.: Twenty-three years of surface tension propellant management system design, development, manufacture, test, and operation. 21st Joint Propulsion Conference, AIAA-85-1199 (1985)

  31. Rollins, J. R., Grove, R. K., Walling, Jr, D. R.: Design and qualification of a surface tension propellant tank for an advanced spacecraft. 24th Joint Propulsion Conference, AIAA 88-2848 (1988)

  32. Roy, R. V., Schwartz, L. W.: On the stability of iquid ridges. J. Fluid Mech., vol 391, p. 293 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Washburn, E. W.: The dynamics of capillary flow. Phys. Rev., vol. 17, p. 273 (1921)

    Article  Google Scholar 

  34. Wente, H. C.: The stability of the axially symmetric pendant drops. Pacific J. Math., vol. 88, p. 421 (1980)

    MATH  MathSciNet  Google Scholar 

  35. Young, T.: An essay on the cohesion of fluids. Philos. Trans. Roy. Soc. London, vol. 95, p. 65 (1805)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Armin de Lazzer or Michael Stange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lazzer, A., Stange, M., Dreyer, M. et al. Influence of lateral acceleration on capillary interfaces between parallel plates. Microgravity Sci. Technol 14, 3–20 (2003). https://doi.org/10.1007/BF02870942

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870942

Keywords

Navigation