Advertisement

Microgravity - Science and Technology

, Volume 18, Issue 3–4, pp 234–238 | Cite as

Hypergravity affects morphology and function in microvascular endothelial cells

  • Monica MoniciEmail author
  • Nicola Marziliano
  • Venere Basile
  • Giovanni Romano
  • Antonio Conti
  • Silvia Pezzatini
  • Lucia Morbidelli
Article

Abstract

Cardiovascular diseases are major health problems in astronauts and pilots. The basic problem in cardiovascular diseases is the loss of function by vascular endothelium. It has been demonstrated that changes in inertial conditions (i.e. hypo- and hypergravity) can affect both phenotypic and genotypic expression in endothelial cells. This report describes the effects observed in endothelial cells from coronary post-capillary venules after repeated exposures to hypergravity conditions, alternating with recovery periods. The results showed changes in gene expression, cell energy metabolism, morphology and cytoskeleton organization.

Keywords

Flavin Microvascular Endothelial Cell Cytoskeleton Organization Cell Energy Metabolism Human Primary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Furutsu, M., Kawashima, K., Negishi, Y., Endo H.: Bidirectional effects of hypergravity on the cell growth and differentiated functions of osteoblast-like ROS17/2.8 cells. Biological and pharmaceutical bulletin, vol. 23, p. 1258 (2000).Google Scholar
  2. [2]
    Del Signore, A., Mandrillo, S., Rizzo, A., Di Mauro, E., Mele, A., Negri, R., Oliverio, A., Paggi, P.: Hippocampal gene expression is modulated by hypergravity. European Journal of Neuroscience, vol. 19, p. 667 (2004).CrossRefGoogle Scholar
  3. [3]
    Tschopp, A., Cogoli, A.: Hypergravity promotes cell proliferation. Experientia, vol. 39, p.1323 (1983).CrossRefGoogle Scholar
  4. [4]
    Montufar-Solis, D., Duke, P.J., D’Aunno, D.: In vivo and in vitro studies of cartilage differentiation in altered gravities. Advances in Space Research, vol. 17, p.193 (1996).CrossRefGoogle Scholar
  5. [5]
    Croute, F., Gaubin, Y., Pianezzi, B., Soleilhavoup, J.P.: Effects of hypergravity on the cell shape and on the organization of cytoskeleton and extracellular matrix molecules of in vitro human dermal fibroblasts. Microgravity Science and Technology, vol. 8, p.118 (1995).Google Scholar
  6. [6]
    Ali, M.H., Schumacker, P.T.: Endothelial responses to mechanical stress: where is the mechanosensor? Critical Care Medicine, vol. 30, p. S198 (2002).Google Scholar
  7. [7]
    Spisni, E., Bianco, M.C., Blasi, F., Santi, S., Riccio, M., Toni, M., Grifoni, C., Tomasi, V.: Hypergravity impairs angiogenic response of in vitro cultured human primary endothelial cells. Journal of Gravitational Physiology, vol. 9, p. P285 (2002).Google Scholar
  8. [8]
    Monici, M.: Cell and Tissues Autofluorescence. Research and Diagnostic Applications. Invited Review. Biotechnology Annual Review, vol. 11, p. 227 (2005).Google Scholar
  9. [9]
    Livak, K.J., Schmittgenb, T.D.: Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔ Ct method. Methods, vol. 25, p. 402 (2001).CrossRefGoogle Scholar
  10. [10]
    Ingber, D.E.: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research, vol. 9, p. 877 (2002).CrossRefGoogle Scholar
  11. [11]
    Valen, G., Yan, Z.Q., Hansson, GK.: Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology, vol.38, p.307 (2001).CrossRefGoogle Scholar
  12. [12]
    Morbidelli, L., Monici, M., Marziliano, N., Cogoli, A., Fusi, F., Waltenberger, J., Ziche, M.: Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochemical and Biophysical Research Communications, vol. 334, p. 491 (2005).CrossRefGoogle Scholar
  13. [13]
    Spisni, E., Bianco, M. C., Griffoni, C., Toni, M., d’Angelo, R., Santi, S., Riccio, M., Tomasi, V.: Mechanosensing role of caveolae and caveolar constituents in human endothelial cells. Journal of Cellular Physiology, vol. 197, p. 198 (2003).CrossRefGoogle Scholar
  14. [14]
    Searby, N.D., Steele, C.R., Globus, R.K.: Influence of increased mechanical loading by hypergravity on the microtubule cytoskeleton and release in primary osteoblasts 2 prostaglandin. American Journal of Physiology-Cell Physiology, vol. 289, p. 148 (2005).CrossRefGoogle Scholar
  15. [15]
    Eckes, B., Dogic, D., Colucci-Guyon, E., Wang, N., Maniotis, A., Ingberg, D., Merckling, A., Langa, F., Aumailley, M., Delouvée, A., Koteliansky, V., Babinet, C., Krieg, T.: Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. Journal of Cellular Sciences, vol. 111: p. 1897 (1998).Google Scholar
  16. [16]
    Saks, V.A., Kuznetsov, A.V., Khuchua, Z.A., Vasilyeva, E.V., Belikova, J.O., Kesvatera, T., Tiivel, T.: Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine Kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. Journal of Molecular and Cellular Cardiology, vol. 27, p. 625 (1995).CrossRefGoogle Scholar
  17. [17]
    Schatten, H., Lewis, M.L., Chakrabarti, A.: Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronautica, vol. 49, p. 399 (2001).CrossRefGoogle Scholar
  18. [18]
    Gross, A., McDonnell, J.M., Korsmeyer, S.J.: Bcl-2 family members and the mitochondria in apoptosis. Genes and Development, vol.13, p.1899 (1999).CrossRefGoogle Scholar

Copyright information

© Z-Tec Publishing 2006

Authors and Affiliations

  • Monica Monici
    • 1
    Email author
  • Nicola Marziliano
    • 2
  • Venere Basile
    • 3
  • Giovanni Romano
    • 3
  • Antonio Conti
    • 3
  • Silvia Pezzatini
    • 4
  • Lucia Morbidelli
    • 4
  1. 1.CEO - Center of Excellence in Optronics c/o Dep. of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly
  2. 2.IRCCFSan Matteo HospitalPaviaItaly
  3. 3.Dept. of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly
  4. 4.Sect. PharmacologyDept. Molecular Biology University of SienaSienaItaly

Personalised recommendations