Skip to main content
Log in

Symbiotic nitrogen-fixation by the Leguminosae

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Albrecht, W. A. Calcium and hydrogen-ion concentration in the growth and inoculation of soybeans. Jour. Am. Soc. Agron.24: 793–806. 1932.

    CAS  Google Scholar 

  2. —. Inoculation of legumes as related to soil acidity. Jour. Am. Soc. Agron.25: 512–522. 1933.

    CAS  Google Scholar 

  3. — andHorner, G. M. Nitrogen fixation in soybeans as influenced by exchangeable calcium. Trans. 3rd Internatl. Cong. Soil Sci.1: 140–144. 1935.

    CAS  Google Scholar 

  4. — andMcCalla, T. M. Adsorbed calcium on colloidal clay and an accessory growth factor in laboratory production of rhizobium cultures. Jour. Bact.32: 68–69. 1937.

    Google Scholar 

  5. Allen, E. K. andAllen, O. N. Attempts to demonstrate symbiotic nitrogen-fixing bacteria within the tissues ofCassia Tora. Am. Jour. Bot.20: 79–84. 1933.

    Article  Google Scholar 

  6. Allen, O. N. andAllen, E. K. Plants in the sub-family Caesalpinioideae observed to be lacking nodules. Soil Sci.42: 87–92. 1936.

    Article  Google Scholar 

  7. ——. Root nodule bacteria of some tropical leguminous plants: I. Cross-inoculation studies withVigna sinensis L. Soil Sci.42: 67–77. 1936.

    Google Scholar 

  8. Allison, F. E. Carbohydrate supply as a primary factor in legume symbiosis. Soil Sci.39: 123–143. 1935.

    Article  CAS  Google Scholar 

  9. —,Hoover, S. R. andBurk, D. A respiration coenzyme. Science78: 217–218. 1933.

    Article  PubMed  CAS  Google Scholar 

  10. — andHoover, S. R. An accessory factor for legume nodule bacteria. Sources and activity. Jour. Bact.27: 561–581. 1934.

    CAS  Google Scholar 

  11. ——. The response of rhizobia to natural humic acid. Soil Sci.41: 333–340. 1936.

    Article  Google Scholar 

  12. Allyn, W. P. andBaldwin, I. L. Oxidation-reduction potentials in relation to the growth of an aerobic form of bacteria. Jour. Bact.23: 369–398. 1932.

    CAS  Google Scholar 

  13. Almon, L. Concerning the reproduction of bacteroids. Centbl. Bakt. (etc.) 2 Abt.87: 289–297. 1933.

    Google Scholar 

  14. — andWilson, P. W. Bacteriophage in relation to nitrogen fixation by red clover. Archiv. Mikrob.4: 209–219. 1933.

    Article  CAS  Google Scholar 

  15. Birch-Hirschfeld, L. Über den Einfluss von Molybdän und Bodenextrakstoffen auf die N-Bindung vonAzotobacter chroococcum. Archiv. Microb.3: 341–361. 1932.

    CAS  Google Scholar 

  16. Bjälfve, G. The nodules of leguminous plants, their form and effect in different strains. (Swedish) Centralanst. för försöksv. på jordbruksomr. Medd. Nr.434. 1933.

  17. -. The nodules of different varieties, percentage of nitrogen in legumes and their influence on the nitrogen economy of the soil. (Swedish) Centralanst. för försöksv. på jordbruksomr. Medd. Nr.455. 1935.

  18. Bond, G. Quantitative observations on the fixation and transfer of nitrogen in the soybean, with especial reference to the mechanism of transfer of fixed nitrogen from bacillus to host. Ann. Bot.50: 559–578. 1936

    CAS  Google Scholar 

  19. Bond, V. S. Studies on the excretion of nitrogen by leguminous plants. M. S. Thesis, Univ. Wis. 1936.

  20. —,Wilson, P. W. andWagner, F. C. Influence of host plant on effectiveness of rhizobia. Jour. Bact.31: 91–92. 1936.

    Google Scholar 

  21. Bortels, H. Weitere Untersuchungen über die Bedeutung von Mo V und W und anderen Erdaschenstoffen fur Stickstoffbindende und andere Mikroorganism. Centbl. Bakt. (etc.), 2 Abt.95: 193–218. 1936.

    CAS  Google Scholar 

  22. —. Kurze Notiz über die Katalyse der biologischen Stickstoffbindung. Centbl. Bakt. (etc.) 2 Abt.87: 476–477. 1933.

    Google Scholar 

  23. Burk, D. Azotase and Nitrogenase inAzotobacter. Ergeb. Enzymforsch.3: 23–56. 1934.

    CAS  Google Scholar 

  24. -. Criteria of chemical mechanism in nitrogen fixation by living forms. Trans. 2nd Internatl. Cong. for Microbiol. (London) 1936. In press.

  25. — andHorner, C. K. The production of ammonia byAzotobacter and its relation to the mechanism of nitrogen fixation. Trans. 3rd. Internatl. Cong. Soil Sci.1: 148–151. 1935.

    CAS  Google Scholar 

  26. ——. The specific catalytic rôle of molybdenum and vanadium in nitrogen fixation and amide utilization byAzotobacter. Trans. 3rd Internatl. Cong. Soil Sci.1: 152–155. 1935.

    CAS  Google Scholar 

  27. ——. The origin and significance of ammonia formed byAzotobacter. Soil Sci.41: 81–122. 1936.

    Article  CAS  Google Scholar 

  28. Bushnell, O. A., Sarles, W. B. andFred, E. B. Studies on the root nodule bacteria of certain wild leguminous plants of Wisconsin. Jour. Bact.31: 93. 1936.

    Google Scholar 

  29. Carroll, W. R. A study of Rhizobium species in relation to nodule formation on the roots of Florida legumes: I and II. Soil Sci.37: 117–134; 227–241. 1934.

    CAS  Google Scholar 

  30. Clark, D. G. Studies on nitrogen fixation by Rhizobium species in pure culture. Am. Jour. Bot.22: 915. 1935.

    Google Scholar 

  31. Conklin, M. E. Studies of the root nodule organisms of certain wild legumes. Soil Sci.41: 167–185. 1936.

    Article  CAS  Google Scholar 

  32. Demolon, A. andDunez, A. Recherches sur le rôle du bacteriophage dans la fatigue des Luzernières. Ann. Agron., n.s.,5: 89–112. 1935.

    Google Scholar 

  33. ——. Nouvelles observations sur la bacteriophage et la fatigue des sols cultivés en luzerne. Ann. Agron., n.s.,6: 434–454. 1936.

    CAS  Google Scholar 

  34. Dhar, N. R. Influence of light on some biochemical processes. Soc. Biol. Chemists. India (Indian Inst. of Sci.). 1935.

  35. Forjaz, P. The biochemistry of nitrification. New contribution to the study of the Müntz process. Chimie et Industrie.Special No. 829. (March 1931.)

  36. Fred, E. B. andWilson, P. W. On photosynthesis and free nitrogen assimilation by leguminous plants. Proc. Nat. Acad. Sci.20: 403–409. 1934.

    Article  PubMed  CAS  Google Scholar 

  37. -,Baldwin, I. L. and McCoy, E. Root nodule bacteria and leguminous plants. Univ. Wis. 1932. 343 pp.

  38. Galestin, C. J. A. Is elementary nitrogen absorbed by root nodules in the assimilation of nitrogen of air by the legumes? Chem. Weekbl.30: 207–209. 1933.

    CAS  Google Scholar 

  39. Georgi, C. E. andWilson, P. W. The influence of the tension of oxygen on the respiration of rhizobia. Archiv. Mikrobiol.4: 543–564. 1933.

    Article  CAS  Google Scholar 

  40. Girtschanoff, K. Stickstoffbindung durch keimende Leguminosensamen ohne Mitwirkung von Knöllchenbakterien ? Centbl. Bakt. (etc.) 2 Abt.92: 349–363. 1935.

    CAS  Google Scholar 

  41. Green, D. E., Stickland, L. H. andTarr, H. L. A. Studies on reversible dehydrogenase systems. III. Carrier-linked reactions between isolated dehydrogenases. Biochem. Jour.28: 1812–1824. 1934.

    CAS  Google Scholar 

  42. Haritantis, B. J. Einige Beobachtungen über die Stickstoffbindung durch Leguminosensamen. Ztschr. Pflanzener. Dung. u. Bodenk.34A; 257–265. 1934.

    Article  CAS  Google Scholar 

  43. Hoover, S. R. andAllison, F. E. A growth and respiration factor for certain rhizobia. Trans. 3rd Internatl. Cong. Soil Sci.1: 158–160. 1935.

    CAS  Google Scholar 

  44. Hopkins, E. W., Wilson, P. W. andPeterson, W. H. Influence of potassium nitrate on nodule formation and nitrogen fixation by clover. Plant Physiol.7: 597–611. 1932.

    PubMed  CAS  Google Scholar 

  45. Horner, G. M. Relation of the degree of base saturation of a colloidal clay by calcium to the growth, nodulation and composition of soybeans. Mo. Agr. Exp. Sta. Bull. 232. 1936.

  46. Israilsky, W. P., Runow, E. B. and Bernar, W. N. Root nodule bacteria and nitrogen (Russian). Moscow, 1933. 232 pp.

  47. Itano, A. andMatsuura, A. Influence of plant extract as accessory substance on the growth of nodule bacteria. Ber. Ohara Inst. Landwirtschaft. Forschungen7: 185–214. 1936.

    CAS  Google Scholar 

  48. ——. On the electrical properties of the accessory substance. Jour. Agr. Chem. Soc. (Japan)12: 71–72. 1936.

    Google Scholar 

  49. Konishi, K. andTsuge, T. On the respiration of nodule bacteria. Jour. Sci. Soil & Manure, Japan.8: 297–308. 1934.

    Google Scholar 

  50. -, -. On the mineral matters of certain leguminous crops. I-II. Mem. Coll. Agr., Koyot Imp. Univ., No.37. 1936.

  51. Korsakova, M. P. andLopatina, G. V. Mutual relations of nodule bacteria and leguminous plants. (Russian) Microbiologie3: 204–220. 1934.

    Google Scholar 

  52. Krasheninnikov, T. Assimilation of nitrogen gas by the root nodules of leguminous plants. (Russian) Recueil d’articles scientifiques dedié au Prof. Clement Timiriazeff. Moscow, 1916. pp. 307–342.

  53. Laird, D. G. A study of strains of the rhizobia with particular reference to the bacteriophage. Proc. World’s Grain Exhibition & Conf. Regina.2: 362–369. 1933.

    Google Scholar 

  54. — andWest, P. M. The influence of bios on nodule bacteria and legumes. A. The influence of bios on legume seedling. Canad Jour. Res.15: 1–6. 1937.

    Google Scholar 

  55. Lewis, K. H. andMcCoy, E. Root nodule formation on the garden bean, studied by a technique of tissue culture. Bot. Gaz.95: 316–329. 1933.

    Article  Google Scholar 

  56. Longley, B. J., Berge, T. O., VanLanen, J. M. andBaldwin, I. L. Changes in the infective ability of rhizobia andPhytomonas tumefaciens induced by culturing on media containing glycine. Jour. Bact.32: 17–18. 1937.

    Google Scholar 

  57. Ludwig, C. A. andAllison, F. E. Some factors affecting nodule formation on seedlings of leguminous plants. Jour. Am. Soc. Agron.27: 895–902. 1935.

    Google Scholar 

  58. ——. Experiments on the diffusion of nitrogenous compounds from healthy legume nodules or roots. Jour. Bact.31: 93–94. 1936.

    CAS  Google Scholar 

  59. McBurney, C. H., Bollen, W. B. andWilliams, R. J. Pantothenic acid and the nodule bacteria-legume symbiosis. Proc. Nat. Acad. Sci.21: 301–304. 1935.

    Article  PubMed  CAS  Google Scholar 

  60. Neal, O. R. andWalker, R. H. Physiological studies on rhizobium. IV. Utilization of carbonaceous materials. Jour. Bact.30: 173–187. 1935.

    CAS  Google Scholar 

  61. ——. Physiological studies on rhizobium. V. The extent of oxidation of carbonaceous materials. Jour. Bact.32: 183–194. 1936.

    CAS  Google Scholar 

  62. Nicol, H. The derivation of the nitrogen of crop plants, with special reference to associated growth. Biol. Rev.9: 383–410. 1934.

    Article  CAS  Google Scholar 

  63. —. Mixed cropping in primitive agriculture. Empire Jour. Exp. Agr.3: 189–195. 1935.

    Google Scholar 

  64. -. The utilisation of atmospheric nitrogen by mixed crops. Int. Inst. Agr. (Rome) Mon. Bul. Agr. Sci. & Prac. No.6: 201–216; No.7: 241–256. 1936.

  65. Orcutt, F. S., Shannon, A. M. andWilson, P. W. Concerning the fixation of nitrogen by germinating peas of leguminous plants. Jour. Bact.27: 55–56. 1934.

    CAS  Google Scholar 

  66. -. Nitrogen metabolism of soybeans in relation to symbiotic nitrogen fixation process. Soil Sci. In Press.

  67. Rabotnova, I. L. The oxidation-reduction regime of the nitrogenassimilators of the rhizobium group (Russian). Microbiologie5: 217–238. 1936.

    Google Scholar 

  68. Raju, M. S. Studies on the bacterial-plant groups of cowpea, cicer and dhaincha. I. Classification. Centbl. Bakt. (etc.) 2 Abt.94: 249–262. 1936.

    Google Scholar 

  69. —. Studies on the bacterial-plant groups. II. Variations in the infective power of the nodule bacteria of cowpea group. Centbl. Bakt. (etc.) 2 Abt.94: 337–348. 1936.

    Google Scholar 

  70. Reid, J. J. The infective ability of rhizobia of the soybean, cowpea, and lupine cross-inoculation groups. Ph.D. Thesis, Univ. of Wis. 1936.

  71. Reuszer, H. W. Nitrogen transformations in certain Colorado soils. Jour. Bact.32: 70. 1937.

    Google Scholar 

  72. Rossi, G. De. Les microbes du sol et la fixation de l’azote atmosphérique. Boll. Soc. Intern. Microbiol., Sez. Ital.4: 418–483. 1932.

    Google Scholar 

  73. —. The fixation of nitrogen in soils. V. A cause of errors in the determination of the nitrogen fixing power of the microorganisms. Boll. Soc. Intern. Microbiol., Sez. Ital.7: 218–221. 1935.

    Google Scholar 

  74. Sarles, W. B. andReid, J. J. Growth stimulants for certain rhizobia. Jour. Bact.30: 651. 1935.

    CAS  Google Scholar 

  75. Schaede, R. Das Schicksal der Bakterien in den Knöllchen von Lupinus albus nebst cytologischen Untersuchungen. Centbl. Bakt. (etc.) 2 Abt.85: 416–425. 1932.

    Google Scholar 

  76. Skallau, W. Gibt es eine Azoligase? Centbl. Bakt. (etc.) 2 Abt.93: 244–247. 1936.

    Google Scholar 

  77. Smyth, E. M. andWilson, P. W. Über die scheinbare Stickstoffassimilation keimender Erbsen. (Die Anwendbarkeit der Kjeldahl-Methode bei biologischen Stickstoffassimilationsversuchen.) Biochem. Ztschr.282: 1–25. 1935.

    Article  CAS  Google Scholar 

  78. Stapp, C. Zur Physiologie Stickstoffbindener Mikroorganismen. Trans. 2nd Internati. Cong. for Microbiol. (London). 1936. In Press.

  79. Thimann, K. V. On the physiology of the formation of nodules on legume roots. Proc. Nat. Acad. Sci.22: 511–514. 1936.

    Article  PubMed  CAS  Google Scholar 

  80. Thorne, D. W. andWalker, R. H. Some factors influencing the respiration of Rhizobium. Iowa Acad. Sci.41: 63–70. 1934.

    CAS  Google Scholar 

  81. ——. Physiological studies on Rhizobium. III. Respiration and growth as influenced by the reaction of the medium. Jour. Bact.30: 33–42. 1935.

    CAS  Google Scholar 

  82. ——. Physiological studies on Rhizobium. VI. Accessory factors. Soil Sci.42: 231–240. 1936.

    Article  CAS  Google Scholar 

  83. ——. Physiological studies on Rhizobium. VII. Some physiological effects of accessory growth factors. Soil Sci.42: 301–310. 1936.

    CAS  Google Scholar 

  84. —,Neal, O. R. andWalker, R. H. Physiological studies on Rhizobium. VIII. The respiratory quotient. Archiv. Mikrob.7: 477–487. 1936.

    Article  Google Scholar 

  85. Thornton, H. G. The symbiotic relationship between soil bacteria and higher plants, as exemplified by the Leguminosae. Trans. 3rd Internatl. Cong. Soil Sci.2: 81–94. 1935.

    Google Scholar 

  86. —. The present state of our ignorance concerning the nodules of leguminous plants. Sci. Prog. (London)31: 236–249. 1936.

    CAS  Google Scholar 

  87. —. The action of sodium nitrate upon the infection of lucerne root-hairs by nodule bacteria. Proc. Royal Soc. (London) Ser. B119: 474–492. 1936.

    CAS  Google Scholar 

  88. — andNicol, H. The effect of sodium nitrate on the growth and nitrogen content of a lucerne and grass mixture. Jour. Agr. Sci.24: 269–282. 1934.

    CAS  Google Scholar 

  89. ——. Further evidence upon the nitrogen uptake of grass grown with lucerne. Jour. Agr. Sci.24: 540–543. 1934.

    CAS  Google Scholar 

  90. ——. Reduction of nodule numbers and growth, produced by the addition of sodium nitrate to lucerne in sand culture. Jour. Agr. Sci.26: 173–188. 1936.

    CAS  Google Scholar 

  91. — andRudorf, J. E. The abnormal structure induced in nodules on lucerne (Medicago sativa L.) by the supply of sodium nitrate to the host plant. Proc. Roy. Soc. (London) Ser. B.120: 240–252. 1936.

    CAS  Google Scholar 

  92. Umbreit, W. W. andWilson, P. W. Studies in the mechanism of symbiotic nitrogen fixation: hydrogen as a specific inhibitor. Jour. Bact.32: 67–68. 1937.

    Google Scholar 

  93. Uspensky, E. E. Soil microbiology in the U. S. S. R. (1917–1932). Moscow, 1933. 91 pp.

  94. Vandecavaye, S. C. andKatznelson, H. Bacteriophage as related to the root nodule bacteria of alfalfa. Jour. Bact.31: 465–477. 1936.

    Google Scholar 

  95. Vita, N. Über die Ausnutzung des atmosphärischen Stickstoffs durch keimende Samen (Beobachtungen an Lupinensamen bei besonderen Umgebungsbedingungen). Biochem. Ztschr.245: 210–217. 1932.

    CAS  Google Scholar 

  96. —. Über die Ausnutzung des atmosphärischen Stickstoffs durch keimende Samen. II. Beobachtungen an keimenden Hülsenfruchtsamen in Gegenwart von Alkaloiden. Biochem. Ztschr.252: 278–291. 1932.

    CAS  Google Scholar 

  97. — andSandrinelli, R. Über die Ausnützung des atmosphärischen Stickstoffs durch keimende Hülsenfruchtsamen. III. Biochem. Ztschr.255: 82–87. 1932.

    CAS  Google Scholar 

  98. Virtanen, A. I. Über die Stickstoffernährung der Pflanzen. Ann. Acad. Scientiarum Fennicae, A.36: No. 12. Helsinki, 1933.

  99. —. The chemistry of grass crops. Jour. Soc. Chem. Indus.54: 1015–1020. 1935.

    Google Scholar 

  100. —. Nature of the excretion of nitrogen compounds from legume nodules. Nature138: 880–881. 1936.

    Article  CAS  Google Scholar 

  101. —. The mechanism of the symbiotic nitrogen fixation. Suomen Kemistilehti B,9: 69. 1936.

    CAS  Google Scholar 

  102. —,v. Hausen, S. andKarström, H. Untersuchungen über die Leguminose-Bakterien und -Pflanzen XII. Biochem. Ztschr.258: 106–117. 1933.

    CAS  Google Scholar 

  103. ——. Investigations on the root nodule bacteria of leguminous plants. Effect of air content of the medium on the function of the nodule and on the excretion of nitrogen. Jour. Agr. Sci.25: 278–289. 1935.

    Article  CAS  Google Scholar 

  104. -, -. Investigations on the root nodule bacteria of leguminous plants. Efficiency of different strains of bacteria. Contr. Biochem. Lab. Found. Chem. Res. No. 1. Helsinki, 1932.

  105. ——. Investigations on the root nodule bacteria of leguminous plants. Continued investigations on the effect of air content of the medium on the development and function of the nodule. Jour. Agr. Sci.26: 281–287. 1936.

    CAS  Google Scholar 

  106. — andLaine, T. Fixation of nitrogen in the leguminous root nodules. Suomen Kemistilehti B,9: 12. 1936.

    Google Scholar 

  107. ——. Formation of ß-alanine from aspartic acid through the legume bacteria. Suomen Kemistilehti B,10: 2. 1937.

    Google Scholar 

  108. —— andv. Hausen, S. Excretion of amino acids from the root nodules of leguminous plants. Nature137: 277. 1936.

    Article  Google Scholar 

  109. ———. Excretion of amino acids from the root nodules and their chemical nature. Suomen Kemistilehti M,9: 1. 1936.

    Google Scholar 

  110. —,Nordland, M. andHollo, E. Fermentation of sugar by the root nodule bacteria. Biochem. Jour.28: 796–802. 1934.

    CAS  Google Scholar 

  111. — andTorniainen, M. Amino acid content of the root nodules. Suomen Kemistilehti B,9: 13. 1936.

    Google Scholar 

  112. Wagner, F. C. Concerning the excretion of soluble nitrogen by inoculated leguminous plants. B.S. Thesis, Univ. Wis. 1935.

  113. Walker, R. H., Anderson, D. A. andBrown, P. E. Physiological studies on Rhizobium. I. The effect of nitrogen source on oxygen consumption byRhizobium leguminosarum Frank. Soil Sci.37: 387–401. 1934.

    Article  CAS  Google Scholar 

  114. ———. Physiological studies on Rhizobium. II. The effect of nitrogen source on oxygen consumption byRh. meliloti, Rh. trifolii andRh. phaseoli. Soil Sci.38: 207–217. 1934.

    Article  CAS  Google Scholar 

  115. — andBrown, P. E. The nomenclature of the cowpea group of root-nodule bacteria. Soil Sci.39: 221–225. 1935.

    Article  Google Scholar 

  116. Wartiovaara, U. Über den Stickstoffaushalt des Hafers bei feldmäsigen Mischkulturen zusammen mit der Erbse. Ztschr. Pflanzenernähr. u. Düngung.31A: 353–359. 1933.

    Article  CAS  Google Scholar 

  117. Wilson, P. W. The carbohydrate-nitrogen relation in symbiotic nitrogen fixation. Wis. Agr. Exp. Sta. Res. Bul. No. 129. 1935.

  118. —. Über die scheinbare Stickstoffassimilation keimender Erbsen. Biochem. Ztschr.287: 418–419. 1936.

    CAS  Google Scholar 

  119. —. Mechanism of symbiotic nitrogen fixation. I. The influence of pN2. Jour. Am. Chem. Soc.58: 1256–1261. 1936.

    Article  CAS  Google Scholar 

  120. —. Respiratory enzyme systems in the root nodule bacteria. Jour. Bact.32: 66–67. 1937.

    Google Scholar 

  121. — andBond, V. S. Studies on the mechanism of nitrogen fixation by Leguminosae. The pO2 function. Jour. Bact.32: 116. 1936.

    CAS  Google Scholar 

  122. —,Fred, E. B. andSalmon, M. R. Relation between carbon dioxide and elemental nitrogen assimilation in leguminous plants. Soil Sci.35: 145–165. 1933.

    Article  CAS  Google Scholar 

  123. -, -. Studies in the mechanism of symbiotic nitrogen fixation. Trans. 2nd. Internatl. Cong. Microbiol. (London). 1936. In Press.

  124. —,Hopkins, E. W. andFred, E. B. The fixation of nitrogen by leguminous plants under bacteriologically controlled conditions. Soil Sci.32: 251–268. 1931.

    Article  CAS  Google Scholar 

  125. ———. The biochemistry of nitrogen fixation by Leguminosae. I. Nitrogen fixation studies of rhizobia apart from the host plant. Arch. Mikrob.3: 322–340. 1932.

    Article  CAS  Google Scholar 

  126. -And Umbreit, W. W. Fixation and transfer of nitrogen in the soybean. Centbl. Bakt. (etc.) 2 Abt. In Press.

  127. Winogradsky, S. andWinogradsky, H. Recherches sur les bactéries radicicoles des légumineuses. Ann. Inst. Pasteur56: 221–250. 1936.

    CAS  Google Scholar 

  128. Zycha, H. Sauerstoffoptimum und Nährboden “aerober” Bakterien. Arch. Mikrobiol.3: 194–204. 1932.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

John Simon Guggenheim Memorial Foundation Fellow, 1936. The author expresses his appreciation to the Foundation for its grant to conduct research into the problem of nitrogen-fixation by bacteria in consultation with EuroDean authorities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, P.W. Symbiotic nitrogen-fixation by the Leguminosae. Bot. Rev 3, 365–399 (1937). https://doi.org/10.1007/BF02870488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870488

Keywords

Navigation