The Botanical Review

, Volume 45, Issue 1, pp 15–109 | Cite as

Allelopathy—An update

  • Elroy L. Rice


The latest previous comprehensive review of allelopathy (Rice, 1974) covered research done primarily prior to 1973. There have been numerous reviews published in recent years on specific phases of allelopathy (see III), but most of them covered research results published primarily through 1972 also. This review has been restricted, therefore, largely to research conducted subsequent to 1972, except for background information and significant papers overlooked in previous reviews.

There has been almost an exponential increase in the rate of publication of papers concerned with allelopathy. Research has been particularly active in relation to the roles of allelopathy in agriculture, forestry, phytopathology, patterning of vegetation, algal succession, and old-field succession. Our increasing knowledge of the conditions under which certain crop residues cause allelopathic effects to subsequent crops should enable us soon to guard against such effects. We are on the threshold of breeding crop plants that will inhibit the chief weeds in a given area through allelopathic action, and thus decrease the need for synthetic weed killers. Our understanding of allelopathic interactions of various plant species has already been used advantageously in reforestation, and future developments are very encouraging. Our increasing knowledge of allelopathy is aiding greatly in our understanding of many ecological phenomena, such as succession and patterning of vegetation.

Evidence is mounting that inhibition of nitrification increases as succession progresses toward the climax vegetation, at least in many vegetation types. This leads to a decrease in the loss of nitrogen. Addition of inhibitors to arable lands to prevent nitrification has proved to be valuable in preventing loss of nitrogen and in increasing crop yields.

There has been a rapid advance in our knowledge of mechanisms of action of known allelopathic compounds, at increasingly more fundamental levels. We have known for several years, for example, that some of these compounds inhibit uptake of various minerals, but have not known the mechanism of the action. Recent research indicates this may be due, at least in part, to inhibition of a plasma membrane ATPase that is involved with ion absorption. A thorough knowledge of mechanisms of action of allelochemics is essential to our overall understanding and appreciation of the field of allelopathy.


Ferulic Acid Botanical Review English Summary Allelopathic Effect Allelopathic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La revue la plus complète et la dernière en date sur l’allélopathie (Rice, 1974) a couvert principalement la recherche faite avant 1973. Nombres de revues ont été publiées dans les dernières années sur des phases spécifiques d’allélopathie, mais la plupart ont couvert les résultats de la recherche publiés jusqu’en 1972. Par conséquent, cette revue est restreinte à la recherche dirigée après 1972 excepté en ce qui concerne certains renseignements et des publications importantes qui ont été négligés dans les revues antérieures.

Il y a une ugmentation exponentielle dans le nombre de publications concernant l’allélopathie. La recherche a été particulièrement active sur les rôles de l’allélopathie en agriculture, foresterie, Phytopathologie, dans la distribution de la végétation, dans la succession d’algues et dans la succession d’anciens champs. La connaissance croissante des conditions sous lesquelles certains résidus des récoltes causent des effets allélopathiques sur les récoltes suivantes devrait bientôt nous permettre d’empêcher ces effets. On commence à pouvoir éléver des plantes qui empêcheront les mauvaises herbes de pousser dans une region donnée par l’action allélopathique, ce qui par conséquent diminuera l’utilisation d’herbicides synthétiques. On a déjà avantageusement utilisé les connaissances acquises sur les interactions allélopathiques de diverses espèces de plantes dans la reforestation et les développments futurs sont tres encourageants. Notre connaissance croissante d’allélopathie nous aide énormément à comprendre beaucoup de phénomènes écologiques, comme la succession et al distribution de la végétation.

Il devient évident que l’inhibition de nitrification augmente à mesure que la succession avance vers le climax, du moins dans beaucoup de types de végétation. Cela produit une diminution de perte de nitrogène. L’addition d’inhibiteurs aux terres arables pour empêcher la nitrification s’est révélée un procédé valable pour empêcher la perte de nitrogène et augmenter le rendement des récoltes.

Il y a eu une avance rapide dans le domaine des connaissances des méchanismes d’action des composés allélopathiques connus, à des niveaux plus fondamentaux. Par exemple, nous savons depuis plusieurs années que quelques-uns de ces composés inhibitent l’absorption de divers minéraux mais nous ne connaissons pas le méchanisme de l’action. La recherche récente indique que cela est peut-être dû, du moins en partie, à l’inhibition d’une membrane de plasma ATPase qui a à faire avec l’absorption d’ion. Une connaissance complète des méchanismes d’action des allélochimiques est essentielle à notre compréhension et appréciation du domaine de l’allélopathie.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdul-Wahab, A. S. andF. A. G. Al-Naib. 1972. Inhibitional effects ofImperata cylindrica (L.) P. B. Bull. Iraq Nat. Hist. Mus.V: 17–24.Google Scholar
  2. Akehurst, S. C. 1931. Observations on pond life, with special reference to the possible causation of swarming of phytoplankton. Roy. Microscop. Soc. J.51: 237–265.Google Scholar
  3. Allen, R. N. andF. J. Newhook. 1974. Suppression by ethanol of spontaneous turning activity in zoospores ofPhytophthora cinnamomi. Trans. Brit. Mycol. Soc.63: 383–385.Google Scholar
  4. Al-Mousawi, A. H. andF. A. G. Al-Naib. 1975. Allelopathic effects ofEucalyptus microtheca F. Muell. J. Univ. Kuwait (Sci.)2: 59–66.Google Scholar
  5. ——. 1976. Volatile growth inhibitors produced byEucalyptus microtheca. Bull. Biol. Res. Centre7: 17–23.Google Scholar
  6. Al-Naib, F. A. G. andA. H. Al-Mousawi. 1976. Allelopathic effects ofEucalyptus micro- theca-Identification and characterization of the phenolic compounds inEucalyptus microtheca. J. Univ. Kuwait (Sci.)3: 83–88.Google Scholar
  7. — andE. L. Rice. 1971. Allelopathic effects ofPlatanus occidentalis. Bull. Torrey Bot. Club98: 75–82.CrossRefGoogle Scholar
  8. Anaya, A. L. andS. Del Amo. 1978. Allelopathic potential ofAmbrosia cumanensis H.B.K. (Compositae) in a tropical zone of Mexico. J. Chem. Ecol.4: 289–304.CrossRefGoogle Scholar
  9. — andA. Gomez-Pompa. 1971. Inhibicion del crecimiento producida por el “piru” (Schinus molle L.) Revista Soc. Mex. Hist. Nat.32: 99–109.Google Scholar
  10. Anderson, R. C., A. J. Katz andM. R. Anderson. 1978. Allelopathy as a factor in the success ofHelianthus mollis Lam. J. Chem. Ecol.4: 9–16.CrossRefGoogle Scholar
  11. Anderson-Prouty, A. J. andP. Albersheim. 1975. Host-pathogen interactions. VIII. Iso-lation of a pathogen-synthesized fraction rich in glucan that elicits a defense response in the pathogen’s host. Pl. Physiol. (Lancaster)56: 286–291.Google Scholar
  12. Anonymous. 1969. Natural weed killer. Sci. Amer.221: 54.Google Scholar
  13. Arntzen, C. J., M. F. Haugh andS. Bobick. 1973. Induction of stomatal closure byHelminthosporium maydis pathotoxin. Pl. Physiol. (Lancaster)52: 569–574.Google Scholar
  14. —,S. V. Falkenthal andS. Bobick. 1974. Inhibition of photophosphorylation by kaempferol. Pl. Physiol. (Lancaster)53: 304–306.Google Scholar
  15. Aubert, M., D. Pesando andM. Gauthier. 1970. Phénomènes d’antibiose d’origine phytoplanktonique in milieu marine. Substances antibacterienne productes par un diatoméeAsterionella japonica (Cleve). Rev. Int. Océanogr. Méd.18-19: 69–76.Google Scholar
  16. Ayers, A. R., J. Ebel, F. Finelli, N. Berger andP. Albersheim. 1976a. Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures ofPhytophthora megasperma varsojae. Pl. Physiol. (Lancaster)57: 751–759.Google Scholar
  17. ——,B. Valent andP. Albersheim. 1976b. Host-pathogen interactions. X. Fractionation and biological activity of an elicitor isolated from the mycelial walls ofPhytophthora megasperma var.sojae. Pl. Physiol. (Lancaster)57: 760–765.Google Scholar
  18. —,B. Valent, J. Ebel andP. Albersheim. 1976c. Host-pathogen interactions. XI. Composition and structure of wall-released elicitor fractions. Pl. Physiol. (Lancaster)57: 766–774.Google Scholar
  19. Baker, K. F. andR. J. Cook. 1974. Biological control of plant pathogens. W. H. Freeman, San Francisco.Google Scholar
  20. — andW. C. Snyder, eds. 1965. Ecology of soil-borne plant pathogens. University of California Press, Berkeley.Google Scholar
  21. Balke, N. E. 1977. Inhibition of ion absorption inAvena sativa L. roots by diethylstilbestrol and other phenolic compounds. Ph.D. thesis, Purdue University, W. Lafayette, IN. Diss. Abstr. No. 7813025.Google Scholar
  22. — andT. K. Hodges. 1977. Inhibition of ion absorption in oat roots: Comparison of diethylstilbestrol and oligomycin. Pl. Sci. Letters10: 319–325.CrossRefGoogle Scholar
  23. Ballester, A. yE. Vieitez. 1971. Estudio de sustancias de crecimiento aisladas deErica cinerea L. Acta Ci. Compostelana8: 79–84.Google Scholar
  24. —,J. Arines yE. Vieitez. 1972. Compuestos fenolicos en suelos de brezal. Anales Edafologia Agrobiol.31: 359–366.Google Scholar
  25. Baranetsky, G. G. 1973. On the chemical nature of the biologically active water-soluble substances in fallen ash and lime leaves.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 85–88 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  26. Bazzaz, F. A. 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology56: 485–488.CrossRefGoogle Scholar
  27. Bell, A. A. 1974. Biochemical bases of resistance of plants to pathogens.In Biological control of plant insects and diseases. pp. 403–461. (F. G. Maxwell and F. S. Harris, eds.), The University Press of Mississippi, Jackson.Google Scholar
  28. —. 1977. Plant pathology as influenced by allelopathy.In Report of the research planning conference on the role of secondary compounds in plant interactions (allelopathy). pp. 64–99. (C. G. McWhorter, A. C. Thompson and E. W. Hauser, eds.) USDA, Agricultural Research Service, Tifton, Ga.Google Scholar
  29. Bell, D. T. andD. E. Koeppe. 1972. Noncompetitive effects of giant foxtail on the growth of corn. Agron. J.64: 321–325.Google Scholar
  30. Bendall, G. M. 1975. The allelopathic activity of California thistle (Cirsium arvense (L.) Scop.) in Tasmania. Weed Res.15: 77–81.CrossRefGoogle Scholar
  31. Berglund, H. 1969. Stimulation of growth of two marine algae by organic substances excreted byEnteromorpha linza in unialgal and axenic cultures. Physiol. Pl.22: 1069–1073.CrossRefGoogle Scholar
  32. Bhakuni, D. S. andM. Silva. 1974. Biodynamic substances from marine flora. Bot. Mar.17: 40–51.Google Scholar
  33. Black, R. L. B. andN. J. Dix. 1976. Utilization of ferulic acid by microfungi from litter and soil. Trans. Brit. Mycol. Soc.66: 313–317.Google Scholar
  34. Blum, U. andE. L. Rice. 1969. Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession. Bull. Torrey Bot. Club96: 531–544.CrossRefGoogle Scholar
  35. Bogdan, G. P. 1971. Anatomical study of effects in the plant conducting system of allelopathic substances. Ukrajins’k. Bot. Zhurn.28: 703–707.Google Scholar
  36. —. 1977. Mutual effect of couch grass and cultivated plants in phytocenoses.In Interactions of plants and microorganisms in phytocenoses. pp. 36–43 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  37. — andA. M. Grodzinsky. 1974. Role of sulfhydryl groups in protective reactions of plants during allelopathic damage. Ukrajins’k Bot. Zhurn.30: 771–778. (In Ukrainian, Russian and English summaries.)Google Scholar
  38. Boiko, M. F. 1973. Allelopathic peculiarities of epiphytic mosses, lichens and algae of floodplain forests of the Derkul River.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 103–107 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  39. Bokhari, U. G. 1978. Allelopathy among prairie grasses and its possible ecological significance. Ann. Bot. (London)42: 127–136.Google Scholar
  40. Bonner, J. 1950. The role of toxic substances in the interactions of higher plants. Bot. Rev. (Lancaster)16: 51–65.Google Scholar
  41. Börner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev. (Lancaster)26: 393–424.CrossRefGoogle Scholar
  42. Boswell, F. C. andO. E. Anderson. 1974. Nitrification inhibitor studies of soil in field-buried polyethylene bags. Soil Sci. Soc. Amer. Proc.38: 851–852.Google Scholar
  43. Brown, R. T. andP. Mikola. 1974. The influence of fruticose soil lichens upon the mycorrhizae and seedling growth of forest trees. Acta Forest. Fenn.141: 1–22.Google Scholar
  44. Bruehl, G. W., ed. 1975. Biology and control of soil-borne plant pathogens. The American Phytopathological Society, St. Paul, Minn.Google Scholar
  45. Bundy, L. G. andJ. M. Bremner. 1974. Inhibition of nitrification in soils. Soil Sci. Soc. Amer. Proc.37: 396–398.Google Scholar
  46. Chalutz, E. 1973. Ethylene-induced phenylalanine ammonia-lyase activity in carrot roots. Pl. Physiol. (Lancaster)51: 1033–1036.Google Scholar
  47. Chan, E. C. S., P. Basavanand andT. Liivak. 1970. The growth inhibition ofAzotobacter chroococcum byPseudomonas sp. Canad. J. Microbiol.16: 9–16.Google Scholar
  48. Chandramohan, D., D. Purushothaman andR. Kothandaraman. 1973. Soil phenolics and plant growth inhibition. Pl. & Soil.39: 303–308.CrossRefGoogle Scholar
  49. Chang, C. F., A. Suzuki, S. Kumai andS. Tamura. 1969. Chemical studies on ‘clover sickness’. II. Biological functions of isoflavonoids and their related compounds. Agric. Biol. Chem.33: 398–408.Google Scholar
  50. Chou, C-H. 1977. Phytotoxic substances in twelve subtropical grasses. I. Additional evidences of phytotoxicity in the aqueous fractions of grass extracts. Bot. Bull. Acad. Sin.18: 131–141.Google Scholar
  51. — andY-T. Chung. 1974. The allelopathic potential ofMiscanthus floridulus. Bot. Bull. Acad. Sin.15: 14–27.Google Scholar
  52. — andH-J. Lin. 1976. Autointoxication mechanisms ofOryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol.2: 353–367.CrossRefGoogle Scholar
  53. — andZ. A. Patrick. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol.2: 369–387.CrossRefGoogle Scholar
  54. — andC-C. Young. 1975. Phytotoxic substances in twelve sub-tropical grasses. J. Chem. Ecol.1: 183–193.CrossRefGoogle Scholar
  55. Christensen, N. L. andC. H. Muller. 1975. Effects of fire on factors controlling plant growth inAdenostoma chaparral. Ecol. Monogr.45: 29–55.CrossRefGoogle Scholar
  56. Chumakov, V. V. andM. M. Aleikina. 1977. On qualitative changes in root exudates of woody plants growing together.In Interactions of plants and microorganisms in phytocenoses. pp. 147–156 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  57. Conover, J. J. andJ. M. Sieburth. 1964. Effect ofSargassum distribution on its epibiota and antibacterial activity. Bot. Mar.6: 147–157.Google Scholar
  58. Cook, M. T. 1921. Wilting caused by walnut trees. Phytopathology11: 346.Google Scholar
  59. Corcoran, M. R., T. A. Geissman andB. O. Phinney. 1972. Tannins as gibberellin antagonists. Pl. Physiol. (Lancaster)49: 323–330.Google Scholar
  60. Coutinho, L. M. andF. Hashimoto. 1971. Sobre o efeito inhibitorio da germinacao de sementes produzido por folhas deCalea cuneifolia DC. Cienc. Cult. (Sao Paulo)23: 759–764.Google Scholar
  61. Curtis, J. T. 1959. The vegetation of Wisconsin. University of Wisconsin Press, Madison.Google Scholar
  62. Danks, M. L., J. S. Fletcher andE. L. Rice. 1975a. Influence of ferulic acid on mineral depletion and uptake of86Rb by Paul’s scarlet rose cell-suspension cultures. Amer. J. Bot.62: 749–755.CrossRefGoogle Scholar
  63. ———. 1975b. Effects of phenolic inhibitors on growth and metabolism of glucose-UL-14C in Paul’s Scarlet Rose cell-suspension cultures. Amer. J. Bot.62: 311–317.CrossRefGoogle Scholar
  64. Datta, S. C. andS. P. Sinha-Roy. 1974. Allelopathy and inhibitors. Sci. & Cult.40: 47–59.Google Scholar
  65. ——. 1975. Phytotoxic effects ofCroton bonplandianum Baill. on weedy associates. Vegetatio30: 157–163.CrossRefGoogle Scholar
  66. Davidonis, G. H. andM. Ruddat. 1973. Allelopathic compounds, thelypterin A and B in the fernThelypteris normalis. Planta111: 23–32.CrossRefGoogle Scholar
  67. — andM. Ruddat. 1974. Growth inhibition in gametophytes and oat coleoptiles by thelypterin A and B released from roots of the fernThelypteris normalis. Amer. J. Bot.61: 925–930.CrossRefGoogle Scholar
  68. Dawes, D. S. andN. C. Maravolo. 1973. Isolation and characteristics of a possible allelopathic factor supporting the dominant role ofHieracium aurantiacum in the bracken-grasslands of northern Wisconsin. Trans. Wisconsin Acad. Sci.61: 235–251.Google Scholar
  69. DeBeil, D. S. 1970. Phytotoxins-new problems in forestry? J. Forest. (Washington)68: 335–337.Google Scholar
  70. —. 1971. Phytotoxic effects of cherrybark oak. Forest Sci.17: 180–185.Google Scholar
  71. DeCandolle, M.A-P. 1832. Physiologie végétale. Tome III, pp. 1474–1475. Béchet Jeune, Lib. Fac. Méd., Paris.Google Scholar
  72. Dedonder, A. andC. F. Van Sumere. 1971. The effect of phenolics and related compounds on the growth and the respiration ofChlorella vulgaris. Z. Pflanzenphysiol.65: 70–80.Google Scholar
  73. Del Arno, S. andA. L. Anaya. 1978. Effect of some sesquiterpenic lactones on the growth of certain secondary tropical species. J. Chem. Ecol.4: 305–313.CrossRefGoogle Scholar
  74. del Moral, R. andC. H. Muller. 1969. Fog drip: a mechanism of toxin transport fromEucalyptus globulus. Bull. Torrey Bot. Club96: 467–475.CrossRefGoogle Scholar
  75. Demos, E. K., M. Woolwine, R. H. Wilson andC. McMillan. 1975. The effects of ten phenolic compounds on hypocotyl growth and mitochondrial metabolism of mung bean. Amer. J. Bot.62: 97–102.CrossRefGoogle Scholar
  76. Dzubenko, N. N. andN. I. Petrenko. 1971. On biochemical interaction of cultivated plants and weeds.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 2, pp. 60–66 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  77. —,L. I. Krupa andP. I. Boiko. 1977. Dynamics of inhibitor accumulation in the soil under continuous and crop rotation culture.In Interactions of plants and microorganisms in phytocenoses. pp. 70–77. (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  78. Ebel, J., A. R. Ayers andP. Albersheim. 1976. Host-pathogen interactions. XII. Response of suspension-cultured soybean cells to the elicitor isolated fromPhytophthora megasperma var.sojae, a fungal pathogen of soybeans. Pl. Physiol. (Lancaster)57: 775–779.Google Scholar
  79. Einhellig, F. A. andJ. A. Rasmussen. 1973. Allelopathic effects ofRumex crispus onAmaranthus retroflexus, grain sorghum and field corn. Amer. Midl. Naturalist90: 79–86.CrossRefGoogle Scholar
  80. ——. 1978. Synergistic inhibitory effects of vanillic and p-hydroxbenzoic acids on radish and grain sorghum. J. Chem. Ecol.4: 425–436.CrossRefGoogle Scholar
  81. Ellis, J. R. andT. M. McCalla. 1973. Effects of patulin and method of application on growth stages of wheat. Appl. Microbiol.25: 562–566.PubMedGoogle Scholar
  82. Elliston, J., J. Kuć andE. B. Williams. 1976. Protection ofPhaseolus vulgaris against anthracnose byColletotrichum species nonpathogenic to bean. Phytopathol. Z.86: 117–126.Google Scholar
  83. Eussen, J. H. H. 1978. Isolation of growth inhibiting substances from alang-alang (Imperata cylindrica (L.) Beauv.).In Studies on the tropical weedImperata cylindrica (L.) Beauv. varmajor. Paper No. 7 (J. H. H. Eussen, ed.) Drukkerij Elinkwijk BV, Utrecht.Google Scholar
  84. — andM. Soerjani. 1978. Allelopathic activity of alang-alang (Imperata cylindrica (L.) Beauv.), isolation of growth regulating substances from leaves.In Studies on the tropical weedImperata cylindrica (L.) Beauv. varmajor. Paper No. 6 (J. H. H. Eussen, ed.) Drukkerij Elinkwijk BV, Utrecht.Google Scholar
  85. Evenari, M. 1949. Germination inhibitors. Bot. Rev. (Lancaster)15: 153–194.CrossRefGoogle Scholar
  86. Farkas, G. L. andZ. Kiraly. 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopathol. Z.44: 105–150.Google Scholar
  87. Fay, P. K. andW. B. Duke. 1977. An assessment of allelopathic potential inAvena germplasm. Weed Sci.25: 224–228.Google Scholar
  88. Fenical, W. 1975. Halogenation in the Rhodophyta-A review. J. Phycol.11: 245–259.Google Scholar
  89. Fisher, R. F. 1977. Allelopathic interference among plants I. Ecological significance.In Proceedings of the fourth North American forest biology workshop. pp. 73–92. (H. E. Wilcox and A. F. Hamer, eds.) School of Continuing Education, College of Environmental Science and Forestry, Syracuse, N.Y.Google Scholar
  90. —,R. A. Woods andM. R. Glavicic. 1978. Allelopathic effects of goldenrod and aster on young sugar maple. Canad. J. For. Res.8: 1–9.CrossRefGoogle Scholar
  91. Fraenkel, G. S. 1959. The raison d’être of secondary plant substances. Science129: 1466–1470.PubMedCrossRefGoogle Scholar
  92. Frick, H., L. F. Bauman, R. L. Nicholson andT. K. Hodges. 1977. Influence ofHelminthosporium maydis, Race T, toxin on potassium uptake in maize roots. II. Sensitivity of development of the augmented uptake potential to toxin and inhibitors of protein synthesis. Pl. Physiol. (Lancaster)59: 103–106.Google Scholar
  93. —,R. L. Nicholson, T. K. Hodges andL. F. Bauman. 1976. Influence ofHelminthosporium maydis, Race T, toxin on potassium uptake in maize roots. Pl. Physiol. (Lancaster)57: 171–174.Google Scholar
  94. Gabriel, W. J. 1975. Allelopathic effects of black walnut on white birches. J. Forest. (Washington)73: 234–237.Google Scholar
  95. Gajić, D. 1966. Interaction between wheat and corn cockle on brown soil and smonitsa. J. Sci. Agric. Res.19: 63–96.Google Scholar
  96. —. 1969. Effect of substance X on wheat yield. Savremena Poljopriveda (Contemporary Agric.)17: 351–358.Google Scholar
  97. —. 1973a. Increase of the free tryptophan content in wheat germ under the influence ofAgrostemma githago. Fragm. Herb. Jugoslavica36: 1–10.Google Scholar
  98. -. 1973b. The effect of agrostemins as a means of improvement of the quality and quantity of the grass-cover of the Zlatibor-as a preventive measure against the weeds. Yugoslav Symposium on Weed Control in Hilly and Mountainous Areas. Sarajevo.Google Scholar
  99. —. 1974. Effect of agrostemmin upon the quantity dynamics of the grass cover species of Zlatibor-phytocoenosis Festuceto sulcatae-Potentilletum zlatiborensis typicum. Fragm. Herb. Jugoslavica46: 1–11.Google Scholar
  100. —. 1977. Effect of agrostemin as an exometabolite on strengthening of ecological metabolism, in particular on the increase of phosphorus content and productivity.In Interactions of plants and microorganisms in phytocenoses. pp. 114–116 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  101. — andG. Nikočević. 1973. Chemical allelopathic effect ofAgrostemma githago upon wheat. Fragm. Herb. Jugoslavica18: 1–5.Google Scholar
  102. — andM. Vrbaški. 1972. Identification of the effect of bio-regulators fromAgrostemma githago upon wheat in heterotrophic feeding, with special respect to agrostemmin and allantoin. Fragm. Herb. Croatica7: 1–6.Google Scholar
  103. —— andS. Vrbaški. 1977. Investigations of allelopathic effects of agrostemin on the dynamics of phosphorus (P2O5) and potassium (K2O) in soil of manured and unmanured smonitsa and chernozem. Fragm. Herb. JugoslavicaII: 5–16.Google Scholar
  104. —,S. Malenčić, M. Vrbaški andS. Vrbaški. 1976. Study of the possible quantitative and qualitative improvement of wheat yield through agrostemin as an allelopathic factor. Fragm. Herb. Jugoslavica63: 121–141.Google Scholar
  105. Gant, R. E. andE. E. C. Clebsch. 1975. The allelopathic influences ofSassafras albidum in old-field succession in Tennessee. Ecology56: 604–615.CrossRefGoogle Scholar
  106. Garb, S. 1961. Differential growth-inhibitors produced by plants. Bot. Rev. (Lancaster)26: 422–443.CrossRefGoogle Scholar
  107. Gilmore, A. R. 1977. Effects of soil moisture stress on monoterpenes in loblolly pine. J. Chem. Ecol.3: 667–676.CrossRefGoogle Scholar
  108. Giovanelli, J., L. D. Owens andS. H. Mudd. 1972. β-Cystathionase-In vivo inactivation by rhizobitoxine and role of the enzyme in methionine biosynthesis in corn seedlings. Pl. Physiol (Lancaster)51: 492–503.Google Scholar
  109. Giskin, M. L. andH. Kohnke. 1965. Measuring root responses to soil properties with a single plant. Agron. J.57: 96–97.Google Scholar
  110. Glass, A. D. M. 1973. Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake. Pl. Physiol. (Lancaster)51: 1037–1041.Google Scholar
  111. -. 1974a. Influence of phenolic acids upon ion uptake. II. A structure-activity study of the inhibition of phosphate uptake by benzoic acid derivatives.In Mechanisms of regulation of plant growth. (R. L. Bieleski et al., eds.) Bull. Roy. Soc. New Zealand12: 159–164. Wellington, N.Z.Google Scholar
  112. —. 1974b. Influence of phenolic acids upon ion uptake. III. Inhibition of potassium absorption. J. Exp. Bot.25: 1104–1113.CrossRefGoogle Scholar
  113. —. 1975. Inhibition of phosphate uptake in barley roots by hydroxy-benzoic acids. Phytochemistry14: 2127–2130.CrossRefGoogle Scholar
  114. —. 1976. The allelopathic potential of phenolic acids associated with the rhizosphere ofPteridium aquilinum. Canad. J. Bot.54: 2440–2444.Google Scholar
  115. — andB. A. Bohm. 1969. The accumulation of cinnamic and benzoic acid derivatives inPteridium aquilinum andAthyrium felix-femina. Phytochemistry8: 371–377.CrossRefGoogle Scholar
  116. ——. 1971. The uptake of simple phenols by barley roots. Planta100: 93–105.CrossRefGoogle Scholar
  117. — andJ. Dunlop. 1974. Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials. Pl. Physiol. (Lancaster)54: 855–858.Google Scholar
  118. Gliessman, S. R. 1976. Allelopathy in a broad spectrum of environments as illustrated by bracken. J. Linn. Soc, Bot.73: 95–104.Google Scholar
  119. — andC. H. Muller. 1972. The phytotoxic potential of bracken,Pteridium aquilinum (L.) Kuhn. Madroño21: 299–304.Google Scholar
  120. ——. 1978. The allelopathic mechanisms of dominance in bracken (Pteridium aquilinum) in southern California. J. Chem. Ecol.4: 337–362.CrossRefGoogle Scholar
  121. Glombitza, von K-W. andH. Stoffelen. 1972. 2,3-Dibromo-5-hydroxybenzyl-l,4-disulfat (dikaliumsalz) aus Rhodomelaceen. Pl. Med.22: 391–395.Google Scholar
  122. ——,U. Murawski, J. Bielaczek undH. Egge. 1974. Antibiotica aus Algen. 9. Mitt. Bromphenole aus Rhodomelaceae. Pl. Med.25: 105–114.Google Scholar
  123. Grant, W. D. 1976. Microbial degradation of condensed tannins. Science193: 1137–1138.PubMedCrossRefGoogle Scholar
  124. Green, F. B. andM. R. Corcoran. 1975. Inhibitory action of five tannins on growth induced by several gibberellins. Pl. Physiol. (Lancaster)56: 801–806.Google Scholar
  125. Gries, G. A. 1943. Juglone the active agent in walnut toxicity. Annual Rep. North. Nut Growers Assoc.32: 52–55.Google Scholar
  126. Grodzinsky, A. M. 1965. Allelopathy in the life of higher plants. Naukova Dumka, Kiev. (In Russian.)Google Scholar
  127. — andG. P. Bogdan. 1972. Histochemical study of pectins, lignin, suberin and melanins in plants treated with allelopathically active substances. Ukrajins’k. Bot. Zhurn.29: 137–143. (In Ukrainian, Russian and English summaries.)Google Scholar
  128. ——. 1973. Role of ascorbic acid in formation of the brown mass in xylem of plants under the effect of allelopathic factors. Ukrajins’k. Bot. Zhurn.30: 28–35. (In Ukrainian, Russian and English summaries.)Google Scholar
  129. — andM. A. Panchuk. 1974. Allelopathic properties of crop residues of wheat-wheat grass hybrids.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 51–55 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  130. Groner, M. G. 1974. Intraspecific allelopathy inKalanchoe daigremontiana. Bot. Gaz. (Crawfordsville)135: 73–79.CrossRefGoogle Scholar
  131. —. 1975. Allelopathic influence ofKalanchoe daigremontiana on other species of plants. Bot. Gaz. (Crawfordsville)136: 207–211.CrossRefGoogle Scholar
  132. Gross, D. 1975. Growth regulating substances of plant origin. Phytochemistry14: 2105–2112.CrossRefGoogle Scholar
  133. Grümmer, G. 1955. Die gegenseitige Beeinflussung hoherer Pflanzen-Allelopathic Gustav Fisher Verlag, Jena.Google Scholar
  134. —. 1961. The role of toxic substances in the interrelationships between higher plants.In Mechanisms in biological competition. pp. 219–228 (F. L. Milthorpe, ed.) Symposium Soc. Exp. Biol. #15. Academic Press, N.Y.Google Scholar
  135. Guenzi, W. andT. McCalla. 1962. Inhibition of germination and seedling development by crop residues. Soil Sci. Soc. Amer. Proc.26: 456–458.Google Scholar
  136. —— andF. A. Norstadt. 1967. Presence and persistence of phytotoxic substances in wheat, oat, corn, and sorghum residues. Agron. J.59: 163–165.Google Scholar
  137. Guillard, R. R. L. andJ. A. Hellebust. 1971. Growth and the production of extracellular substances by two strains ofPhaeocystis poucheti. J. Phycol.7: 330–338.Google Scholar
  138. Gupta, N. N. andJ. Houdeshell. 1976. A differential-difference equations model of a dynamic aquatic ecosystem. Int. J. Systems Sci.7: 481–492.CrossRefGoogle Scholar
  139. Haider, K. andJ. P. Martin. 1975. Decomposition of specifically carbon-14 labeled benzoic and cinnamic acid derivatives in soil. Soil Sci. Soc. Amer. Proc.39: 657–662.Google Scholar
  140. Halligan, J. P. 1973. Bare areas associated with shrub stands in grasslands: the case ofArtemisia californica. BioScience23: 429–432.CrossRefGoogle Scholar
  141. —. 1975. Toxic terpenes fromArtemisia californica. Ecology56: 999–1003.CrossRefGoogle Scholar
  142. —. 1976. Toxicity ofArtemisia californica to four associated herb species. Amer. Midl. Naturalist95: 406–421.CrossRefGoogle Scholar
  143. Handley, W. R. C. 1963. Mycorrhizal associations andCalluna heathland afforestation. Bull. Forest Commn., London 36.Google Scholar
  144. Hansen, J. A. 1973. Antibiotic activity of the ChrysophyteOchromonas malhamensis. Physiol. Pl.29: 234–238.CrossRefGoogle Scholar
  145. Harder, R. 1917. Ernahrungsphysiologische Untersuchungen an Cyanophyceen, hauptsachlich dem endophytischenNostoc punctiforme. Z. Bot.9: 145–242.Google Scholar
  146. Harris, D. O. 1970. An autoinhibitory substance produced byPlatydorina caudata Kofoid. Pl. Physiol. (Lancaster)45: 210–214.CrossRefGoogle Scholar
  147. —. 1971a. Growth inhibitors produced by the green algae (Volvocaceae). Arch. Mikrobiol.76: 47–50.PubMedCrossRefGoogle Scholar
  148. —. 1971b. A model system for the study of algal growth inhibitors. Arch. Protistenk.113: 230–234.Google Scholar
  149. Harris, T. H., J. V. Hay andE. Quarterman. 1973. Isolation of 2-(4-hydroxybenzyl) malic acid fromPetalostemon gattingeri. J. Org. Chem.38: 4457–4459.CrossRefGoogle Scholar
  150. Hellebust, J. A. 1974. Extracellular products.In Algal physiology and biochemistry. pp. 838–863. (W. D. P. Stewart, ed.) Univ. of Calif. Press, Berkeley.Google Scholar
  151. Henderson, M. E. K. 1956. A study of the metabolism of phenolic compounds by soil fungi using spore suspensions. J. Gen. Microbiol.14: 684–691.PubMedGoogle Scholar
  152. — andV. C. Farmer. 1955. Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syringaldehyde and vanillin. J. Gen. Microbiol.12: 37–46.PubMedGoogle Scholar
  153. Hoffman, G. R. andD. L. Hazlett. 1977. Effects of aqueousArtemisia extracts and volatile substances on germination of selected species. J. Range Management30: 134–137.CrossRefGoogle Scholar
  154. Hogetsu, T. H. Shibaoka andM. Shimokoriyama. 1974. Involvement of cellulose in actions of gibberellin and kinetin on cell expansion. Gibberellin and kinetin-coumarin interactions on stem elongation. Pl. Cell Physiol.15: 265–272.Google Scholar
  155. Hook, D. D. and J. Stubbs. 1967. An observation of understory growth retardation under three species of oaks. U.S. Forest Ser. Res. Note SE-70. USDA-Forest Service.Google Scholar
  156. Horsley, S. B. 1977a. Allelopathic interference among plants II. Physiological modes of action.In Proceedings of the fourth North American forest biology workshop. pp. 93–136. (H. E. Wilcox and A. F. Hamer, eds.) School of Continuing Education, College of Environmental Science and Forestry, Syracuse, N.Y.Google Scholar
  157. —. 1977b. Allelopathic inhibition of black cherry by fern, grass, goldenrod, and aster. Canad. J. Forest Res.7: 205–216.CrossRefGoogle Scholar
  158. —. 1977c. Allelopathic inhibition of black cherry. II. Inhibition by woodland grass, ferns, and club moss. Canad. J. Forest Res.7: 515–519.CrossRefGoogle Scholar
  159. Horton, J. S. andC. J. Kraebel. 1955. Development of vegetation after fire in the chamise chaparral of southern California. Ecology36: 244–262.CrossRefGoogle Scholar
  160. Huber, D. M., H. L. Warren, D. W. Nelson andC. Y. Tsai. 1977. Nitrification inhibitors-new tools for food production. BioScience27: 523–529.CrossRefGoogle Scholar
  161. Hull, J. C. andC. H. Muller. 1977. The potential for dominance byStipa pulchra in a California grassland. Amer. Midl. Naturalist97: 147–175.CrossRefGoogle Scholar
  162. Hussain, A. andM. A. B. Mallik. 1972. Study of rhizosphere microflora of berseem (Trifolium alexandrinum L.) and their effect onRhizobium trifolii. J. Sci.1: 139–145.Google Scholar
  163. Ingham, J. 1972. Phytoalexins and other natural products as factors in plant disease resistance. Bot. Rev. (Lancaster)38: 343–424.CrossRefGoogle Scholar
  164. Jackson, J. R. andR. W. Willemsen. 1976. Allelopathy in the first stages of secondary succession on the piedmont of New Jersey. Amer. J. Bot.63: 1015–1023.CrossRefGoogle Scholar
  165. Jackson, R. M. 1965. Antibiosis and fungistasis of soil microorganisms.In Ecology of soil-borne plant pathogens. pp. 363–369 (K. F. Baker and W. C. Snyder, ed.) Univ. of Calif. Press, Berkeley.Google Scholar
  166. Jankay, P. andW. H. Muller. 1976. The relationships among umbelliferone, growth and peroxidase levels in cucumber roots. Amer. J. Bot.63: 126–132.CrossRefGoogle Scholar
  167. Johansson, M. andE. Hägerby. 1974. Influence of growth conditions, metabolic inhibitors, and phenolic compounds on the ATP pool inFomes annosus. Physiol. Pl.32: 23–32.CrossRefGoogle Scholar
  168. Jones, J. M. andB. N. Richards. 1977. Effect of reforestation on turnover of15N-labelled nitrate and ammonium in relation to changes in soil microflora. Soil Biol. Biochem.9: 383–392.CrossRefGoogle Scholar
  169. Junttila, O. 1975. Allelopathy inHeracleum laciniatum: inhibition of lettuce seed germination and root growth. Physiol. Pl.33: 22–27.CrossRefGoogle Scholar
  170. —. 1976. Allelopathic inhibitors in seeds ofHeracleum laciniatum. Physiol. Pl.36: 374–378.CrossRefGoogle Scholar
  171. Kaminsky, R. andW. H. Muller. 1977. The extraction of soil phytotoxins using a neutral EDTA solution. Soil Sci.124: 205–210.CrossRefGoogle Scholar
  172. Kapustka, L. A. andF. L. Moleski. 1976. Changes in community structure in Oklahoma old field succession. Bot. Gaz. (Crawfordsville)137: 7–10.CrossRefGoogle Scholar
  173. — andE. L. Rice. 1976. Acetylene reduction (N2-fixation) in soil and old field succession in central Oklahoma. Soil Biol. Biochem.8: 497–503.CrossRefGoogle Scholar
  174. Katznelson, J. 1972. Studies in clover soil sickness. I. The phenomenon of soil sickness in berseem and Persian clover. Pl. & Soil36: 379–393.CrossRefGoogle Scholar
  175. Keating, K. I. 1977. Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science196: 885–887.PubMedCrossRefGoogle Scholar
  176. —. 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science199: 971–973.PubMedCrossRefGoogle Scholar
  177. Keck, R. W. andT. K. Hodges. 1973. Membrane permeability in plants: Changes induced by host-specific pathotoxins. Phytopathology63: 226–230.Google Scholar
  178. Khailov, K. M. 1971. Ecological metabolism in the sea. Naukova Dumka, Kiev. (In Russian.)Google Scholar
  179. —,ed. 1974. Biochemical trophodynamics in marine coastal ecosystems. Naukova Dumka, Kiev. (In Russian.)Google Scholar
  180. — andT. A. Aizatullin. 1976. Development of an ecological biochemistry. Ékologiya4: 5–13. (In Russian-English transl. available from Plenum Pub. Corp.)Google Scholar
  181. Kimber, R. W. L. 1973. Phytotoxicity from plant residues. III. The relative effect of toxins and nitrogen immobilisation on the germination and growth of wheat. Pl. & Soil38: 543–555.CrossRefGoogle Scholar
  182. King, J. E. andJ. R. Coley-Smith. 1968. Effects of volatile products ofAllium species and their extracts on germination of sclerotia ofSclerotium cepivorum Berk. Ann. Appl. Biol.61: 407–414.CrossRefGoogle Scholar
  183. Koeppe, D. E. andR. J. Miller. 1974. Kaempferol inhibitions of corn mitochondrial phosphorylation. Pl. Physiol. (Lancaster)54: 374–378.CrossRefGoogle Scholar
  184. —,L. M. Southwick andJ. E. Bittell. 1976. The relationship of tissue chlorogenic acid concentrations and leaching of phenolics from sunflowers grown under varying phosphate nutrient conditions. Canad. J. Bot.54: 593–599.Google Scholar
  185. Kogan, S. B., M. A. Kareva andB. E. Kozyritskaya. 1973. Formation of B vitamins by actinomycetes in sterile soil.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 118–121 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  186. Kokino, N. A., M. P. Podtelok andN. I. Prutenskaya. 1973. Dynamics of biologically active volatile and water-soluble substances from fallen maple leaves.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 94–100 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  187. Kolesnichenko, M. V. andM. M. Aleikina. 1976. The rate of protein biosynthesis and absorption of mineral substances by the roots of oak and ash growing together in the forest. Fiziol. Rast. (Mosc)23: 127–131. (In Russian, English summary.)Google Scholar
  188. Kossanel, J. P., J. Martin, P. Annelle, M. Peinot, J. K. Vallet andK. Kurnej. 1977. Inhibition of growth of young radicles of maize by exudations in culture solutions and extracts of ground roots ofChenopodium album L.In Interactions of plants and microorganisms in phytocenoses. pp. 77–86 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  189. Kovalchuk, Yu. G. 1973. Effect of biogenic ethylene on bean, pea, buckwheat and barley sprouts.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 65–67 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  190. —. 1974. Study of simultaneous effect of “apple” ethylene and gibberellin on plants.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 23–26 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  191. —. 1977. Biogenic ethylene in the chemical interaction of plants.In Interactions of plants and microorganisms in phytocenoses. pp. 12–20 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  192. Kozhevnikov, I. G. 1974. Allelopathic properties of trees and shrubs of the forests in the Crimea.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 78–81 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  193. Krogstad, O. andK. Solbraa. 1975. Effects of extracts of crude and composted bark from spruce on some selected biological systems. Acta Agric. Scand.25: 306–312.Google Scholar
  194. Krupa, S. V. 1974. Biological significance of polyacetylenes and terpenoids in fungi and higher plants. Phytochem. Bull.7: 9–16.Google Scholar
  195. Kuć, J. 1972. Phytoalexins. Annual Rev. Phytopathol.10: 207–232.CrossRefGoogle Scholar
  196. Kunc, F. 1971. Decomposition of vanillin by soil microorganisms. Folia Microbiol. (Prague)16: 41–50.Google Scholar
  197. Kushnir, G. P. 1973a. Microflora ofCrambe cordifolia Steve. andHeracleum sosnowskyi Manden rhizosphere.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 112–115 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  198. —. 1973b. Biological activity of rhizosphere organisms of some plants from steppe phytocenoses.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 115–118 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  199. —. 1977. Actinomycetes as antagonists in the rhizosphere of crysanthemum.In Interactions of plants and microorganisms in phytocenoses. pp. 157–161 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  200. — andT. S. Shrol. 1974. On metabolites of fungi in rhizospheres of some steppe plants.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 92–94 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  201. Kuwatsuka, S. andH. Shindo. 1973. Behavior of phenolic substances in the decaying process of plants. I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas Chromatograph. Soil Sci. Pl. Nutr.19: 219–227.Google Scholar
  202. Lakhtanova, L. I. 1977. Effect ofLupinus polyphyllus Lindl. root exudates on certain physiological processes inPicea excelsa L.In Interactions of plants and microorganisms in phytocenoses. pp. 86–91 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  203. Lang, D. R. andE. Racker. 1974. Effects of quercetin and F1 inhibitor on mitochondrial ATPase and energy-linked reactions in submitochondrial particles. Biochim. Biophys. Acta333: 180–186.CrossRefPubMedGoogle Scholar
  204. Lee, I. K. andM. Monsi. 1963. Ecological studies onPinus densiflora forest 1. Effects of plant substances on the floristic composition of the undergrowth. Bot. Mag. (Tokyo)76: 400–413.Google Scholar
  205. Lellinger, D. B. 1976. Incompatible companion plants. Bull. Amer. Fern Soc.3: 1.Google Scholar
  206. Leon, W. B. 1976. Phytotoxicité induite par les résidus de récolte deSorghum vulgare dans les sols sableux de l’ouest Africain. Thèse pour Doctorat, Université de Nancy, France.Google Scholar
  207. Leonard, R. T. andC. W. Hotchkiss. 1976. Cation-stimulated adenosine triphosphatase activity and cation absorption in corn roots. Pl. Physiol. (Lancaster)58: 331–335.Google Scholar
  208. Leuck, E. E. II andE. L. Rice. 1976. Inhibition ofRhizobium andAzotobacter by rhizosphere bacteria ofAristida oligantha. Bot. Gaz. (Crawfordsville)137: 160–164.CrossRefGoogle Scholar
  209. Levy, G. F. 1970. The phytosociology of northern Wisconsin upland openings. Amer. Midl. Naturalist83: 213–237.CrossRefGoogle Scholar
  210. Lewis, J. A. andR. L. Starkey. 1968. Vegetable tannins, their decomposition and effects on decomposition of some organic compounds. Soil Sci.106: 241–247.CrossRefGoogle Scholar
  211. ——. 1969. Decomposition of plant tannins by some soil microorganisms. Soil Sci.107: 235–241.CrossRefGoogle Scholar
  212. Li, C. Y. 1974. Phenolic compounds in understory of alder, conifer, and mixed alderconifer stands of coastal Oregon. Lloydia37: 603–607.PubMedGoogle Scholar
  213. —. 1977. Conversion of p-coumaric acid to caeffeic acid and of p-hydroxyphenylacetic acid to 3,4-dihydroxyphenylacetic acid byAlnus rubra. Lloydia40: 298–300.PubMedGoogle Scholar
  214. -,K. C. Lu, J. M. Trappe and W. B. Bollen. 1969a. A simple, quantitative method of assaying soil for inhibitory fungi. U.S. Forest Service Res. Note PNW-108.Google Scholar
  215. ——,E. E. Nelson, W. B. Bollen andJ. M. Trappe. 1969b. Effect of phenolic and other compounds on growth ofPoria weirii in vitro. Microbios1: 305–311.Google Scholar
  216. ——,J. M. Trappe andW. B. Bollen. 1970. Separation of phenolic compounds in alkali hydrolysates of a forest soil by thin-layer chromatography. Canad. J. Soil Sci.50: 458–460.Google Scholar
  217. ————. 1972.Poria weirii-inhibiting and other phenolic compounds in roots of red alder and Douglas-fir. Microbios5: 65–68.PubMedGoogle Scholar
  218. ————. 1973. Formation of p-hydroxybenzoic acid from phenylacetic acid byPoria weirii. Canad. J. Bot.51: 827–828.Google Scholar
  219. Lill, R. E. andJ. A. McWha. 1976. Production of ethylene by incubated litter ofPinus radiata. Soil Biol. Biochem.8: 61–63.CrossRefGoogle Scholar
  220. Litav, M. andD. Isti. 1974. Root competition between two strains ofSpinacia oleracea: II. Effects of nutrient supply and non-simultaneous emergence. J. Appl. Ecol.11: 1017–1025.CrossRefGoogle Scholar
  221. Lockwood, J. L. 1959.Streptomyces spp. as a cause of natural fungitoxicity in soil. Phytopathology49: 327–334.Google Scholar
  222. Lodhi, M. A. K. 1975a. Allelopathic effects of hackberry in a bottomland forest community. J. Chem. Ecol.1: 171–182.CrossRefGoogle Scholar
  223. —. 1975b. Soil-plant phytotoxicity and its possible significance in patterning of herbaceous vegetation in a bottomland forest. Amer. J. Bot.62: 618–622.CrossRefGoogle Scholar
  224. —. 1976. Role of allelopathy as expressed by dominating trees in a lowland forest in controlling productivity and pattern of herbaceous growth. Amer. J. Bot.63: 1–8.CrossRefGoogle Scholar
  225. —. 1977. The influence and comparison of individual forest trees on soil properties and possible inhibition of nitrification due to intact vegetation. Amer. J. Bot.64: 260–264.CrossRefGoogle Scholar
  226. —. 1978a. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community. Amer. J. Bot.65: 340–344.CrossRefGoogle Scholar
  227. —. 1978b. Comparative inhibition of nitrifiers and nitrification in a forest community as a result of the allelopathic nature of various tree species. Amer. J. Bot.65: 1135–1137.CrossRefGoogle Scholar
  228. — andG. L. Nickell. 1973. Effects of leaf extracts ofCeltis laevigata on growth, water content, and carbon dioxide exchange rates of three grass species. Bull. Torrey Bot. Club100: 159–165.CrossRefGoogle Scholar
  229. Loehwing, W. F. 1937. Root interactions in plants. Bot. Rev. (Lancaster)3: 195–239.Google Scholar
  230. Lorber, P. andW. H. Muller. 1976. Volatile growth inhibitors produced bySalvia leucophylla: Effects on seedling root tip ultrastructure. Amer. J. Bot.63: 196–200.CrossRefGoogle Scholar
  231. Lucas, C. E. 1947. The ecological effects of external metabolites. Biol. Rev. (London)22: 270–295.Google Scholar
  232. McCahon, C. B., R. G. Kelsey, P. P. Sheridan andF. Shafizadeh. 1973. Physiological effects of compounds extracted from sagebrush. Bull. Torrey Bot. Club100: 23–28.CrossRefGoogle Scholar
  233. McCalla, T. M. andF. L. Duley. 1948. Stubble mulch studies. Effect of sweetclover extract on corn germination. Science108: 163.PubMedCrossRefGoogle Scholar
  234. ——. 1949. Stubble mulch studies: III. Influence of soil microorganisms and crop residues on the germination, growth and direction of root growth of corn seedlings. Soil Sci. Soc. Amer. Proc.14: 196–199.Google Scholar
  235. — andF. A. Haskins. 1964. Phytotoxic substances from soil microorganisms and crop residues. Bacteriol. Rev.28: 181–207.PubMedGoogle Scholar
  236. — andF. A. Norstadt. 1974. Toxicity problems in mulch tillage. Agric. and Environm.1: 153–174.CrossRefGoogle Scholar
  237. McGrath, W. T. 1972. Biological control ofFormes annosus: a new possibility in the United States. Consultant17: 94–96.Google Scholar
  238. McNaughton, S. J. 1968. Autotoxic feedback in relation to germination and seedling growth inTypha latifolia. Ecology49: 367–369.CrossRefGoogle Scholar
  239. McPherson, J. K. andC. H. Muller. 1969. Allelopathic effects ofAdenostoma fasciculatum, “chamise,” in the California chaparral. Ecol. Monogr.39: 177–198.CrossRefGoogle Scholar
  240. — andG. L. Thompson. 1972. Competitive and allelopathic suppression of understory by Oklahoma oak forests. Bull. Torrey Bot. Club99: 293–300.CrossRefGoogle Scholar
  241. MacDaniels, L. H. and D. L. Pinnow. 1976. Walnut toxicity, an unsolved problem. pp. 114–122. 67th Annual Rep. of Northern Nut Growers Assoc.Google Scholar
  242. Macleod, N. J. andJ. B. Pridham. 1965. Observations on the translocation of phenolic compounds. Phytochemistry5: 777–781.CrossRefGoogle Scholar
  243. Mallik, M. A. B. andA. Hussain. 1972. Effect of rhizosphere microflora ofMelilotus alba onRhizobium meliloti. J. Sci.1: 133–138.Google Scholar
  244. Marigo, G. etA. M. Boudet. 1975. Rôle des polyphénols dans la croissance. Définition d’un modèle expérimental chezLycopersicum esculentum. Physiol. Pl.34: 51–55.CrossRefGoogle Scholar
  245. Markova, S. A. 1972. Experimental investigations of the influence of oats on growth and development ofErysimum cheiranthoides L,In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 3, pp. 66–68 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  246. Martin, D. F., E. C. Kutt andY. S. Kim. 1974. Use of a multiple diffusion chamber unit in culture studies. Application toGomphosphaeria aponina. Environm. Letters7: 39–46.CrossRefGoogle Scholar
  247. Matveev, N. M., G. N. Krisanov andI. I. Lyzhenko. 1975. Role of plant excretions in the formation of the grass stand in black locust and smoketree plantings of the steppe zone. Biol. Nauki (Moscow)18: 80–84. (In Russian.)Google Scholar
  248. Mautner, H. G., G. M. Gardner andR. Pratt. 1953. Antibiotic activity of seaweed extracts. II.Rhodomela larix. J. Amer. Pharm. Assoc. (Sci. Educ.)42: 294–296.Google Scholar
  249. Melin, E. 1963. Some effects of forest tree roots on mycorrhizal Basidiomycetes.In Symbiotic associations. pp. 125–145. (P. S. Nutman & B. Mosse, eds.), Cambridge Univ. Press.Google Scholar
  250. Mensah, K. O. A. 1972. Allelopathy as expressed by sugar maple on yellow birch. Diss. Abstr. B (1972)33 (5) 1877.Google Scholar
  251. Menzies, J. D. andR. G. Gilbert. 1967. Responses of the soil microflora to volatile components in plant residues. Soil Sci. Soc. Amer. Proc.31: 495–496.Google Scholar
  252. Minar, J. 1974. The effect of couch grass on the growth and mineral uptake of wheat. Folia Fac. Sci. Nat. Univ. Purkynianae Brun.15: 1–84.Google Scholar
  253. Mishra, R. R. andR. S. Kanaujia. 1972. Investigations into rhizosphere mycoflora XIII. Effect of foliar application of certain plant extracts onPennisetum typhoides f. burm Stapf & Hubb. Israel J. Agric. Res.22: 3–9.Google Scholar
  254. — andK. K. Pandey. 1974. Studies on soil fungistasis: V. Effect of temperature, moisture content and incubation period. Indian Phytopathol.27: 475–479.Google Scholar
  255. ——. 1975. Studies on soil fungistasis IV. Effect of physico-chemical characters and soil fungal flora on fungistasis. Ann. Edafol. Agrobiol.34: 423–428.Google Scholar
  256. Mohnot, K. andS. Soni. 1976. Observations on the allelochemic factor in air-dried leaves ofSalvadora oleoides. Comp. Physiol. Ecol.1: 125–128.Google Scholar
  257. ——. 1977. Ecophysiological studies of desert plants: II. Growth retarding factor in air-dried stem ofSolanum surattense Burm. F. Comp. Physiol. Ecol.2: 97–100.Google Scholar
  258. Moleski, F. L. 1976. Condensed tannins in soil: inputs and effects on microbial populations. Ph.D. Diss., Univ. of Okla., Norman, Diss. Abstr. 76-15816.Google Scholar
  259. Molisch, H. 1937. Der Einfluss einer Pflanze auf die andere-Allelopathie. Gustav Fischer Verlag, Jena.Google Scholar
  260. Muller, C. H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club93: 332–351.CrossRefGoogle Scholar
  261. —. 1969. Allelopathy as a factor in ecological process. Vegetatio18: 348–357.CrossRefGoogle Scholar
  262. —. 1970a. Phytotoxins as plant habitat variables.In Recent advances in phytochemistry. Vol. 3. pp. 106–121 (C. Steelink and V. C. Runeckles, eds.) Appleton-Century-Crofts, N.Y.Google Scholar
  263. —. 1970b. The role of allelopathy in the evolution of vegetation.In Biochemical coevolution: pp. 13–31 (K. L. Chambers, ed.) Oregon State Univ. Press, Corvallis, Ore.Google Scholar
  264. — andR. del Moral. 1966. Soil toxicity induced by terpenes fromSalvia leucophylla. Bull. Torrey Bot. Club93: 130–137.CrossRefGoogle Scholar
  265. Murphy, T. P., D. R. S. Lean andC. Nalewajko. 1976. Blue-green algae: their excretion of Fe-selective chelators enables them to dominate other algae. Science192: 900.PubMedCrossRefGoogle Scholar
  266. Murthy, M. S. andT. Nagodra. 1977. Allelopathic effects ofAristida adscensionis onRhizobium. J. Appl. Ecol.14: 279–282.CrossRefGoogle Scholar
  267. — andR. Ravindra. 1974. Inhibition of nodulation ofIndigofera cordifolia byAristida adscensionis. Oecologia16: 257–258.CrossRefGoogle Scholar
  268. ——. 1975. Allelopathic effects ofAristida adscensionis. Oecologia18: 243–250.CrossRefGoogle Scholar
  269. Nadkernichnyi, S. P. 1974. On the problem of distribution of toxin producing microscopic fungi in soddy-medium podzolic soil under some farm crops.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, 97–100 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  270. Nalewajko, C. andD. R. S. Lean. 1972. Growth and excretion in planktonic algae and bacteria. J. Phycol.8: 361–366.Google Scholar
  271. Naqvi, H. H. 1972. Preliminary studies of interference exhibited by Italian ryegrass. Biologia (Lahore)18: 201–210.Google Scholar
  272. — andC. H. Muller. 1975. Biochemical inhibition (allelopathy) exhibited by Italian ryegrass (Lolium multiflorum L.) Pakistan J. Bot.7: 139–147.Google Scholar
  273. Neustruyeva, S. N. andT. N. Dobretsova. 1972. Influence of some summer crops on white goosefoot.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 3, pp. 68–73 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  274. Newman, E. I. andM. H. Miller. 1977. Allelopathy among some British grassland species. II. Influence of root exudates on phosphorus uptake. J. Ecol.65: 399–411.CrossRefGoogle Scholar
  275. — andA. D. Rovira. 1975. Allelopathy among some British grassland species. J. Ecol.63: 727–737.CrossRefGoogle Scholar
  276. Nickell, L. G. 1960. Antimicrobial activity of vascular plants. Econ. Bot.13: 281–318.Google Scholar
  277. Norstadt, F. A. andT. M. McCalla. 1963. Phytotoxic substance from a species ofPenicillium. Science140: 410–411.PubMedCrossRefGoogle Scholar
  278. Numata, M., A. Kobayashi and N. Ohga. 1973. Studies on allelopathic substances concerning the formation of the urban flora.In Fundamental studies in the characteristics of urban ecosystems. pp. 59–64 (M. Numata, ed.).Google Scholar
  279. -, -and -. 1974. Studies on allelopathic substances concerning the formation of the urban flora.In Studies in urban ecosystems. pp. 22–25 (M. Numata, ed.).Google Scholar
  280. -, -and -. 1975. Studies on the role of allelopathic substances.In Studies in urban ecosystems. pp. 38–41 (M. Numata, ed.).Google Scholar
  281. Olsen, R. A. 1973a. Triterpeneglycosides as inhibitors of fungal growth and metabolism. 5. Role of the sterol contents of some fungi. Physiol. Pl.28: 507–515.CrossRefGoogle Scholar
  282. —. 1973b. Triterpeneglycosides as inhibitors of fungal growth and metabolism. 6. The effect of aescin on fungi with reduced sterol contents. Physiol. Pl.29: 145–149.CrossRefGoogle Scholar
  283. —. 1974. Triterpeneglycosides as inhibitors of fungal growth and metabolism. 7. The effect of aescin on the utilization of glucose and sucrose. Physiol. Pl.30: 279–282.CrossRefGoogle Scholar
  284. —. 1975. Triterpeneglycosides as inhibitors of fungal growth and metabolism. 8. Induced leakage of nucleotide materials. Physiol. Pl.33: 75–82.CrossRefGoogle Scholar
  285. —,G. Odham andG. Linderberge. 1971. Aromatic substances in leaves ofPopulus tremula as inhibitors of mycorrhizal fungi. Physiol. Pl.25: 122–129.CrossRefGoogle Scholar
  286. Osborn, E. M. 1943. On the occurrence of antibacterial substances in green plants. Brit. J. Exp. Pathol.24: 227–231.Google Scholar
  287. Overland, L. 1966. The role of allelopathic substances in the “smother crop” barley. Amer. J. Bot.53: 423–432.CrossRefGoogle Scholar
  288. Owens, L. D. 1969. Toxins in plant disease: structure and mode of action. Science165: 18–25.PubMedCrossRefGoogle Scholar
  289. —,J. F. Thompson andP. V. Fennessey. 1972. Dihydrorhizobitoxine, a new ether amino-acid fromRhizobium japonicum. J. Chem. Soc., Chem. Commu.1972: 715.CrossRefGoogle Scholar
  290. Panchuk, M. A. andN. I. Prutenskaya. 1973. On the problem of the presence of allelopathic properties in wheat-wheat grass hybrids and their initial forms.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 44–47 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  291. Pandya, S. M. 1975. Effect ofCelosia argentea extracts on root and shoot growth of bajra seedlings. Geobios (Jodhpur)2: 175–178.Google Scholar
  292. Panova, L. S. 1977. Allelopathic activity of plants in the steppe phytocenoses of the Kamennyje Mogily reservation 1. Activity of root exudates.In Interactions of plants and microorganisms in phytocenoses. pp. 131–137 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  293. Pareek, R. P. andA. C. Gaur. 1973. Organic acids in the rhizosphere ofZea mays andPhaseolus aureus plants. Pl. & Soil39: 441–444.CrossRefGoogle Scholar
  294. Patrick, Z. A. 1971. Phytotoxic substances associated with the decomposition in soil of plant residues. Soil Sci.111: 13–18.Google Scholar
  295. — andL. W. Koch. 1958. Inhibition of respiration, germination and growth by substances arising during the decomposition of certain plant residues in the soil. Canad. J. Bot.36: 621–647.Google Scholar
  296. —,T. A. Toussoun andL. W. Koch. 1964. Effect of crop residue decomposition products on plant roots. Annual Rev. Phytopathol.2: 267–292.CrossRefGoogle Scholar
  297. andW. C. Snyder. 1963. Phytotoxic substances in arable soils associated with decomposition of plant residues. Phytopathology53: 152–161.Google Scholar
  298. Perry, G. S. 1932. Some tree antagonisms. Proc. Pennsylvania Acad. Sci.6: 136–141.Google Scholar
  299. Persidsky, D. J., H. Loewenstein andS. A. Wilde. 1965. Effects of extracts of prairie soils and prairie grass roots on the respiration of ectotrophic mycorrhizae. Agron. J.57: 311–312.Google Scholar
  300. Peters, E. J. 1968. Toxicity of tall fescue to rape and birdsfoot trefoil seeds and seedlings. Crop Sci.8: 650–653.Google Scholar
  301. Peterson, E. B. 1965. Inhibition of black spruce primary roots by a water-soluble substance inKalmia angustifolia. Forest Sci.11: 473–479.Google Scholar
  302. Peterson, G. B. 1972. Determination of the presence, location, and allelopathic effects of substances produced byJuniperus scopulorum Sarg. Diss. Abstr. B (1972)32 (7) 3811–3812.Google Scholar
  303. Petrova, A. G. 1977. Effect of phytoncides from soybean, gram chick-pea and bean on the uptake of phosphorus by maize.In Interactions of plants and microorganisms in phytocenoses. pp. 91–97 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  304. Petrushenko, V. V., S. G. Kovalenko andM. N. Kostuchek. 1974. On changes in electrophysiological parameters of plants under the influence of allelopathic water-soluble exudates.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 32–36 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  305. Pickett, S. T. II andJ. M. Baskin. 1973. Allelopathy and its role in the ecology of higher plants. Biologist55: 49–73.Google Scholar
  306. Priester, D. S. and M. T. Pennington. 1978. Inhibitory effects of broomsedge extracts on the growth of young loblolly pine seedlings. U.S. Forest Ser. Res. Paper. SE-182. USDA-Forest Service.Google Scholar
  307. Prutenskaya, N. I. 1974. Peculiarities of interaction betweenSinapis arvensis L. and cultivated plants.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 66–68 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  308. Purchase, B. S. 1974. Evaluation of the claim that grass root exudates inhibit nitrification. Pl. & Soil41: 527–539.CrossRefGoogle Scholar
  309. Putnam, A. R. andW. B. Duke. 1974. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science185: 370–372.PubMedCrossRefGoogle Scholar
  310. Quarterman, E. 1973. Allelopathy in cedar glade plant communities. J. Tennessee Acad. Sci.48: 147–150.Google Scholar
  311. Quinn, J. A. 1974.Convolvulus sepium in old field succession on the New Jersey Piedmont. Bull. Torrey Bot. Club101: 89–95.CrossRefGoogle Scholar
  312. Rakhteenko, I. N., I. A. Kaurov andI. T. Minko. 1973a. Effect of water-soluble metabolites of a series of crops on some physiological processes.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 23–26 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  313. ——. 1973b. On the problem of exchange of root excretions in some agricultural plants in agrophytocenoses.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 16–19 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  314. Rao, V. R., N. S. S. Rao andK. G. Mukerji. 1973. Inhibition ofRhizobium in vitro by non-nodulating legume roots and root extracts. Pl. & Soil39: 449–452.CrossRefGoogle Scholar
  315. Rasmussen, J. A. andF. A. Einhellig. 1975. Non-competitive effects of common milkweed,Asclepias syriaca L., on germination and growth of sorghum. Amer. Midl. Naturalist94: 478–483.CrossRefGoogle Scholar
  316. ——. 1977. Synergistic inhibitory effects of p-coumaric and ferulic acids on germination and growth of grain sorghum. J. Chem. Ecol.3: 197–205.CrossRefGoogle Scholar
  317. Rice, E. L. 1967. Chemical warfare between plants. Bios38: 67–74.Google Scholar
  318. —. 1972. Allelopathic effects ofAndropogon virginicus and its persistence in old fields. Amer. J. Bot.59: 752–755.CrossRefGoogle Scholar
  319. —. 1974. Allelopathy. Academic Press, N.Y.Google Scholar
  320. —. 1976. Allelopathy and grassland improvement.In The grasses and grasslands of Oklahoma. pp. 90–111 (J. R. Estes and R. J. Tyrl, eds.) Noble Foundation, Ardmore, Okla.Google Scholar
  321. —. 1977. Some roles of allelopathic compounds in plant communities. Biochem. Syst. Ecol.5: 201–206.CrossRefGoogle Scholar
  322. — andS. K. Pancholy. 1972. Inhibition of nitrification by climax ecosystems. Amer. J. Bot.59: 1033–1040.CrossRefGoogle Scholar
  323. ——. 1973. Inhibition of nitrification by climax ecosystems II. Additional evidence and possible role of tannins. Amer. J. Bot.60: 691–702.CrossRefGoogle Scholar
  324. ——. 1974. Inhibition of nitrification by climax ecosystems. III. Inhibitors other than tannins. Amer. J. Bot.61: 1095–1103.CrossRefGoogle Scholar
  325. Rietveld, W. J. 1975. Phytotoxic grass residues reduce germination and initial root growth of ponderosa pine. USDA Forest Ser. Res. Paper RM-153.Google Scholar
  326. Robinson, R. K. 1972. The production by roots ofCalluna vulgaris of a factor inhibitory to growth of some mycorrhizal fungi. J. Ecol.60: 219–224.CrossRefGoogle Scholar
  327. Robinson, T. 1974. Metabolism and function of alkaloids in plants. Science184: 430–435.PubMedCrossRefGoogle Scholar
  328. Robson, T. O. 1977. Perspectives of biological control of aquatic weeds in temperate climatic zones. Aquatic Bot.3: 125–132.CrossRefGoogle Scholar
  329. Roshchina, V. D. 1973. Reducing power of woody plant leaf infusions and inhibition of the Hill reaction with 2,6-dichlorophenol by them.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 4, pp. 10–15 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  330. —. 1974. Volatile and water-soluble metabolites of woody plant leaves.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 36–40 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  331. Rychert, R. C. andJ. Skujins. 1974. Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin Desert. Soil Sci. Soc. Amer. Proc.38: 768–771.Google Scholar
  332. Saftner, P. A. andM. L. Evans. 1974. Selective effects of victorin on growth and the auxin response inAvena. Pl. Physiol. (Lancaster)53: 382–387.Google Scholar
  333. Sajise, P. E. andJ. S. Lales. 1975. Allelopathy in a mixture of cogon (Imperata cylindrica) andStylosanthes guyanensis. Kalikasan Philipp. J. Biol.4: 155–164.Google Scholar
  334. Salas, M. C. yE. Vieitez. 1972. Actividad de crecimiento de Ericaceas. Anales Edafol. Agrobiol.31: 1001–1009.Google Scholar
  335. Sarkar, S. K. andC. T. Phan. 1974. Effect of ethylene on the qualitative and quantitative composition of the phenol content of carrot roots. Physiol. Pl.30: 72–76.CrossRefGoogle Scholar
  336. Sarma, K. K. V. 1974a. Allelopathic potential ofDigera arvensis Forsk. onPennisetum typhoides Stapf. et Hubb. Geobios (Jodhpur)1: 137.Google Scholar
  337. —. 1974b. Allelopathic potential ofEchinops echinatus andSolanum surattense on seed germination ofArgemone mexicana. Trop. Ecol.15: 156–157.Google Scholar
  338. Saunders, G. W. 1957. Interrelations of dissolved organic matter and phytoplankton. Bot. Rev. (Lancaster)23: 389–409.Google Scholar
  339. Scharft, T. G. andA. C. Perry. 1976. The effects of salicylic acid on metabolism and potassium ion content in yeast. Proc. Soc. Exp. Biol.151: 72–77.Google Scholar
  340. Schenck, S. andG. Stotzky. 1975. Effect on microorganisms of volatile compounds released from germinating seeds. Canad. J. Microbiol.21: 1622–1634.CrossRefGoogle Scholar
  341. Schreiber, M. M. 1977. Longevity of foxtail taxa in undisturbed sites. Weed Sci.25: 66–72.Google Scholar
  342. — andJ. L. Williams, Jr. 1967. Toxicity of root residues of weed grass species. Weeds15: 80–81.CrossRefGoogle Scholar
  343. Scott, D. 1975. Allelopathic interactions of resident tussock grassland species on germination of oversown seed. New Zealand J. Exp. Agric.3: 135–142.Google Scholar
  344. Shafizadeh, F. andN. R. Bhadane. 1972a. Badgerin, a new germacranolide fromArtemisia arbuscula ssp.arbuscula. J. Org. Chem.37: 274–277.CrossRefGoogle Scholar
  345. ——. 1972b. Sesquiterpene lactones of sagebrush. New guaianolides fromArtemisia cana ssp.viscidula. J. Org. Chem.37: 3168–3173.CrossRefGoogle Scholar
  346. — andA. B. Melnikoff. 1970. Coumarinsof Artemisia tridentata ssp. vaseyana. Phytochemistry9: 1311–1316.CrossRefGoogle Scholar
  347. —,N. R. Bhadane, M. S. Morris, R. G. Kelsey andS. N. Khanna. 1971. Sesquiterpene lactones of big sagebrush. Phytochemistry10: 2745–2754.CrossRefGoogle Scholar
  348. Shukla, A. N., D. K. Arora andR. S. Dwivedi. 1977. Effect of microbial culture filtrates on the growth of sal (Shorea robusta Gaertn.) leaf litter fungi. Soil Biol. Biochem.9: 217–219.CrossRefGoogle Scholar
  349. Sieburth, J. M. 1968. The influence of algal antibiosis on the ecology of marine microorganisms. Advances Microbiol. Sea1: 63–94.Google Scholar
  350. Singh, P. N. 1977. Effect of root exudates and extracts ofSolanum nigrum andArgemone mexicana seedlings on rhizosphere mycoflora. Acta Bot. Indica5: 123–127.Google Scholar
  351. Smith, W. H. 1976. Character and significance of forest tree root exudates. Ecology57: 324–331.CrossRefGoogle Scholar
  352. Stahl, C., L. N. Vanderhoef, N. Siegel andJ. P. Helgeson. 1973.Fusarium tricinctum T-2 toxin inhibits auxin-promoted elongation in soybean hypocotyl. Pl. Physiol. (Lancaster)52: 663–666.Google Scholar
  353. Stenlid, G. 1970. Flavonoids as inhibitors of the formation of adenosine triphosphate in plant mitochondria. Phytochemistry9: 2251–2256.CrossRefGoogle Scholar
  354. Stepanov, E. V. 1977. Volatile substances of conifer root systems as a factor of the forest community environment.In Interactions of plants and microorganisms in phytocenoses. pp. 58–65 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  355. Stevenson, F. J. 1967. Organic acids in soil.In Soil biochemistry. pp. 119–142. (A. D. McLaren & G. H. Peterson, eds.) Marcel Dekker, Inc., N.Y.Google Scholar
  356. Stewart, R. E. 1975. Allelopathic potential of western bracken. J. Chem. Ecol.1: 161–169.CrossRefGoogle Scholar
  357. Stotzky, G. andS. Schenck. 1976. Observations on organic volatiles from germinating seeds and seedlings. Amer. J. Bot.63: 798–805.CrossRefGoogle Scholar
  358. Strobel, G. A. 1974. Phytotoxins produced by plant parasites. Annual Rev. Pl. Physiol.25: 541–566.CrossRefGoogle Scholar
  359. Swain, T. 1977. Secondary compounds as protective agents. Annual Rev. Pl. Physiol.28: 479–501.CrossRefGoogle Scholar
  360. Szczepański, A. J. 1977. Allelopathy as a means of biological control of water weeds. Aquatic Bot.3: 193–197.CrossRefGoogle Scholar
  361. Tack, B. F., P. J. Chapman andS. Dagley. 1972. Metabolism of gallic and syringic acids byPseudomonas putida. J. Biol. Chem.247: 6438–6443.PubMedGoogle Scholar
  362. Tames, R. S., M. D. V. Gesto andE. Vieitez. 1973. Growth substances isolated from tubers ofCyperus esculentus var.aureus. Physiol. Pl.28: 195–200.CrossRefGoogle Scholar
  363. Tamura, S., C. Chang, A. Suzuki andS. Kumai. 1967. Isolation and structure of a novel isoflavone derivative in red clover. Agric. Biol. Chem.31: 1108–1109.Google Scholar
  364. ————. 1969. Chemical studies on “clover sickness.” Part I. Isolation and structural elucidation of two new isoflavonoids in red clover. Agric. Biol. Chem.33: 391–397.Google Scholar
  365. Tang, C. S. andA. C. Waiss, Jr. 1978. Short-chain fatty acids as growth inhibitors in decomposing wheat straw. J. Chem. Ecol.4: 225–232.CrossRefGoogle Scholar
  366. Theodorou, C. andG. D. Bowen. 1971. Effects of non-host plants on growth of mycorrhizal fungi of radiata pine. Austral. Forest.35: 17–22.Google Scholar
  367. Thomas, A. S., Jr. 1974. The effect of aqueous extracts of blue spruce leaves on seed germination and seedling growth of several plant species. [Abstract.] Phytopathology64: 587.Google Scholar
  368. Tkachenko, G. V. andS. G. Kovalenko. 1977. On the problem of biological activity of water-soluble leachates of fallen leaves of some woody plants.In Interactions of plants and microorganisms in phytocenoses. pp. 103–106 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  369. Todd, R. L., W. T. Swank, J. E. Douglass, P. C. Kerr, D. L. Brockway andC. D. Monk. 1975. The relationship between nitrate concentration in the southern Appalachian mountain streams and terrestrial nitrifiers. Agro-Ecosystems2: 127–132.CrossRefGoogle Scholar
  370. Trappe, J. M., C. Y. Li, K. C. Lu andW. B. Bollen. 1973. Differential response ofPoria weirii to phenolic acids from Douglas-fir and red alder roots. Forest Sci.19: 191.Google Scholar
  371. Tubbs, C. H. 1973. Allelopathic relationship between yellow birch and sugar maple seedlings. Forest Sci.19: 139–145.Google Scholar
  372. Tukey, H. B., Jr. 1969. Implications of allelopathy in agricultural plant science. Bot. Rev. (Lancaster)35: 1–16.CrossRefGoogle Scholar
  373. Turner, B. H. andE. Quarterman. 1975. Allelochemic effects ofPetalostemon gattingeri on the distribution ofArenaria patula in cedar glades. Ecology56: 924–932.CrossRefGoogle Scholar
  374. Turner, J. A. andE. L. Rice. 1975. Microbial decomposition of ferulic acid in soil. J. Chem. Ecol.1: 41–58.CrossRefGoogle Scholar
  375. Turner, W. B. 1971. Fungal metabolites. Academic Press, N.Y.Google Scholar
  376. Tyson, B. J., W. A. Dement andH. A. Mooney. 1974. Volatilisation of terpenes fromSalvia mellifera. Nature252: 119–120.CrossRefGoogle Scholar
  377. U. S. Forest Service. 1963. Annual Rep. U.S. Dept. Agric., Rocky Mountain Forest and Range Exp. Sta.Google Scholar
  378. Van Alfen, N. K. andN. C. Turner. 1975a. Influence of aCeratocystis ulmi toxin on water relations of elm (Ulmus americana). Pl. Physiol. (Lancaster)55: 312–316.Google Scholar
  379. ——. 1975b. Changes in alfalfa stem conductance induced byCorynebacterium insidiosum toxin. Pl. Physiol. (Lancaster)55: 559–561.Google Scholar
  380. Van der Valk, A. G. andC. B. Davis. 1976. The seed banks of prairie glacial marshes. Canad. J. Bot.54: 1832–1838.CrossRefGoogle Scholar
  381. Vieitez, E. yA. Ballester. 1972. Compuestos fenólicos y cumáricos enErica cinerea L. Anales Inst. Bot. Cavanilles29: 129–142.Google Scholar
  382. Vitousek, P. M. 1977. The regulation of element concentrations in mountain streams in the northeastern United States. Ecol. Monogr.47: 65–87.CrossRefGoogle Scholar
  383. — andW. A. Reiners. 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience25: 376–381.CrossRefGoogle Scholar
  384. Vrbaški, M. M., B. Grujić-Injac andD. Gajić. 1977. Preparation, identification and biological activity of substance “A” from seeds ofAgrostemma githago. Biochem. Physiol. Pflanzen171: 69–74.Google Scholar
  385. Walters, D. T. andA. R. Gilmore. 1976. Allelopathic effects of fescue on the growth of sweetgum. J. Chem. Ecol.2: 469–479.CrossRefGoogle Scholar
  386. Weaver, T. W. andD. Klarich. 1977. Allelopathic effects of volatile substances fromArtemisia tridentata Nutt. Amer. Midl. Naturalist97: 508–512.CrossRefGoogle Scholar
  387. Webb, L. J., J. G. Tracey andK. P. Haydock. 1967. A factor toxic to seedlings of the same species associated with living roots of the non-gregarious subtropical rain forest treeGrevillea robusta. J. Appl. Ecol.4: 13–25.CrossRefGoogle Scholar
  388. Werner, P. A. 1975. The effects of plant litter on germination in teasel,Dipsacus sylvestris Huds. Amer. Midl. Naturalist94: 470–476.CrossRefGoogle Scholar
  389. Whitehead, D. C. 1964. Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature202: 417–418.PubMedCrossRefGoogle Scholar
  390. Whittaker, R. H. 1971. The chemistry of communities.In Biochemical interactions among plants. pp. 10–18. (U.S. Nat. Com. for IBP, eds.) Nat. Acad. of Sci., Washington, D.C.Google Scholar
  391. — andP. P. Feeny. 1971. Allelochemics: chemical interactions between species. Science171: 757–770.PubMedCrossRefGoogle Scholar
  392. Wilson, R. E. 1974. Allelopathy-an ecological role for secondary compounds of plant species. Phytochem. Bull.7: 31–37.Google Scholar
  393. Winter, A. G. 1961. New physiological and biological aspects in the interrelationships between higher plants.In Mechanisms in biological competition. pp. 229–244 (F. L. Milthorpe, ed.) Symposium Soc. Exp. Biol. 15, Academic Press, N.Y.Google Scholar
  394. Wolek, J. 1974. A preliminary investigation in interactions (competition, allelopathy) between some species ofLemna, Spirodela, andWolffia. Ber. Geobot. ETH Stiftung Rubel42: 140–162.Google Scholar
  395. Wolfe, J. M. and E. L. Rice. 1978. Allelopathic interactions between algae. J. Chem. Ecol. In press.Google Scholar
  396. Wood, R. K. S., A. Ballio andA. Graniti, eds. 1972. Phytotoxins in plant disease. Academic Press, N. Y.Google Scholar
  397. — andA. Graniti, eds. 1976. Specificity in plant diseases. Plenum Press, New York.Google Scholar
  398. Woods, F. W. 1960. Biological antagonisms due to phytotoxic root exudates. Bot. Rev. (Lancaster)26: 546–569.Google Scholar
  399. Woodwell, G. M. 1974. Success, succession, and Adam Smith. BioScience24: 81–87.CrossRefGoogle Scholar
  400. Yakhontov, A. F. 1973. On the possibility of using the allelopathic action of some plants for controllingDactilosphera viticola F.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol.4, pp. 57–60 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  401. Yoder, O. C. andR. P. Scheffer. 1973a. Effects ofHelminthosporium carbonum toxin on nitrate uptake and reduction by corn tissues. Pl. Physiol. (Lancaster)52: 513–517.CrossRefGoogle Scholar
  402. ——. 1973b. Effects ofHelminthosporium carbonum toxin on absorption of solutes by corn roots. Pl. Physiol. (Lancaster)52: 518–523.Google Scholar
  403. Young, B. R., F. J. Newhook andR. N. Allen. 1977. Ethanol in the rhizosphere of seedlings ofLupinus angustifolius L. New Zealand J. Bot.15: 189–191.Google Scholar
  404. Yurchak, L. D. 1974. Active metabolites of microorganisms decomposingLupinus.In Physiological-biochemical basis of plant interactions in phytocenoses. Vol. 5, pp. 100–103 (A. M. Grodzinsky, ed.) Naukova Dumka, Kiev. (In Russian, English summary.)Google Scholar
  405. Zabyalyendzik, S. F. 1973. Allelopathic interaction of buckwheat and its components through root excretions. Vyestsi Akad. Navuk BSSR Syer Biyal Navuk5: 31–34. (In Belorussian, Russian summary.)Google Scholar
  406. Zaikova, V. A. 1973. Study of the allelopathic regime in meadow phytocenoses of the Karelian ASSR. Bot. Zh.58: 1753–1760. (In Russian.)Google Scholar
  407. Zhamba, G. E. 1972. Allelopathic role of coumarin compounds on propagation of cow parsnipHeracleum. Izv. Akad. Nauk Mold. SSR, Ser. Biol. Khim Nauk1: 86–87. (In Russian.)Google Scholar
  408. Zinke, P. J. 1962. The pattern of influence of individual forest trees on soil properties. Ecology43: 130–133.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1979

Authors and Affiliations

  • Elroy L. Rice
    • 1
  1. 1.Department of Botany and MicrobiologyThe University of OklahomaNorman

Personalised recommendations