Skip to main content

IDR/UPM facilities for liquid bridge experimentation on Earth under microgravity conditions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Besides space laboratories for in-orbit experimentation, Earth based facilities for laboratory experimentation are of paramount importance for the enhancement on liquid bridge knowledge. In spite of the constraints imposed by simulated microgravity (which force to work either with very small size liquid bridges or by using the Plateau tank technique, amongst other techniques), the availability and accessibility of Earth facilities can circumvent in many cases the drawbacks associated with simulated microgravity conditions. To support theoretical and in orbit experimental studies on liquid bridges under reduced gravity conditions, several ground facilities were developed at IDR. In the following these ground facilities are briefly described, and main results obtained by using them are cited.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Da Riva, I., Martinez, I.: Floating Zone Stability (Exp. 1.ES-331). ESA SP 142, pp. 67–74 (1979).

  2. 2

    Da Riva, I., Napolitano, L.G.: Fluid Physics under Reduced Gravity — an Overview. ESA SP 191, pp. 5–12 (1983).

  3. 3

    Meseguer, J., Perales, J.M., Martínez, I., Bezdenejnykh, N.A., Sanz, A.: Hydrostatic Instabilities in Floating Zone Crystal Growth Process. Curr. Topics Crystal Growth Res., Vol. 5, pp. 27–42 (1999).

    Google Scholar 

  4. 4

    Meseguer, J., Espino, J.L., Perales, J.M., Laverón-Simavilla, A.: On the Breaking of Long, Axisymmetric Liquid Bridges between Unequal Supporting Disks at Minimum Volume Stability Limit. Eur. J. Mech. B/Fluids, Vol. 22, pp. 355–368 (2003).

    Article  MATH  Google Scholar 

  5. 5

    Meseguer, J.: The Breaking of Axisymmetric Slender Liquid Bridges, J. Fluid Mech., Vol. 130, pp. 123–151 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. 6

    Meseguer, J., Sanz, A.: Numerical and Experimental Study of the Dynamics of Axisymmetric Slender Liquid Bridges. J. Fluid Mech., Vol. 153, pp. 83–101 (1985).

    Article  Google Scholar 

  7. 7

    Zhang, X., Padgett, R.S., Basaran, O.A.: Nonlinear Deformation and Breakup of Stretching Liquid Bridges. J. Fluid Mech., Vol. 329, pp. 207–245 (1996).

    Article  MATH  Google Scholar 

  8. 8

    Espino, J.L., Meseguer, J., Laverón-Simavilla, A.: An Experimental Study of the Breakage of Liquid Bridges at Stability Limit of Minimum Volume. Phys. Fluids, Vol. 14, pp. 3710–3713 (2002).

    Article  Google Scholar 

  9. 9

    Sanz, A.: The Influence of the Outer Bath in the Dynamics of Axisymmetric Liquid Bridges. J. Fluid Mech., Vol. 156, pp. 101–140 (1985).

    Article  MATH  Google Scholar 

  10. 10

    Martínez, I., Rivas, D.: Plateau Tank Facility for Simulation of Spacelab Experiments. Acta Astronautica, Vol. 9, pp. 339–342 (1982)

    Article  Google Scholar 

  11. 11

    Sanz, A., Martínez, I.: Minimum Volume for a Liquid Bridge between Equal Disks. J. Colloid Interface Sci., Vol. 93, pp. 235–240 (1983).

    Article  Google Scholar 

  12. 12

    Sanz, A., López-Díez, J.: Non-Axisymmetric Oscillations of Liquid Bridges. J. Fluid Mech., Vol. 205, pp. 503–521 (1989).

    Article  Google Scholar 

  13. 13

    Meseguer, J., Mayo, L.A., Llorente, J.C., Fernández, A.: Experiments with Liquid Bridges In Simulated Microgravity. J. Crystal Growth, Vol. 73, pp. 609–621 (1985).

    Article  Google Scholar 

  14. 14

    Sanz, A., Perales, J.M.: Liquid Bridge Formation. Appl. Microgravity Technol., Vol. 2, pp. 133–141 (1989).

    Google Scholar 

  15. 15

    Meseguer, J., Sanz Andrés, A., Perales, J.M.: Equipo para la experimentación con fluidos en microgravedad simulada (Tele-Operated Plateau Tank Facility). Anales de Química, Vol. 87, pp. 537–540 (1991).

    Google Scholar 

  16. 16

    Sanz-Andrés, A., Perales, J.M., Rodríguez de Francisco, P, Sanz-Lobera, A.: A Plateau Tank Facility (PTF) for Liquid Bridge Experimentation by Using Buoyancy Technique for Microgravity Simulation. ESA SP-295, pp. 607–611 (1990).

  17. 17

    Rodríguez de Francisco, P., Sanz, A., Perales, J.M., Sanz, A.: Design and Manufacturing of an APTF to Test Fluid Behaviour in Microgravity Environment. ESA SP-299, pp. 299–304 (1990).

  18. 18

    Perales, J.M., Meseguer, J., Martínez, I.: Minimum Volume for Axisymmetric Liquid Bridges Subject to Steady Acceleration. J. Crystal Growth, Vol. 110, pp. 855–861 (1991).

    Article  Google Scholar 

  19. 19

    Perales, J.M., Meseguer, J.: Theoretical and Experimental Study of the Vibration of Axisymmetric Viscous Liquid Bridges. Phys. Fluids A, Vol. 4, pp. 1110–1130 (1992).

    Article  Google Scholar 

  20. 20

    Zayas, F., Meseguer, J., Perales, J.M., Sanz, A.: A Teleoperated Facility for Variable Gravity Level Fluid Physics Experimentation. Paper G0.1-0051, 33rd COSPAR Scientific Assembly, Warsaw, Poland, 16–23 July (2000).

  21. 21

    Zayas, F., Alexander, J.I.D., Meseguer, J., Ramus, F.: On the Stability Limits of Long Non-Axisymmetric Cylindrical Liquid Bridges. Phys. Fluids, Vol. 12, pp. 979–985 (2000).

    Article  MathSciNet  Google Scholar 

  22. 22

    Bezdenejnykh, N.A., Meseguer, J.: Stability Limits of Minimum Volume and Breaking of Axisymmetric Liquid Bridges between Unequal Disks. Microgravity Sci. Technol., Vol. 4, pp. 235–239 (1991).

    Google Scholar 

  23. 23

    Bezdenejnykh, N.A., Meseguer, J., Perales, J.M.: Experimental Analysis of Stability Limits of Capillary Liquid Bridges. Phys. Fluids A, Vol. 4, pp. 677–680 (1992).

    Article  Google Scholar 

  24. 24

    Meseguer, J., Bezdenejnykh, N.A., Perales, J.M., Rodríguez de Francisco, P.: Theoretical and Experimental Analysis of Stability Limits of Non-Axisymmetric Liquid Bridges. Microgravity Sci. Technol., Vol. 8, pp. 2–9 (1995).

    Google Scholar 

  25. 25

    Meseguer, J., Bezdenejnykh, N.A., Rodríguez de Francisco, P.: On the Use of Liquid Bridges as Accelerometers. Microgravity Sci. Technol., Vol. 9, pp. 62–69 (1996).

    Google Scholar 

  26. 26

    Bezdenejnykh, N.A., Meseguer, J., Perales, J.M.: An Experimental Analysis of the Instability of Non-Axisymmetric Liquid Bridges in a Gravitational Field. Phys. Fluids, Vol. 11, pp. 3181–3185 (1999).

    Article  Google Scholar 

  27. 27

    Meseguer, J., Espino, J.L., Cuerva, A. Sanz-Andrés, A.: Minimum Volume of Long Liquid Bridges Between Non-Coaxial, Non-Equal Diameter Circular Disks Under Lateral Acceleration. Phys. Fluids, Vol. 17, code 108101, 4 p. (2005).

  28. 28

    López Díez, J.: Low-Marangoni Low-Reynolds Numbers Capillary Flow Inside a Slender Liquid Bridge. Microgravity Sci. Technol., Vol. 3, pp. 222–230 (1991).

    Google Scholar 

  29. 29

    Luengo, V., Meseguer, J., Parra, I.E.: An Experimental Study of the Stability of Long Axisymmetric Liquid Bridges between Solid Supports at Different Temperatures. Exp. Fluids, Vol. 34, pp. 412–417 (2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Sanz-Andrés.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanz-Andrés, A., Meseguer, J. & Espi, J.L. IDR/UPM facilities for liquid bridge experimentation on Earth under microgravity conditions. Microgravity Sci. Technol 18, 62–66 (2006). https://doi.org/10.1007/BF02870381

Download citation

Keywords

  • Stability Limit
  • Liquid Bridge
  • Microgravity Condition
  • Supporting Tube
  • Simulated Microgravity Condition