Skip to main content
Log in

The absorption of electrolytes in large plant cells

  • Published:
The Botanical Review Aims and scope Submit manuscript

Conclusion

The facts and principles here set forth are the results of investigations of large cells which offer special advantages for such studies. How far they are applicable to other cases remains to be seen.

This brief outline indicates progress in dealing with some very interesting variables. It also gives a hint of the host of problems awaiting solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. Bělehrádek, J. Temperature and living matter. Protoplasma-Monographien.8. Berlin, 1935.

  2. Blinks, L. R.. Protoplasmic potentials inHalicystis. III. The effect of ammonia. Jour. Gen. Physiol.17: 109–128. 1933–34.

    CAS  Google Scholar 

  3. —. Protoplasmic potentials inHalicystis. IV. Vacuolar perfusion with artificial sap and sea water. Jour. Gen. Physiol.18: 409–420. 1934–35.

    Google Scholar 

  4. —. The polarization capacity and resistance ofValonia. I. Alternating current measurements. Jour. Gen. Physiol.19: 673–691. 1935–36.

    Google Scholar 

  5. —. The effects of current flow on bioelectric potential. I.Valonia. Jour. Gen. Physiol.19: 633–672. 1935–36.

    Google Scholar 

  6. —. The effects of current flow on bioelectric potential. II.Halicystis. Jour. Gen. Physiol.19: 867–898. 1935–36.

    Google Scholar 

  7. And Jacques, A. G.. The cell sap ofHalicystis. Jour. Gen. Physiol.13: 733–737. 1929–30.

    Google Scholar 

  8. Briggs, G. E.. The accumulation of electrolytes in plant cells—a suggested mechanism. Proc. Roy. Soc.B-107: 248–269. 1930.

    Google Scholar 

  9. —. The absorption of salts by plant tissues, considered as ionic interchange. Ann. Bot.46: No. 182: 301–322. 1932.

    CAS  Google Scholar 

  10. —. Accumulation of ions by living cells. Nature132: 98. 1933.

    Google Scholar 

  11. Brooks, M. M.. Studies on the permeability of living and dead cells. II. Observations on the penetration of alkali bicarbonates into living and dead cells. Public Health Rep.38: 1470–1477. 1923.

    CAS  Google Scholar 

  12. —. Studies on the permeability of living cells. VI. The penetration of certain oxidation-reduction indicators as influenced by pH; estimation of the rH ofValonia. Am. Jour. Physiol.76: 360–379. 1926.

    CAS  Google Scholar 

  13. —. Studies on the permeability of living cells. VII. The effects of light of different wave lengths on the penetration of 2, -6, -dibromophenol indophenol intoValonia. Protoplasma1: 305–312. 1926.

    Google Scholar 

  14. —. The pH and the rH of the sap ofValonia and the rH of its protoplasm. Protoplasma10: 505–509. 1930.

    CAS  Google Scholar 

  15. —. The penetration of 1-naphthol-2-sulphonate indophenolo-chloro phenol indophenol ando-cresol indophenol intoValonia. Proc. Nat. Acad. Sci.17: 1–3. 1931.

    PubMed  CAS  Google Scholar 

  16. And Brooks, S. C.. The “multiple partition coefficient” hypothesis in relation to permeability. Proc. Soc. Exp. Biol. & Med.29: 720–721. 1931–32.

    Google Scholar 

  17. Brooks, S. C.. The accumulation of ions in living cells—a non-equilibrium condition. Protoplasma8: 389–412. 1929.

    CAS  Google Scholar 

  18. —. Composition of the cell sap ofHalicystis ovalis (Lyng.) Areschoug. Proc. Soc. Exp. Biol. & Med.27: 409–412. 1929–30.

    Google Scholar 

  19. -. Some aspects of the physical chemistry of permeability of ions. Contributions to marine biology. 91–101. Stanford Univ. Press. 1930.

  20. —. Ion intake inValonia as affected by HC1 and CO2. Proc Soc. Exp. Biol. & Med.29: 933–934. 1931–32.

    Google Scholar 

  21. —. The rate of penetration of rubidium into living cells ofValonia and its relation to apparent ionic radii. Jour. Cell. & Comp. Physiol.2: 223–231. 1932–33.

    CAS  Google Scholar 

  22. —. Chemical versus morphological species differences. Science77: 221–222. 1933.

    PubMed  CAS  Google Scholar 

  23. —. Mosaic collodion membranes as analogous of the plasma membrane. Jour. Exp. Biol.12: 36–38. 1935.

    CAS  Google Scholar 

  24. —. The accumulation of ions: relation between protoplasm and sap inValonia. Jour. Cell. & Comp. Physiol.6: 169–180. 1935.

    CAS  Google Scholar 

  25. Chambers, R.. Studies on the physical properties of the plasma membrane. Biol. Bull.69: 331. 1935.

    Google Scholar 

  26. Cole, K. S.. Electric conductance of biological systems. Cold Spring Harbor symposia on quantitative biology1: 107–116. 1933.

    Google Scholar 

  27. —. Electric impedance ofHipponoë eggs. Jour. Gen. Physiol.18: 877–887. 1934–35.

    Google Scholar 

  28. And Cole, R. H.. Electric impedance ofAsterias eggs. Jour. Gen. Physiol.19: 609–623. 1935–36.

    Google Scholar 

  29. ——. Electric impedance ofArbacia eggs. Jour. Gen. Physiol.19: 625–632. 1935–36.

    Google Scholar 

  30. Collander, R.. Permeabilitätsstudien anChara ceratophylla. I. Die normale Zusammensetzung des Zellsaftes. Acta Bot. Fenn.6: 1–20. 1930.

    Google Scholar 

  31. —. Salzpermeabilität und Salzaufnahme der Zellen vonChara ceratophylla undTolypellopsis stelligera. Proc. VI Int. Bot. Congr.2: 289–291. Amsterdam. 1935.

    Google Scholar 

  32. Cooper, W. C., Jr.,And Blinks, L. R.. The cell sap ofValonia andHalicystis. Science68: 164–165. 1928.

    PubMed  CAS  Google Scholar 

  33. —,Dorcas, M. J. And Osterhout, W. J. V.. The penetration of strong electrolytes. Jour. Gen. Physiol.12: 427–433. 1928–29.

    Google Scholar 

  34. And Osterhout, W. J. V.. The accumulation of electrolytes. I. The entrance of ammonia intoValonia macrophysa. Jour. Gen. Physiol.14: 117–125. 1930–31.

    CAS  Google Scholar 

  35. Damon, E. B.. Bioelectric potentials inValonia. The effect of substituting KC1 for NaCl in artificial sea water. Jour. Gen. Physiol.16: 375–395. 1932–33.

    CAS  Google Scholar 

  36. Danielli, J. F. And Davson, H. A.. contribution to the theory of permeability of thin films. Jour. Cell. & Comp. Physiol.5: 495–508. 1934–35.

    Google Scholar 

  37. Fricke, H.. The electric capacity of suspensions of red corpuscles of a dog. Physical Rev.26: 682–687. 1925.

    Google Scholar 

  38. —. The electric capacity of suspensions with special reference to blood. Jour. Gen. Physiol.9: 137–152. 1925–26.

    CAS  Google Scholar 

  39. And Curtis, H. J.. Specific resistance of the interior of the red blood corpuscle. Nature133: 651. 1934.

    Google Scholar 

  40. ——. Electric impedance of suspensions of yeast cells. Nature134: 102–103. 1934.

    Google Scholar 

  41. ——. Electric impedance of suspensions of leucocytes. Nature135: 436. 1935.

    Google Scholar 

  42. Gellhorn, E.. Das Permeabilitätsproblem. Berlin. 1929. 39. Hansen, A. Über Stoffbildung bei den Meeresalgen. Mitt. Zool. Stat. Neapel11: 255–305. 1893.

    Google Scholar 

  43. Hill, S. E.. Extraction of an emulsion-stabilizing substance fromNitella with distilled water. Proc. Soc. Exp. Biol. & Med.32: 413–414. 1934–35.

    Google Scholar 

  44. And Osterhout, W. J. V.. Mechanical restoration of irritability of the potassium effect. Jour. Gen. Physiol.18: 687–694. 1934–35.

    Google Scholar 

  45. Hoagland, D. R.. The absorption of ions by plants. Soil Sci.16: 225–246. 1923.

    CAS  Google Scholar 

  46. -. The accumulation of mineral elements by plant cells. Contributions to marine biology. 131–144. Stanford Univ. Press. 1930.

  47. And Broyer, T. C.. The absorption and accumulation of salts by root cells. Proc. VI Int. Bot. Congr.2: 288–289. Amsterdam. 1935.

    Google Scholar 

  48. And Davis, A. R.. The composition of the cell sap of the plant in relation to the absorption of ions. Jour. Gen. Physiol.5: 629–646. 1922–23.

    Google Scholar 

  49. ——. Further experiments on the absorption of ions by plants, including observations on the effect of light. Jour. Gen. Physiol.6: 47–62. 1923–24.

    CAS  Google Scholar 

  50. ——. The intake and accumulation of electrolytes by plant cells. Protoplasma6: 610–626. 1929.

    Google Scholar 

  51. ——And Hibbard, P. L.. The influence of one ion on the accumulation of another by plant cells with special reference to experiments withNitella. Plant Physiol.3: 473–486. 1928.

    PubMed  CAS  Google Scholar 

  52. —,Hibbard, P. L. And Davis, A. R.. The influence of light, temperature, and other conditions on the ability ofNitella cells to concentrate halogens in the cell sap. Jour. Gen. Physiol.10: 121–146. 1926–27.

    CAS  Google Scholar 

  53. Höber, R. Physikalische Chemie der Zelle und der Gewebe. 6th ed. Leipzig. 1926.

  54. And Hoffmann, F.. Über das elektromotorische Verhalten von künstlichen Membranen mit gleichzeitig selektiv kationen- und selektiv anionendurchlässigen Flächenstücken. Arch. Ges. Physiol.220: 558–564. 1928.

    Google Scholar 

  55. Hollenberg, G. J.. Some physical and chemical properties of the cell sap ofHalicystis ovalis (Lyngb.) Aresch. Jour. Gen. Physiol.15: 651–653. 1931–32.

    Google Scholar 

  56. Irwin, M.. On the accumulation of dye inNitella. Jour. Gen. Physiol.8: 147–182. 1925–28.

    CAS  Google Scholar 

  57. —. Accumulation of brilliant cresyl blue in the sap of living cells ofNitella in the presence of NH2. Jour. Gen. Physiol.9: 235–253. 1925–26.

    CAS  Google Scholar 

  58. —. Mechanism of the accumulation of dye inNitella on the basis of the entrance of dye as undissociated molecules. Jour. Gen. Physiol.9: 561–573. 1925–26.

    Google Scholar 

  59. —. Exit of dye from living cells ofNitella at different pH values. Jour. Gen. Physiol.10: 75–102. 1926–27.

    CAS  Google Scholar 

  60. —. Does methylene blue penetrate into living cells? Proc. Soc. Exp. Biol. & Med.24: 425–427. 1926–27.

    Google Scholar 

  61. —. On the nature of the dye penetrating the vacuole ofValonia from solutions of methylene blue. Jour. Gen. Physiol.10: 927–947. 1926–27.

    Google Scholar 

  62. —. Multiple partition coefficients of penetration. Proc. Soc. Exp. Biol; & Med.25: 127–129. 1927–28.

    Google Scholar 

  63. —. Counteraction of the inhibiting effects of various substances onNitella. Jour. Gen. Physiol.11: 123–139. 1927–28.

    CAS  Google Scholar 

  64. —. Spectrophotometric studies of penetration. IV. Penetration of trimethyl thionine intoNitella andValonia from methylene blue. Jour. Gen. Physiol.12: 147–165. 1928–29.

    CAS  Google Scholar 

  65. —. Predicting penetration of dyes into living cells by means of an artificial system. Proc. Soc. Exp. Biol. & Med.26: 125–127. 1928–29.

    Google Scholar 

  66. —. Penetration of alkaloids into vacuoles of living cells. Proc. Soc. Exp. Biol. & Med.26: 135–136. 1928–29.

    Google Scholar 

  67. —. Spectrophotometric studies of penetration. V. Resemblances between the living cell and an artificial system in absorbing methylene blue and trimethyl thionine. Jour. Gen. Physiol.12: 407–418. 1928–29.

    Google Scholar 

  68. —. Relation of absorption coefficients to rate of penetration of dye into the cell. Proc. Soc. Exp. Biol. & Med.29: 993–995. 1931–32.

    Google Scholar 

  69. —. Cell models representing various types of living cells. Proc. Soc. Exp. Biol. & Med.29: 995–996. 1931–32.

    Google Scholar 

  70. —. Importance of internal phase boundary in penetration of dye into the vacuole. Proc. Soc. Exp. Biol. & Med.29: 1234–1235. 1931–32.

    Google Scholar 

  71. Jacobs, M. H. Permeability of the cell to diffusing substances. Cowdry, E. G. General cytology. 97–164. Chicago. 1924. University of Chicago Press.

  72. —. The influence of ammonium salts on cell reaction. Jour. Gen. Physiol.5: 181–188. 1922–23.

    CAS  Google Scholar 

  73. —. The simultaneous measurement of cell permeability to water and to dissolved substances. Jour. Cell. & Comp. Physiol.2: 427–444. 1932–33.

    Google Scholar 

  74. —. The relation between cell volume and penetration of a solute from an isosmotic solution. Jour. Cell. & Comp. Physiol.3: 29–43. 1933.

    CAS  Google Scholar 

  75. —. Volume changes of cells in solutions containing both penetrating and non-penetrating solutes, and their relation to the “permeability ratio.” Jour. Cell. & Comp. Physiol.3: 121–129. 1933.

    CAS  Google Scholar 

  76. —. Diffusion processes. Ergebn. Biol.12: 1–160. 1935.

    Google Scholar 

  77. And Stewart, D. R.. A simple method for the quantitative measurement of cell permeability. Jour. Cell. & Comp. Physiol.1: 71–82. 1932.

    CAS  Google Scholar 

  78. Jacques, A. G.. The accumulation of electrolytes. VII. Organic electrolytes. I. Jour. Gen. Physiol.18: 235–242 1934–35.

    CAS  Google Scholar 

  79. —. The accumulation of electrolytes. VII. Organic electrolytes. II. Jour. Gen. Physiol.18: 283–300. 1934–35.

    Google Scholar 

  80. —. The kinetics of penetration. X. Guanidine. Proc. Nat. Acad. Sci.21: 488–492. 1935.

    PubMed  CAS  Google Scholar 

  81. —. The kinetics of penetration. XII. Hydrogen sulnde. Jour. Gen. Physiol.19: 397–418. 1935–36.

    Google Scholar 

  82. And Osterhout, W. J. V.. The kinetics of penetration. II. The penetration of CO2 intoValonia. Jour. Gen. Physiol.13: 695–713. 1929–30.

    Google Scholar 

  83. ——. The accumulation of electrolytes. III. Behavior of sodium, potassium, and ammonium inValonia. Jour. Gen. Physiol.14: 301–314. 1930–31.

    CAS  Google Scholar 

  84. ——. The accumulation of electrolytes. IV. Internal versus external concentrations of potassium. Jour. Gen. Physiol.15: 537–550. 1931–32.

    Google Scholar 

  85. ——. The accumulation of electrolytes. VI. The effect of external pH. Jour. Gen. Physiol.17: 727–750. 1933–34.

    Google Scholar 

  86. ——. The kinetics of penetration. XI. Entrance of potassium intoNitella. Jour. Gen. Physiol.18: 967–985. 1934–1935.

    Google Scholar 

  87. Kamerling, S. E. And Osterhout, W. J. V.. The kinetics of penetration. IX. Models of mature cells. Jour. Gen. Physiol.18: 229–234. 1934–35.

    CAS  Google Scholar 

  88. Koizumi, T.. Studies on the exchange and the equilibrium of water and electrolytes in a Holothurian,Caudina chilensis (J. Müller). I. Permeability of the animal surface to water and ions in the sea water, together with osmotic and ionic equilibrium between the body fluid of the animal and its surrounding sea water, involving some corrections to our previous paper (1926). Sci. Rep. Tôhoku Imp. Univ. (4th ser.)7: 259–311. 1932.

    CAS  Google Scholar 

  89. —. Studies on the exchange and the equilibrium of water and electrolytes in a Holothurian,Caudina chilensis (J. Müller.) II. On the velocity of permeation of Ćl and SO4 through the isolated body wall ofCaudina. Sci. Rep. Tôhoku Imp. Univ. (4th ser.)10: 33–39. 1935.

    CAS  Google Scholar 

  90. —. Studies on the exchange and the equilibrium of water and electrolytes in a HolothurianCaudina chilensis (J. Müller). III. (a) On the velocity of permeation of K, Na, Ca and Mg through the isolated body wall ofCaudina; (b) An acidimetric micro method for the determination of Na as triple acetate; (c) A volumetric micro method for the determination of K as iodoplatinate. Sci. Rep. Tôhoku Imp. Univ. (4th ser.)10: 269–275. 1935.

    Google Scholar 

  91. —. Studies on the exchange and the equilibrium of water and electrolytes in a Holothurian,Caudina chilensis (J. Müller). IV. On the inorganic composition of the corpuscles of the body fluid. Sci. Rep. Tôhoku Imp. Univ. (4th ser.)10: 277–280. 1935.

    Google Scholar 

  92. Longsworth, L. G.. The theory of diffusion in cell models. Jour. Gen. Physiol.17: 211–235. 1933–34.

    CAS  Google Scholar 

  93. —. The theory of diffusion in cell models and volume changes analogous to growth. Cold Spring Harbor symposia on quantitative biology2: 218–225. 1934.

    CAS  Google Scholar 

  94. —. The theory of diffusion in cell models. II. Solution of the steady state for three diffusing substances. Jour. Gen. Physiol.18: 627–642. 1934–35.

    Google Scholar 

  95. Lucké, B., Hartline, H. K. And McCutcheon, M.. Further studies on the kinetics of osmosis in living cells. Jour. Gen. Physiol.14: 405–419. 1930–31.

    Google Scholar 

  96. And McCutcheon, M.. The living cell as an osmotic system and its permeability to water. Physiol. Rev.12: 68–139. 1932.

    Google Scholar 

  97. Lundegårdh, H. Die Nährstoffaufnahme der Pflanze. Jena. 1932.

  98. And Burström, H.. Untersuchungen über die Salzaufnahme der Pflanzen. III. Quantitative Beziehungen zwischen Atmung und Anionenaufnahme. Biochem. Zeits.261: 235–251. 1933.

    Google Scholar 

  99. ——. Zwei verschiedene Atmungsmechanismen in pflanzlichen Absorptionsorganen. Naturwiss.22: 435–436. 1934.

    Google Scholar 

  100. McCutcheon, M. And Lucké, B.. The mechanism of vital staining with basic dyes. Jour. Gen. Physiol.6: 501–507. 1923–24.

    Google Scholar 

  101. Meyer, A.. Notiz über die Zusammensetzung des Zellsaftes vonValonia utricularis. Ber. Deut. Bot. Ges.9: 77–79. 1891.

    Google Scholar 

  102. Michaelis, L.. Contribution to the theory of permeability of membranes for electrolytes. Jour. Gen. Physiol.8: 33–74. 1925–28.

    CAS  Google Scholar 

  103. —. Molecular sieve membranes. Bull. Nat. Res. Council69: 119–141. 1929.

    CAS  Google Scholar 

  104. Nirenstein, E.. Über das Wesen der Vitalfärbung. Arch. Ges. Physiol.179: 233–337. 1920.

    CAS  Google Scholar 

  105. Osterhout, W. J. V.. Some aspects of selective absorption. Jour. Gen. Physiol.5: 225–230 1922–23.

    CAS  Google Scholar 

  106. —. The kinetics of penetration. I. Equations for the entrance of electrolytes. Jour. Gen. Physiol.13: 261–294. 1929–30.

    CAS  Google Scholar 

  107. —. Calculations of bioelectric potentials. I. Effects of KCl and NaCl onNitella. Jour. Gen. Physiol.13: 715–732. 1929–30.

    Google Scholar 

  108. —. The kinetics of penetration. III. Equations for the exchange of ions. Jour. Gen. Physiol.14: 277–284. 1930–31.

    CAS  Google Scholar 

  109. —. The accumulation of electrolytes. II. Suggestions as to the nature of accumulation inValonia. Jour. Gen. Physiol.14: 285–300. 1930–31.

    CAS  Google Scholar 

  110. —. Physiological studies of single plant cells. Biol. Rev.6: 369–411. 1931.

    Google Scholar 

  111. —. The kinetics of penetration. V. The kinetics of a model as related to the steady state. Jour. Gen. Physiol.16: 529–557. 1932–33.

    Google Scholar 

  112. —. Permeability in large plant cells and in models. Ergebn. Physiol.35: 967–1021. 1933.

    Google Scholar 

  113. —. How do electrolytes enter the cell? Proc. Nat. Acad. Sci.21: 125–132. 1935.

    PubMed  CAS  Google Scholar 

  114. —. Chemical restoration inNitella. I. Ammonia and some of its compounds. Jour. Gen. Physiol.18: 987–995. 1934–35.

    Google Scholar 

  115. —. The rôle of ions inValonia and inNitella. Biol. Bull.69: 329–330. 1935.

    CAS  Google Scholar 

  116. —. Electrical phenomena in large plant cells. Physiol. Rev.16: 216–237. 1936.

    Google Scholar 

  117. And Hill, S. E.. Anesthesia produced by distilled water. Jour. Gen. Physiol.17: 87–98. 1933–34.

    CAS  Google Scholar 

  118. ——. Anesthesia in acid and alkaline solutions. Jour. Gen. Physiol.17: 99–103. 1933–34.

    CAS  Google Scholar 

  119. ——. Reversible loss of the potassium effect in distilled water. Jour. Gen. Physiol.17: 105–108. 1933–34.

    CAS  Google Scholar 

  120. ——. Some experimental modification of the protoplasmic surface. Proc. Soc. Exp. Biol. & Med.32: 715. 1934–35.

    Google Scholar 

  121. And Kamerling, S. E.. The kinetics of penetration. VIII. Temporary accumulation. Jour. Gen. Physiol.17: 507–516. 1933–1934.

    Google Scholar 

  122. ——. The accumulation of electrolytes. VIII. The accumulation of KC1 in models. Jour. Gen. Physiol.19: 167–178. 1935–36.

    CAS  Google Scholar 

  123. ——And Stanley, W. M.. The kinetics of penetration. VI. Some factors affecting penetration. Jour. Gen. Physiol.17: 445–467. 1933–34.

    Google Scholar 

  124. ———. Kinetics of penetration. VII. Molecular versus ionic transport. Jour. Gen. Physiol.17: 469–480. 1933–34.

    Google Scholar 

  125. And Stanley, W. M.. The accumulation of electrolytes. V. Models showing accumulation and a steady state. Jour. Gen. Physiol.15: 667–689. 1931–32.

    Google Scholar 

  126. Pantanelli, E.. Assorbimento elettivo di ioni nelle piante. Bull. Orto Bot. R. Univ. Napoli5: 1–54. 1918.

    CAS  Google Scholar 

  127. —. Decorse dell’ assorbimento di ioni nelle piante. Bull. Orto Bot. R. Univ. Napoli6: 1–37. 1921.

    CAS  Google Scholar 

  128. Petrie, A. H. K.. The intake of ions by the plant and its relation to the respiration of the root. Australian Jour. Exp. Biol. Med. Sci.11: 25–34. 1933.

    CAS  Google Scholar 

  129. Richmond, H. and Pearsall, W. H. Absorption of ammonium and nitrate ions by certain plant tissues. Proc. Leeds Phil. Lit. Soc. Sci. Sect. 2, Part5: 235–239. 1931.

  130. Rosenfels, R. S.. The absorption and accumulation of potassium bromide byElodea as related to respiration. Protoplasma23: 503–519. 1935.

    CAS  Google Scholar 

  131. Schönfelder, S.. Weitere Untersuchungen über die Permeabilität vonBeggiatoa mirabilis nebst kritischen Ausführungen zum Gesamtproblem der Permeabilität. Planta12: 414–504. 1930.

    Google Scholar 

  132. Shedlovsky, T. And Uhlig, H. H.. On guaiacol solutions. I. The electrical conductivity of sodium and potassium guaiacolates in guaiacol. Jour. Gen. Physiol.17: 549–561. 1933–34.

    Google Scholar 

  133. ——. On guaiacol solutions. II. The distribution of sodium and potassium guaiacolates between guaiacol and water. Jour. Gen. Physiol.17: 563–576. 1933–34.

    Google Scholar 

  134. Söllner, K.. Über Mosaikmembranen. Biochem. Zeits.244: 370–381. 1932.

    Google Scholar 

  135. Steward, F. C.. The absorption and accumulation of solutes by living plant cells. V. Observations upon the effects of time, oxygen and salt concentration upon absorption and respiration by storage tissue. Protoplasma18: 208–242. 1933.

    CAS  Google Scholar 

  136. —. Mineral nutrition of plants. Ann. Rev. Biochem.4: 519–544. 1935.

    CAS  Google Scholar 

  137. And Berry, W. E.. The absorption and accumulation of solutes by living plant cells. VII. The time factor in the respiration and salt absorption of Jerusalem artichoke tissue (Helianthus tuberosus), with observations on ionic interchange. Jour. Exp. Biol.11: 103–119. 1934.

    CAS  Google Scholar 

  138. Teorell, T.. Studies on the “diffusion effect” upon ionic distribution. I. Some theoretical considerations. Proc. Nat. Acad. Sci.21: 152–161. 1935.

    PubMed  CAS  Google Scholar 

  139. —. On an arrangement for studying the conditions within diffusion layers. Science81: 491. 1935.

    PubMed  CAS  Google Scholar 

  140. —. Some aspects of electrolyte diffusion. Biol. Bull.69: 331. 1935.

    Google Scholar 

  141. —. An attempt to formulate a quantitative theory of membrane permeability. Proc. Soc. Exp. Biol. & Med.33: 282–285. 1935–36.

    CAS  Google Scholar 

  142. Trelease, S. F. And Trelease, H. M.. Changes in hydrogen-ion concentration of culture solutions containing nitrate and ammonium nitrogen. Am. Jour. Bot.22: 520–542. 1935.

    CAS  Google Scholar 

  143. Warburg, O.. Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. II. Biochem. Zeits.103: 188–217. 1920.

    CAS  Google Scholar 

  144. Zscheile, F. P., Jr. The thermodynamics of ion concentration by living plant cells. Protoplasma11: 481–496. 1930.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osterhout, W.J.V. The absorption of electrolytes in large plant cells. Bot. Rev 2, 283–315 (1936). https://doi.org/10.1007/BF02869927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02869927

Keywords

Navigation