Skip to main content
Log in

Phototropism. II

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

The major revisions which we must make in our ideas concerning phototropism are the following:

  1. a)

    Perception of blue light by phototropically reactive plant parts may be mediated by one or more of several pigments, all of whose absorption spectra agree reasonably well with the action spectrum for phototropism. These pigments include various carotinoids and riboflavin-containing compounds.

  2. b)

    Lateral transport of auxin under the influence of light, long accepted as a mechanism explaining the auxin changes which accompany phototropic bending, has not been unequivocally demonstrated. The data could equally well be interpreted in terms of a disturbance of a substrate-limited auxin-producing mechanism at the apex of the coleoptile and other plant organs.

  3. c)

    Indoleacetic acid can participate in light-growth reactions by virtue of its rapid photoinactivation in the presence of the proper sensitizing pigments.

  4. d)

    Photoinactivation of auxin may be readily demonstrated in vitro and in vivo, but the relation of auxin photoinactivation to phototropism is still not clear. The effect of light on auxin levels of tissues may be mediated not only by a photoinactivation mechanism but also by a stimulation or inhibition of the auxinproducing process, as well as through effects on auxin migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkins, G. A. The effect of pigment on phototropic response: A comparative study of reactions to monochromatic light. Ann. Bot.50: 197–218. 1936.

    CAS  Google Scholar 

  2. Bachmann, F., andBergann, F. Über die Wertigkeit von Strahlen verschiedener Wellenlänge für die phototropische Reizung vonAvena sativa. Planta10: 744–755. 1930.

    Article  Google Scholar 

  3. Berger, J., andAvery, G. S. Jr. Isolation of an auxin precursor and an auxin (indoleacetic acid) from maize. Am. Jour. Bot. 31: 199–203. 1944.

    Article  CAS  Google Scholar 

  4. Blaauw, A. H. Licht und Wachstum. Zeits. Bot.7: 465–532. 1915.

    Google Scholar 

  5. Blum, H. F. Photodynamic action and diseases caused by light. 1941.

  6. Bottelier, H. P. Über den Einfluss des Lichtes auf die Protoplamaströmung vonAvena. Proc. Kon. Akad. Wet. Amsterdam 36: 790–795. 1933.

    Google Scholar 

  7. Boysen-Jensen, P. Die phototropische Enduktion in der Spitze derAvena coleoptile. Planta5: 464–477. 1928.

    Article  Google Scholar 

  8. Brauner, L. Untersuchungen über die phototropischen Reaktionen des Primärblattgelenks vonPhaseolus multiflorus in weissem und in farbigem Licht. Rev. Fac. Sci. V. Istanbul, B,13: 211–267. 1948.

    Google Scholar 

  9. Bünning, E. Phototropismus und Carotinoide. III. Weitere Untersuchungen an Pilzen und höheren Pflanzen. Planta27: 583–610. 1937.

    Article  Google Scholar 

  10. Burkholder, P. R. Some experiments with growth curvatures and growth substances. Am. Jour. Bot.28: 911–921. 1941.

    Article  Google Scholar 

  11. — andJohnston, E. S. Inactivation of plant growth substance by light. Smithsonian Inst., Misc. Coll.95: 1–14. 1937.

    Google Scholar 

  12. Castle, E. S. The phototropic sensitivity ofPhycomyces as related to wave length. Jour. Gen. Physiol.14: 701–711. 1931.

    Article  Google Scholar 

  13. —. The physical basis of the positive phototropism ofPhycomyces. Jour. Gen. Physiol.17: 49–62. 1933.

    Article  CAS  Google Scholar 

  14. Chakrabarty, M. Production of fruit-bodies ofAgaricus polyporus Berk. in artificial culture. Current Sci. (Bangalore)10: 26–28. 1941.

    Google Scholar 

  15. Clark, W. G. Polar transport of auxin and electrical polarity in the coleoptile ofAvena. Pl. Physiol.12: 737–754. 1937.

    CAS  Google Scholar 

  16. —. Electrical polarity and auxin transport. Pl. Physiol. 12: 409–440. 1937.

    CAS  Google Scholar 

  17. Dassek, Margarete. Der Phototropismus der Lebermoosrhizoide. Beitr. Biol. Pflanzen26: 125–200. 1939.

    Google Scholar 

  18. De Ropp, R. S. Studies in the vernalisation of cereals. IV. The effect of preliminary soaking of the grain on the growth and tropic responses of the excised embryo of winter rye. Ann. Bot.3: 243–252. 1939.

    Google Scholar 

  19. Du Buy, H. G., andOlson, R. A. Protoplasmic streaming and dynamics of transport through living cells. Biodynamica2: 1–18.

  20. Filzer, P. Weitere phototropische Untersuchungen. Planta12: 362–398. 1930.

    Article  Google Scholar 

  21. Flint, L. H. Note on phototropism inPilobolus. Am. Jour. Bot.29: 672–674. 1942.

    Article  Google Scholar 

  22. Fuller, H. J., andThuente, A. W. Some quantitative aspects of phototropism. Trans. Ill. State Acad. Sci.34: 86–88. 1941.

    Google Scholar 

  23. Galston, A. W. Riboflavin-sensitized photoöxidation of indoleacetic acid and related compounds. Proc. Nat. Acad. Sci.35: 10–17. 1949.

    Article  CAS  Google Scholar 

  24. — andBaker, R. S. Inactivation of enzymes by visible light in the presence of riboflavin. Science109: 485–486. 1949.

    Article  PubMed  CAS  Google Scholar 

  25. ——. Studies on the physiology of light action. II. The photodynamic action of riboflavin. Am. Jour. Bot. 36: 773–780. 1949.

    Article  Google Scholar 

  26. — andHand, M. E. Studies on the physiology of light action. I. Auxin and the light inhibition of growth. Am. Jour. Bot.36: 85–94. 1949.

    Article  CAS  Google Scholar 

  27. Gessner, F. Phototropismus und Wanddehnbarkeit. Jahrb. Wiss. Bot.82: 796–802. 1936.

    Google Scholar 

  28. Haagen-Smit, A. J.,et al. Isolation of 3-indoleacetic acid from immature corn kernels. Am. Jour. Bot.33: 118–120. 1946.

    Article  CAS  Google Scholar 

  29. Haig, C. The phototropic responses ofAvena in relation to intensity and wave length. Biol. Bull.69: 305–324. 1935.

    Article  Google Scholar 

  30. Johnston, E. S. Phototropic sensitivity in relation to wavelength. Smithsonian Inst., Misc. Coll.92: 1–17. 1934.

    Google Scholar 

  31. Kögl, F.,et al. Über die Selbstinaktivierung von Auxin-a-lacton. Zeits. Physiol. Chemie244: 266–278. 1936.

    Google Scholar 

  32. —,et al. Über die Isolierung der Auxinea andb aus pflanzlichen Materialen. IX. Mitteilung. Zeits. Physiol. Chemie225: 215–229. 1934.

    Google Scholar 

  33. —,et al. Über die Lichtempfindlichkeit von Auxin-a-lacton. Zeits. Physiol. Chemie280: 135–147. 1944.

    Google Scholar 

  34. — andSchuringa, G. J. Über die Inaktivierung von Auxin-a-Lacton bei verschiedenen Wellenlängen und den Einfluss von Carotinoiden auf die Lichtreaktion. Zeits. Physiol. Chemie280: 148–161. 1944.

    Google Scholar 

  35. — andVerkaaik, B. Über das Vorkommen von Auxin in lichtempfindlichen Pilzen. Zeits. Physiol. Chemie280: 162–166. 1944.

    Google Scholar 

  36. Koningsberger, V. J., andVerkaaik, B. On phototropic curvatures inAvena caused by photochemical inactivation of auxina via its lactone. Rec. Trav. Bot. Néerl35: 1–13. 1938.

    CAS  Google Scholar 

  37. Laibach, F. Zur Frage der Inaktivierung des Wuchsstoffes durch Licht. Ber. Deut. Bot. Ges.56: 298–306. 1938.

    CAS  Google Scholar 

  38. Langham, D. G. The effect of light on growth habit of plants. Am. Jour. Bot.28: 951–956. 1941.

    Article  Google Scholar 

  39. Loofbourow, J. R. Effects of ultraviolet radiation on cells. Growth 12(Suppl.): 77–149. 1948.

    Google Scholar 

  40. Manten, A. Phototaxis, phototropism and photosynthesis in purple bacteria and blue-green algae. Thesis, Utrecht, 1948.

  41. Naundorf, G. Untersuchungen über den Phototropismus der Keimwurzel vonHelianthus annuus. Planta30: 639–663. 1940.

    Article  CAS  Google Scholar 

  42. Oppenoorth, W. F. F. Photo-inactivation of auxin in the coleoptile ofAvena and its bearing on phototropism. Proc. Kon. Akad. Wet. Amsterdam42: 902–915. 1939.

    Google Scholar 

  43. —. On the role of auxin in phototropism and light growth reactions ofAvena coeoptiles. Rec. Trav. Bot. Néerl.38: 287–372. 1941.

    Google Scholar 

  44. Parr, R. The response ofPilobolus to light. Ann. Bot.32: 177–205. 1918.

    Google Scholar 

  45. Pringsheim, E. G. Untersuchungen über das Webersche und das Resultanten-Gesetz beim Phototropismus. Zeits. Bot.18: 209–254. 1926.

    Google Scholar 

  46. Schneider, C. L. The effect of red light on growth of theAvena seedling with special reference to the first internode. Am. Jour. Bot.28: 878–886. 1941.

    Article  Google Scholar 

  47. Schrank, A. R. Relation between electrical and curvature responses in theAvena coleoptile to mechanical stimuli. Pl. Physiol.19: 198–211. 1944.

    CAS  Google Scholar 

  48. —. Note on the effect of unilateral illumination on the transverse electrical polarity in theAvena coleoptile. Pl. Physiol. 21: 362–365. 1946.

    Article  CAS  Google Scholar 

  49. —. Electrical and curvature responses of theAvena coleoptile to transversely applied direct current. Pl. Physiol.23: 188–200. 1948.

    CAS  Google Scholar 

  50. —. Experimental control of phototropic bending in theAvena coleoptile by application of direct current. Jour. Cell. & Comp. Physiol.32: 143–160. 1948.

    Article  CAS  Google Scholar 

  51. Schuringa, G. J. De foto-inactivierung von auxin-a-lacton. Thesis, Utrecht. 1941.

  52. Segelitz, G. Der Einfluss von Licht und Dunkelheit auf Wurzelbildung und Wurzelwachstum. Planta28: 617–645. 1938.

    Article  CAS  Google Scholar 

  53. Stewart, W. S., andWent, F. W. Light stability of auxin inAvena coleoptiles. Bot. Gaz.101: 706–714. 1940.

    Article  CAS  Google Scholar 

  54. van Overbeek, J. An analysis of phototropism in dicotyledons. Proc. Kon. Akad. Wet. Amsterdam35: 1325–1335. 1932.

    Google Scholar 

  55. —. Growth substance curvatures ofAvena in light and dark. Jour. Gen. Physiol.20: 283–309. 1936.

    Article  Google Scholar 

  56. —. Phototropism. Bot. Rev.5: 655–681. 1939.

    Google Scholar 

  57. —. A quantitative study of auxin and its precursor in coleoptiles. Am. Jour. Bot.28: 1–10. 1941.

    Article  Google Scholar 

  58. Wassink, E. C., andBouman, M. A. Can phototropism be initiated by a one-quantum-per-cell process? Enzymologia12: 193–197. 1947.

    PubMed  CAS  Google Scholar 

  59. Went, F. W. Wuchsstoff und Wachstum. Rec. Trav. Bot. Néerl.25: 1–116. 1928.

    Google Scholar 

  60. —. Growth, auxin and tropisms in decapitatedAvena coleoptiles. Pl. Physiol.17: 236–249. 1942.

    CAS  Google Scholar 

  61. Wildman, S. G., andBonner, J. Observations on the chemical nature and formation of auxin in theAvena coleoptile. Am. Jour. Bot.35: 740–746. 1948.

    Article  CAS  Google Scholar 

  62. Yamane, G. Über den positiven und negativen Phototropismus von Laubblättern derFatsia japonica in Zusammenhang mit der Wuchsstoffwirkung. Bot. Mag. [Tokyo]54: 117–129. 1940.

    Google Scholar 

  63. Zollikofer, C. Über die tropistische Wirkung von rotem Licht auf Dunkelpflanzen von Avena-sativa. Proc. Kon. Akad. Wet. Amsterdam29: 551. 1920.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplement to article in The Botanical Review5: 655–681. 1939.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galston, A.W. Phototropism. II. Bot. Rev 16, 361–378 (1950). https://doi.org/10.1007/BF02869991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869991

Keywords

Navigation