American Journal of Potato Research

, Volume 83, Issue 1, pp 47–53 | Cite as

Potato minituber production using aeroponics: Effect of plant density and harvesting intervals

Article

Abstract

To optimize minituber production through aeroponics some horticultural management factors should be studied. Potato plantlets, cv Zorba, were grown aeroponically at two different plant densities (60 and 100 plants/m2). Plants showed an extended vegetative cycle of about 5 months after planting. A higher number of stolons was obtained at low plant densities. Tuber formation hastened when supplied N was reduced. Experiments on harvesting intervals (7, 10, and 14 days) indicated that for a density of 60 plants/m2, both number of minitubers and yield increased as harvesting interval decreased. Best results were achieved harvesting every 7 days: a total tuber yield of 118.6 g per plant was obtained (four times higher than for 100 plants/m2). Such a yield was composed, on the average, of 13.4 tubers with a mean tuber weight of 8.1 g. Harvesting intervals did not have an effect on the number of minitubers and yield for a density of 100 plants/m2. The best productivity obtained in this study was 800 minitubers/m2 for weekly harvests and a low plant density (60 plants/m2). We also studied the field performance of aeroponically produced minitubers vs those produced by hydroponics. Minituber behavior under field conditions was independent from the technique used for its production.

Additional key words

Solanum tuberosum rhizotron N supply field behavior hydroponics tuber 

Resumen

Para optimizar la producción de mini tubérculos de papa por aeroponía, se deberían estudiar algunos factores de manejo hortícola. Se cultivaron aeropónicamente plántulas de papa del cv Zorba en dos diferentes densidades (60 y 100 plantas por m2). Las plantas mostraron un período vegetativo extenso de cinco meses después de la siembra. Se obtuvo un gran número de estolones a baja densidad de plantas. La formación de tubérculos se aceleró cuando se redujo la aplicación de N. Los experimentos sobre intervalos de cosecha (7, 10 y 14 días) indicaron que a una densidad de 60 plantas por m2 se incrementó el número de tubérculos y el rendimiento aumentó a medida que se fue disminuyendo el intervalo de cosecha. Los mejores resultados se obtuvieron cosechando cada 7 días, al cabo de los cuales se obtuvo un rendimiento total de 118.6g por planta (cuatro veces mayor que con 100 plantas por m2). El rendimiento fue en promedio de 13.4 tubérculos con un peso medio de 8.1g. Los intervalos de cosecha no tuvieron efecto sobre el número de mini tubérculos y rendimiento a una densidad de 100 plantas por m2. La mayor productividad obtenida en este estudio fue de 800 mini tubérculos por m2 en cosechas semanales y a una baja densidad de plantas (60 plantas por m2). También hemos estudiado el comportamiento de campo de los mini tubérculos producidos aeropónicamente versus aquellos producidos por hidroponía. El comportamiento de los mini tubérculos producidos bajo condiciones de campo fue independiente de la técnica utilizada para su producción.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Biddinger EJ, CM Liu, RJ Joly, and KG Raghothama. 1998. Physiological and molecular responses of aeroponically grown tomato plants to phosphorus deficiency. J Am Soc Hortic Sci 123:330–333.Google Scholar
  2. Boersig MR, and SA Wagner. 1988. Hydroponic system for production of seed tubers. Am Potato J 65:470–471.Google Scholar
  3. He J, and SK Lee. 1998. Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa L.) to different rootzone temperatures and growth irradiances under tropical aerial conditions. J Hort Sci Biotech 73:173–180.Google Scholar
  4. Jones ED. 1988. A current assessment of in vitro culture and other rapid multiplication methods in North America and Europe. Am Potato J 65:209–220.CrossRefGoogle Scholar
  5. Kang JG, SY Yang, and SY Kim. 1996a. Effects of nitrogen levels on the plant growth, tuberization and quality of potatoes grown in aeroponics. J Korean Soc Hort Sci 37:761–766.Google Scholar
  6. Kang JG, SY Kim, HJ Kim, YH Om, and JK Kim. 1996b. Growth and tuberization of potato (Solanum tuberosum L.) cultivars in aeroponic, deep flow technique and nutrient film technique culture systems. J Korean Soc Hort Sci 37:24–27.Google Scholar
  7. Kim KT, SB Kim, SB Ko, and YB Park. 1997. Effects of minituber picking intervals on the yield and tuber weight of potato grown in aeroponics. RDA J Hort Sci 39:65–69.Google Scholar
  8. Kim HS, E M Lee, MA Lee, IS Woo, CS Moon, YB Lee, and SY Kim. 1999. Production of high quality potato plantlets by autotrophic culture for aeroponic systems. J Korean Soc Hort Sci 123:330–333.Google Scholar
  9. Krauss A, and H Marschner. 1982. Influence of nitrogen, day length and temperature on contents of gibberellic and abscisic acid and on tuberization in potato plants. Potato Res 25:13–21.CrossRefGoogle Scholar
  10. Lommen WJM, and PC Struik. 1992a. Production of potato minitubers by repeated harvesting: plant productivity and initiation, growth and resorption of tubers. Neth J Agr Sci 40:342–359.Google Scholar
  11. Lommen WJM, and PC Struik. 1992b. Production of potato minitubers by repeated harvesting: effects of crop husbandry on yield parameters. Potato Res 35:419–432.CrossRefGoogle Scholar
  12. Lugt C, KBA Bodlaender, and G Goodijk. 1964. Observation on the induction of second-growth in potato tubers. Eur Potato J 4:219–227.CrossRefGoogle Scholar
  13. Molitor HD, M Fischer, and AP Popadopoulos. 1999. Effect of several parameters on the growth of chrysanthemum stock plants in aeroponics. Volume I. Acta Hort 481:179–186.Google Scholar
  14. Muro J, V Diaz, JL Goni, and C Lamsfus. 1997. Comparison of hydroponic culture and culture in a peat/sand mixture and the influence of nutrient solution and plant density on seed potato yields. Potato Res 40:431–438.CrossRefGoogle Scholar
  15. Ranalli P. 1997. Innovative propagation methods in seed tuber multiplication programmes. Potato Res 40:439–453.CrossRefGoogle Scholar
  16. Ranalli P, F Bassi, G Ruaro, P del Re, M di Cadilo, and G Mandolino. 1994. Microtuber and minituber production and field performance compared with normal tubers. Potato Res 37:383–391.CrossRefGoogle Scholar
  17. Ritter E, B Augulo, P Riga, C Herrán, J Relloso, and M San José. 2001. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res 44:127–135.CrossRefGoogle Scholar
  18. Rolot JL, and H Seutin. 1999. Soilless production of potato minitubers using hydroponic technique. Potato Res 42:457–469.CrossRefGoogle Scholar
  19. Soffer H and DW Burger. 1988. Effects of dissolved oxygen concentration in aero-hydroponics on the formation and growth of adventitious roots. J Am Soc Hortic Sci 113:218–221.Google Scholar
  20. Struik PC, and WLM Lommen. 1990. Production, storage and use of micro- and minitubers. Proc 11th Triennial Conf European Assoc for Potato Res (EAPR), Edinburgh, UK. pp 122–133.Google Scholar
  21. Struik PC, and SG Wiersema. 1999. Seed Potato Technology. Wageningen Pers, Wageningen. pp 175–216.Google Scholar
  22. Tibbitts TW, and W Cao. 1994. Solid matrix and liquid culture procedures for growth of potatoes. Adv Space Res 14:427–433PubMedCrossRefGoogle Scholar
  23. Wan WY, W Cao, and TW Tibbitts. 1994. Tuber initiation in hydroponically grown potatoes by alteration of solution pH. HortScience 29:621–623.Google Scholar
  24. Wheeler RM, CL Mackowiak, JC Sager, WM Knott, and CR Hinkle. 1990. Potato growth and yield using nutrient film technique (NFT). Am Potato J 67:177–187.PubMedCrossRefGoogle Scholar
  25. Wiersema SG, R Cabello, P Tovar, and JH Dodds. 1987. Rapid seed multiplication by planting into beds microtubers and in vitro plants. Potato Res 30:117–120.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Plant ProductionInstitute of Agrobiotechnology, UPNA/CSICMutilva Baja, NavarraSpain

Personalised recommendations