Skip to main content
Log in

Chlorophyll

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. Alcock, R. The role of tryptophan in blood development. Biochem. Jour.27: 754–758. 1933.

    CAS  Google Scholar 

  2. Altman, K. I.,et al. Hemoglobin synthesis from glycine labeled with C14 in its α-carbon atom. Jour. Biol. Chem.176: 319–325. 1948.

    CAS  Google Scholar 

  3. Anson, M. L. Lyubimenko extracts of chlorophyll-protein. Science93: 186–187. 1941.

    Article  PubMed  CAS  Google Scholar 

  4. Arnold, W. andOppenheimer, J. R. Internal conversion in the photosynthetic mechanism of blue-green algae. Jour. Gen. Physiol.33: 423–435. 1950.

    Article  CAS  Google Scholar 

  5. Arnon, D. I. Localization of polyphenoloxidase in the chloroplasts ofBeta vulgaris. Nature162: 341–342. 1948.

    Article  CAS  PubMed  Google Scholar 

  6. —. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. Pl. Phys.24: 1–15. 1949.

    CAS  Google Scholar 

  7. — andWhatley, F. R. Factors influencing oxygen production by illuminated chloroplast fragments. Arch. Biochem.23: 141–156. 1949.

    PubMed  CAS  Google Scholar 

  8. ——. Is chloride a coenzyme of photosynthesis? Science110: 554–556. 1949.

    Article  PubMed  CAS  Google Scholar 

  9. Aronoff, S. The chemistry of chlorophyll. Thesis, Univ. of Calif., Berkeley. 1942.

    Google Scholar 

  10. —. Pyrroles and Fe-chlorosis. Pl. Phys.12: 713–715. 1943.

    Google Scholar 

  11. —. Photochemical reduction of chloroplast grana. Pl. Phys.21: 393–409. 1946.

    CAS  Google Scholar 

  12. —,et al. Distribution of C14 in photosynthesizing barley seedlings. Science105: 664–665. 1947.

    Article  PubMed  CAS  Google Scholar 

  13. — andMackinney, G. The photooxidation of chlorophyll. Jour. Am. Chem. Soc.65: 956–958. 1943.

    Article  CAS  Google Scholar 

  14. — andWeast, C. Spectra of porphyrins and their acid salts. Jour. Org. Chem.6: 550–557. 1941.

    Article  CAS  Google Scholar 

  15. -.[In press].

  16. Balansard, J. andPelissier, F. Action of saponins on formation of chlorophyll pigment. Compt. Rend. Soc. Biol.137: 763–764. 1943.

    CAS  Google Scholar 

  17. Ball, R.,et al. A further study of the porphyrin-like products of the reaction of benzaldehyde and pyrrole. Jour. Am. Chem. Soc.68: 2278–2281. 1946.

    Article  CAS  Google Scholar 

  18. Barrenscheen, H. K.,et al. Synthetic ability of seedlings. II. Formation of carotenoids and chlorophyll in etiolated seedlings. Biochem. Zeits.310: 335–343. 1942. [Abstr.]

    CAS  Google Scholar 

  19. Bauer, E. andNiggli, F. Assimilation of carbon dioxide in vitro. Helv. Chim. Acta.26: 251–254. 1943.

    Article  Google Scholar 

  20. ——. On assimilation in vitro. Helv. Chim. Acta.26: 994–995. 1943.

    Article  Google Scholar 

  21. Beck, W. A. Effect of drought on production of plant pigments. PL Phys.17: 487–491. 1942.

    CAS  Google Scholar 

  22. Bennett, J. P. Iron in leaves. Soil Science60: 91–105. 1945.

    Article  CAS  Google Scholar 

  23. Beyerinck, M. W. Investigations on oxygen evolution in the light byChlorella and other algae. Bot. Ztg.48: 741. 1890.

    Google Scholar 

  24. Biebel, J. P. Some effects of radiant energy in relation to etiolation. Pl. Phys.17: 377–396. 1942.

    Article  CAS  Google Scholar 

  25. Blinks, L. R. Photosynthetic action spectra in red algae. Am. Tour. Bot.33: 836. 1946.

    Google Scholar 

  26. Bloch, K. andRittenberg, D. An estimate of acetic acid formation in the rat. Jour. Biol. Chem.159: 45–58. 1945.

    CAS  Google Scholar 

  27. Boichenko, E. H. Conditions necessary for the activity of chloroplasts outside the cell. Compt. Rend. Acad. Sci. URSS38: 181–184. 1943.

    CAS  Google Scholar 

  28. —. Catalysts for the action of isolated chloroplasts. Compt. Rend. Acad. Sci. URSS41: 345–347. 1944.

    Google Scholar 

  29. —. Hydrogenase from isolated chloroplasts. Biokhimiya12: 153–162. 1947.

    CAS  Google Scholar 

  30. Bot, G. M. The chemical composition of chloroplast granules (grana) in relation to their structure. Chron. Bot.7: 66–67. 1942.

    CAS  Google Scholar 

  31. Brown, A. H. andFranck, J. On the participation of carbon dioxide in the photosynthetic activity of illuminated chloroplast suspensions. Arch. Biochem.16: 55–60. 1948.

    CAS  PubMed  Google Scholar 

  32. Bukatsch, F. Daily variation of the chlorophyll content of alpine plants. Chem. Abs.34: 3125–2131. 1940.

    Google Scholar 

  33. —. The daily variations of the chlorophyll content of alpine plants. Zeits. Ges. Naturw.6: (7–8): 197–198. 1940.

    CAS  Google Scholar 

  34. Buvat, L. R. Dedifferentiation of the chlorophyll cells in the petioles ofBrimeaura amethystina. Compt. Rend. Acad. Sci., Paris213: 660–663. 1941.

    CAS  Google Scholar 

  35. Calvin, M. andAronoff, S. Chlorophyll and photosynthesis. Univ. Calif. Rad. Lab., Rep. 263. 1948.

  36. — andBenson, A. A. Path of carbon in photosynthesis.107: 476–480. 1948.

    CAS  Google Scholar 

  37. — andDorough, G. The possibility of a triplet state intermediate in the photooxidation of a chlorin. Jour. Am. Chem. Soc.70: 699–706. 1948.

    Article  CAS  Google Scholar 

  38. Chibnall, A. C. Protein metabolism in the plant. 1939.

  39. Collaer, P. Role of light in chlorophyll assimilation. Ber. Schweiz. Bot. Ges.51: 348–362. 1941.

    CAS  Google Scholar 

  40. Cook, A. H. Algae pigments and their significance. Biol. Rev.20: 115–132. 1945.

    Article  CAS  Google Scholar 

  41. Cooke, D. Report of nitrogen metabolism laboratory. Proc. Hawaiian Sugar Planters’ Assoc, Rept. Comm. in Charge Expt. Sta.59: 111–112. 1939. (Pub. 1940). [Abstr.]

    Google Scholar 

  42. Dam, H.,et al. Formation and importance of vitamin K in plant organisms. Zeits. Physiol. Chemie265: 80–87. 1940.

    CAS  Google Scholar 

  43. Davis, E. A. Photosynthetic studies with mutant strains ofChlorella. Science108: 110. 1948.

    Article  PubMed  CAS  Google Scholar 

  44. Demidenko, T. Fe in the nutrition of higher plants. Compt. Rend. Acad. Sci. URSS15: 267–271. 1937.

    CAS  Google Scholar 

  45. Deuber, C. Can a pyrrole derivative be substituted for Fe in the growth of plants? Am. Jour. Bot.13: 276–285. 1926.

    Article  CAS  Google Scholar 

  46. Dobriner, K.,et al. Excretion of porphyrin in pellagra. Proc. Soc. Exp. Biol. & Med.36: 748–752. 1937.

    Google Scholar 

  47. Drabkin, B. S. Effect of greening on the catalase action of etiolated seedlings. Biokhimiya13: 101–103. 1948.

    CAS  Google Scholar 

  48. Dufrenoy, J. Some physiological relations of virus-infected plant tissues. Biodynamica4: 171–184. 1943.

    CAS  Google Scholar 

  49. Dutton, H. J. andJuday, C. Chromatic adaptation in relation to color and depth distribution of fresh water phytoplankton and large aquatic plants. Ecology25: 273–282. 1944.

    Article  CAS  Google Scholar 

  50. — andManning, W. M. Evidence for carotenoid-sensitized photosynthesis in the diatomNitsschia closterium. Am. Jour. Bot.28: 516–526. 1941.

    Article  CAS  Google Scholar 

  51. Dutton, H. J.,et al. Chlorophyll fluorescence and energy transfer in the diatomNitzschia closterium. Jour. Phys. Chem.47: 308–313. 1943.

    Article  CAS  Google Scholar 

  52. Eilert, Sister andGiersch, Sister. Effect of the filtrate of U-V irradiatedStichococcus bacillaris Naegeli on the chlorophyll and carbohydrate content of algae. Studies Inst. Divi Thomae4: 101–106. 1945.

    CAS  Google Scholar 

  53. Elliott, A. M. Effect of phytohormones onEuglena in relation to light. Trans. Am. Micr. Soc.58: 385–390. 1939; Chem. Abs.32: 55153.

    Article  CAS  Google Scholar 

  54. Emerson, R.,et al. Relation between quantity of chlorophyll and capacity for photosynthesis. Pl. Phys. 311–317. 1940.

  55. — andLewis, C. M. The photosynthetic efficiency of phycocyanin inChroococcus, and the problem of carotenoid participation in photosynthesis. Jour. Gen. Physiol.25: 579–595. 1942.

    Article  CAS  Google Scholar 

  56. Englemann, T. W. A new method for the investigation of oxygen evolution of plant and animal organisms. Bot. Ztg.39: 442–447. 1881;40: 419. 1882;42: 81. 1884;42: 97. 1884.

    Google Scholar 

  57. Ewart, A. J. On assimilatory inhibition in plants. Jour. Linn. Soc., Bot.31: 364–461. 1897.

    Google Scholar 

  58. von Euler, H. The germination of seeds as affected by antibiotic substances. I. Influence of chlorophyll formation. Arkiv. Kemi, Mineral., Geol.25A: 17. 1947; Chem. Abs.42: 5954 i.

    Google Scholar 

  59. —,et al. Action of streptomycin on the germination of seeds of green plants and on polynucleotides. Compt. Rend. Acad. Sci., Paris227: 16–18. 1948.

    Google Scholar 

  60. — andHellström, H. On the formation of xanthophyll, carotene and chlorophyll in lighted and darkened wheat seedlings. Zeits. Physiol. Chemie183: 177–183. 1929.

    CAS  Google Scholar 

  61. — andKlussmann, C. The biochemistry of the carotenoids and of vitamin C. Zeits. Physiol. Chemie219: 215–223. 1933.

    Google Scholar 

  62. Fan, C. S.,et al. An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis byChlorella. Jour. Gen. Physiol.27: 15–28. 1943.

    Article  CAS  Google Scholar 

  63. Fischer, H.,et al. Protochlorophyll and vinylpheoporphyrin a5. Zeits. Physiol. Chemie257: 4–7. 1939.

    Google Scholar 

  64. — andOestreicher, A. Protochlorophyll and vinylporphyrines. Zeits. Physiol. Chemie.262: 243–269. 1940.

    CAS  Google Scholar 

  65. Fishman, M. M. andMoyer, L. S. The chlorophyll-protein complex. I. Electrophoretic properties and the isoelectric point. Jour. Gen. Physiol.25: 755–764. 1942.

    Article  CAS  Google Scholar 

  66. ——. Electrophoresis of the chlorophyll-protein complex. Science95: 128–129. 1942.

    Article  PubMed  CAS  Google Scholar 

  67. Franck, J. Photosynthetic activity of isolated chloroplasts. Rev. Mod. Physics17: 112–119. 1945.

    Article  CAS  Google Scholar 

  68. — andLivingston, R. Remarks on the fluorescence, phosphorescence and photochemistry of dyestuffs. Jour. Chem. Phys.9: 184–190. 1941.

    Article  CAS  Google Scholar 

  69. Frank, S. R. Effectiveness of the spectrum in chlorophyll formation. Jour. Gen. Physiol.29: 157–179. 1946.

    Article  CAS  Google Scholar 

  70. Freeland, R. O. American mistletoe with respect to chlorophyll and photosynthesis. Pl. Phys.18: 299–302. 1943.

    CAS  Google Scholar 

  71. French, C. S.,et al. The evolution of oxygen from illuminated suspensions of frozen, dried, and homogenized chloroplasts. Science103: 505–506. 1946.

    Article  PubMed  CAS  Google Scholar 

  72. — andRabideau, G. S. The quantum yield of oxygen production by cloroplasts suspended in solutions containing ferric oxalate. Jour. Gen. Physiol.28: 329–342. 1945.

    Article  CAS  Google Scholar 

  73. Gaffron, H. The photochemical formation of peroxide by oxygen transfer via chlorophyll. Berichte60: 2229–2238. 1927.

    Google Scholar 

  74. Gessner, F. The assimilatory capacity of phytoplankton in relation to chlorophyll content. Zeits. Bot.38: 414–424. 1943.

    CAS  Google Scholar 

  75. Ghosh, J. C. andSen Gupta, S. B. Photochemical reduction of methyl red by phenylhydrazine with chlorophyll solution as a photosensitizer. Jour. Indian Chem. Soc.11: 65–77. 1934.

    CAS  Google Scholar 

  76. Gilles, E. Influence of UV rays on chlorophyll and its development. Bull. Soc. Bot. France86: 140–145. 1939.

    CAS  Google Scholar 

  77. Godnev, T. Role of Fe in the formation of chlorophyll. Polyt. Inst.10: 87–92. 1927. [Abs.]

    Google Scholar 

  78. —. On the yellow pigments accompanying chlorophyll. Planta10: 811–813. 1939.

    Article  Google Scholar 

  79. — andKalishevich, S. V. Chlorophyll concentration in cloroplasts ofMniutn medium. Compt. Rend. Acad. Sci. URSS27: 832–833. 1940.

    CAS  Google Scholar 

  80. -. Precursors of chlorophyll in the successive steps of forming the chlorophyll molecule in plants. Coll. Papers Pl. Phys., K. A. Timiryazev Inst. Pl. Phys. 43–60. 1941.

  81. Gol’din, M. I. Interrelation between mosaic virus and ascorbic acid in tobacco plant. Compt. Rend. Acad. Sci. URSS26: 300–303. 1940.

    CAS  Google Scholar 

  82. Goodwin, R. H. andOwens, O. v. H. Formation of chlorophyll in etiolated oat seedlings. Pl. Phys.22: 197–200. 1947.

    Article  CAS  Google Scholar 

  83. Gortikova, N. andSapozhnikov, D. Dependence of greening in plants on the oxidation-reduction potential. Sovet. Bot.5: 99–101. 1939.

    Google Scholar 

  84. Graham, H. W. Chlorophyll content of marine plankton. Jour. Marine Res.5: 153–160. 1943.

    CAS  Google Scholar 

  85. Granick, S. Isolation of chloroplasts from higher plants. Am. Jour. Bot.25: 558–561. 1938.

    Article  CAS  Google Scholar 

  86. —. Protoporphyrin 9 as precursor of chlorophyll. Jour. Biol. Chem.172: 717–727. 1948.

    CAS  Google Scholar 

  87. —. Magnesium protoporphyrin as a precursor of chlorophyll inChlorella. Jour. Biol. Chem.175: 333–342. 1948.

    CAS  Google Scholar 

  88. —. Magnesium vinyl pheoporphyrin as, another intermediate in the biological synthesis of chlorophyll. Jour. Biol. Chem.183: 713–730. 1950.

    CAS  Google Scholar 

  89. Griffith, R. B.,et al. Chlorophyll and carotene content of eighteen tobacco varieties. Pl. Phys.19: 689–693. 1944.

    CAS  Google Scholar 

  90. Grinstein, M.,et al. Observation on the utilization of glycine in the biosynthesis of hemoglobin. Jour. Biol. Chem.174: 767–768. 1948.

    CAS  Google Scholar 

  91. —,et al. The utilization of glycine in the biosynthesis of hemoglobin. Jour. Biol. Chem.179: 359–364. 1949.

    CAS  Google Scholar 

  92. Guerrini, G. Monochromatic light and chlorophyll. Boll. Soc. Ital. Biol. Sper.16: 550–552. 1941. [Abs.]

    CAS  Google Scholar 

  93. Gurevitch, A. A. Reduction of ortho-dinitrobenzene by green plants. Biokhimiya6: 467–475. 1941.

    Google Scholar 

  94. —. On the reduction of ortho-dinitrobenzene in the light by extracellular isolated chloroplasts. Compt. Rend. (Doklady) Acad. Sci. URSS55: 263–266. 1947.

    Google Scholar 

  95. Gustafson, F. G. Influence of external and internal factors on growth hormone in green plants. Pl. Phys.21: 49–62. 1946.

    CAS  Google Scholar 

  96. Gyorffy, B. The physiological and chemical make-up of polyploid plants. Maguar Biol. Kutato intézet Munkái13: 362–446. 1941.

    CAS  Google Scholar 

  97. Hamada, T. Intermediary metabolism of tryptophane. Zeits. Physiol. Chem.243: 258–265. 1936.

    CAS  Google Scholar 

  98. Hanson, E. A.,et al. Relation between protein nitrogen, protein sulfur, and chlorophyll in sudan grass. Australian Jour. Exp. Biol. & Med. Sci.19: 231–234. 1941.

    Article  CAS  Google Scholar 

  99. Haxo, F. T. andBlinks, L. R. Photosynthetic action spectra of marine algae. Jour. Gen. Physiol.33: 389–422. 1950.

    Article  CAS  Google Scholar 

  100. Hill, R. Oxygen evolution by isolated chloroplasts. Nature103: 81. 1939.

    Google Scholar 

  101. — Oxygen produced by isolated chloroplasts. Proc. Royal Soc., London, B127: 192–210. 1939.

    CAS  Google Scholar 

  102. — andLehmann, H. Studies on Fe in plants. Biochem. Jour.35: 1190–1199. 1941.

    CAS  Google Scholar 

  103. — andScarisbrick, R. The reduction of ferric oxalate by isolated chloroplasts. Proc. Royal Soc., London, B129: 238–255. 1940.

    CAS  Google Scholar 

  104. - and -. Production of oxygen by illuminated chloroplasts.S 39 (1940).

  105. ——. The reduction of ferric oxalate by isolated chloroplasts. Nature14b: 61–62. 1940.

    Article  Google Scholar 

  106. Hill, T. L.,et al. A spectrophotometric study of the anhydro base of viridine green. Jour. Am. Chem. Soc.67: 454–463. 1945.

    Article  CAS  Google Scholar 

  107. Holmes, A. D.,et al. Ascorbic acids, carotene, chlorophyll, riboflavin, and water contents of summer squashes. Food Res.10: 489–496. 1945.

    CAS  Google Scholar 

  108. Holt, A. S. andFrench, C. S. The photochemical production of oxygen and hydrogen ion by isolated chloroplasts. Arch. Biochem.9: 25–43. 1946.

    CAS  Google Scholar 

  109. — and—. Oxygen production by illuminated chloroplasts suspended in solutions of oxidants. Arch. Biochem.19: 368–378. 1949.

    CAS  Google Scholar 

  110. — and—. Isotopic analysis of the oxygen evolved by illuminated chloroplasts in normal water and in water enriched with O18. Arch. Biochem.19: 429–435. 1949.

    CAS  Google Scholar 

  111. - and -. Dyes and the chlorophyll-quinone reaction.In Photosynthesis in plants, 277–287. 1949.

  112. Il’ina, A. A. Absorption and reflection spectra of plant leaves. Jour. Phys. Chem.21: 145–159. 1947. [Abs.]

    CAS  Google Scholar 

  113. Inman, O. L. The chlorophylls and photosynthesis of thermal algae from Yellowstone National Park. Jour. Gen. Physiol.23: 661–666. 1940.

    Article  CAS  Google Scholar 

  114. Iuracec, A. Chlorophyll and plant nutrition. Ann. Sci. Univ. Jassy, II.26: 18–74. 1940.

    Google Scholar 

  115. —. A study of the chlorophyll content of the leaves of the male and female plants ofUrtica dioica L. Ann. Sci. Univ. Jassy, II.26: 809–814. 1940.

    Google Scholar 

  116. Jacobson, L. Fe in the leaves and chloroplasts of some plants in relation to their chlorophyll content. Pl. Phys.20: 233–245. 1945.

    Article  CAS  Google Scholar 

  117. Javillier, M. andGoudchaux, S. The Mg of chlorophyll. Ann. Agron.10: 9–14. 1940.

    CAS  Google Scholar 

  118. Kar-Murza, L. K. The physiology of cotton with leaf curling.In Plant Virus Diseases and Their Control. Trans. Conf. Plant Virus Diseases, Acad. Sci. USSR, Inst. Microbiol.: 197–202. 1941. [Abs.]

  119. Kashimoto, K. Separation of catalase from chlorophyll. III. Jour. Chem. Soc. Japan64: 1082–1085. 1943.

    CAS  Google Scholar 

  120. Kennedy, Jr.,S. R. The influence of Mg deficiency, chlorophyll concentration, and heat treatments on the rate of photosynthesis ofChlorella. Am. Jour. Bot.27: 68–73. 1940.

    Article  CAS  Google Scholar 

  121. Khan, M. A. R. andQureshi, M.Chlorophyll. III. Cataphoresis and electrolytic coagulation of colloidal chlorophyll. Jour. Osmania Univ.8: 1–5. 1940. [Abs.]

    CAS  Google Scholar 

  122. Kohler, G. O. The effect of stage of growth on the chemistry of grasses. Jour. Biol. Chem.152: 215–223. 1944.

    CAS  Google Scholar 

  123. Koski, V. andSmith, J. H. C. The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. Jour. Am. Chem. Soc.70: 3558–3562. 1948.

    Article  CAS  Google Scholar 

  124. Krasnovskii, A. A. Reversible photochemical reduction of chlorophyll by ascorbic acid. Doklady Akad. Nauk. SSSR60: 421–424. 1948.

    CAS  Google Scholar 

  125. —. Oxidation-reduction reactions, photosensitized by chlorophyll and by magnesium phthalocyanin, proceeding with an increase of free energy of the system. Doklady Akad. Nauk. SSSR61: 91–94. 1948.

    CAS  Google Scholar 

  126. Krossing, G. Studies on the localization of some enzymes in different regions of the spinach leaf. Biochem. Zeits.305: 359–373. 1940.

    CAS  Google Scholar 

  127. Kuhn, R.,et al. Invert soaps. I. Action of invert soaps on proteins. Ber.73B: 1080–1091. 1941.

    Google Scholar 

  128. Kumm, J. andFrench, C. S. The evolution of oxygen from suspensions of chloroplasts; the activity of various species and the effect of previous illumination of the leaves. Am. Jour. Bot.32: 291–295. 1945.

    Article  CAS  Google Scholar 

  129. Lepeschkin, W. W. Some aspects of the state of chlorophyll in chloroplasts. Pl. Phys.24: 175–177. 1949.

    CAS  Google Scholar 

  130. Livingston, R. Reversible bleaching of chlorophyll. Jour. Phys. Chem.45: 1312–1320. 1941.

    Article  CAS  Google Scholar 

  131. —. The reversible photobleaching of dyes and pigments. Jour. Phys. & Coll. Chem.52: 527–534. 1948.

    Article  CAS  Google Scholar 

  132. -.In Photosynthesis in Plants, edited by Loomis, W. and Franck, J. 1949.

  133. — andPariser, R. The chlorophyll-sensitized photoxidation of phenylhydrazine by methyl red. II. Reactivity of the several forms of methyl red. Jour. Am. Chem. Soc.70: 1510–1515. 1948.

    Article  CAS  Google Scholar 

  134. Lodoletti, A. Pyrrole derivatives substituting for chlorophyll. Boll. Chim. Farm.77: 609–610. 1938.

    CAS  Google Scholar 

  135. Loo, S. W. Cultivation of excised stem tips of dodder in vitro. Am. Jour. Bot.33: 295–300. 1946.

    Article  CAS  Google Scholar 

  136. Lubimenko, V. Condition of chlorophyll in the plastids. Compt. Rend. Acad. Sci., Paris173: 365–367. 1921.

    CAS  Google Scholar 

  137. McBrady, J. J. andLivingston, R. Reversible photobleaching of chlorophyll. Jour. Phys. & Coll. Chem.52: 662–676. 1948.

    Article  CAS  Google Scholar 

  138. McKinney, H. H. The effect of mosaic virus infection on the protein content of susceptible and resistant strains of tobacco. Phytopathology32: 857–866. 1942.

    Google Scholar 

  139. Mackinney, G. Criteria for purity of chlorophyll preparation. Jour. Biol. Chem.132: 91–109. 1940.

    CAS  Google Scholar 

  140. —. Absorption of light by chlorophyll solutions. Jour. Biol. Chem.140: 315–322. 1941.

    CAS  Google Scholar 

  141. Manning, W. M. andJuday, R. E. The chlorophyll content and productivity of some lakes in northeastern Wisconsin. Trans. Wis. Acad. Sci.33: 363–393. 1941.

    CAS  Google Scholar 

  142. — andStrain, H. H. Chlorophylld, a green pigment of red algae. Jour. Biol. Chem.151: 1–19. 1943.

    CAS  Google Scholar 

  143. Matsuoka, T. andNukao, Z. On the effect of methyltryptophan on induced anemia and regeneration. Zeits. Physiol. Chem.195: 208–214. 1931.

    CAS  Google Scholar 

  144. Menke, W. Protoplasm of the green plant cells; I. Isolation of chloroplasts from spinach; II. Chlorophyll contents of the chloroplasts of spinach leaves. Zeits. Bot.257: 43–48. 1938.

    CAS  Google Scholar 

  145. —. Protoplasm of green plant cells. II. Chlorophyll contents of the chloroplasts of spinach leaves. Zeits. Physiol. Chem.263: 100–103. 1940.

    CAS  Google Scholar 

  146. Meyer, K. P. Spectroscopic investigation of the state of chlorophyll in the plant, in extracts, and in pure preparations. Helv. Phys. Acta12: 349–393. 1939.

    CAS  Google Scholar 

  147. Miller, E. S. andJohnson, I. J. Inheritance of chlorophyll in F1 crosses made reciprocally between selfed lines of corn. Proc. Soc. Exp. Biol. & Med.44: 26–28. 1940.

    CAS  Google Scholar 

  148. Mirimanoff, G. Vitamin C and chlorophyll. Compt. Rend. Acad. Sci., Paris206: 766. 1938.

    CAS  Google Scholar 

  149. Mittenzwei, H. Bacteriochlorophyll. Zeits. Physiol. Chem.275: 93–121. 1942.

    CAS  Google Scholar 

  150. Montfort, C. The photosynthesis of brown cells as a joint activity of chlorophyll and carotenoids. Zeits. Phys. Chem.A186: 57–93. 1940; suppl.A186: 253. 1940.

    CAS  Google Scholar 

  151. —. The relations among the stagnation effect, the photooxidatiye destruction of chlorophyll, and the functional sunstroke of marine plants. Naturwiss.29: 238. 1941.

    Article  CAS  Google Scholar 

  152. —. Increased supply of energy from xanthophyll and carotene in comparison with chlorophylla plants anda + b plants. Ber. Deut. Bot. Ges.59: 320–332. 1941.

    CAS  Google Scholar 

  153. — andZöllner, G. Stability and destruction of chlorophyll in leaves. Action of sunlight. Bot. Arch.43: 393–460. 1942.

    CAS  Google Scholar 

  154. Moyer, L. S. andFishman, M. M. The chlorophyll-protein complex. II. Species relationships in certain legumes as shown by electric mobility curves. Bot. Gaz.104: 449–454.

  155. Muir, H. M. andNeuberger, A. The biogenesis of porphyrins. Biochem. Jour.45: 163–170. 1949.

    CAS  Google Scholar 

  156. - and -. Further studies of the biogenesis of porphyrins in rabbits. XXXIV (1949).

  157. Müller, D. The chlorophyll and nitrogen content in fairy rings ofMorasmius oreades. Friesia2: 221–224. 1943.

    Google Scholar 

  158. Myers, J. Carbon and nitrogen balance ofChlorella during growth. Pl. Phys.24: 111–119. 1949.

    CAS  Google Scholar 

  159. Nagasima, H. The developmental changes of quantities of chlorophyll and carotene in the leaves of rice plants, barley and wheat. Japan Jour. Bot.9: 277–296. 1938.

    CAS  Google Scholar 

  160. Nakamura, H. The quantitative relationship between the catalase in chloroplasts and chlorophyll with some observations on the role of catalase in assimilation. Japan Jour. Bot.11: 221–235. 1941; Chem. Zentr. 1942I, 1643.

    CAS  Google Scholar 

  161. Neubauer, M. Vitamin C in plants. Protoplasma33: 345–570. 1939. Zeits. Untersuch. Lebensm.81: 54. 1941.

    Article  CAS  Google Scholar 

  162. Van Niel, C. B. Bacterial photosynthesis.In Advances in Enzymology. Vol.1. 1941.

  163. Nisina, Y.,et al. Effect of neutrons on photosynthesis. Bull. Inst. Phys. Chem. Res.19: 1343–1347. 1940.

    CAS  Google Scholar 

  164. Noack, K. Condition of chlorophyll in the living plant. Biochem. Zeits.183: 135–152. 1927.

    CAS  Google Scholar 

  165. —. Biological decomposition of chlorophyll. Biochem. Zeits.316: 166–187. 1943.

    CAS  Google Scholar 

  166. — andKiessling, W. Origin of chlorophyll and its relation to the blood pigment. Zeits. Physiol. Chem.182: 13–49. 1929.

    CAS  Google Scholar 

  167. Norris, T. H.,et al. Tracer studies with radioactive hydrogen. Some experiments on photosynthesis and chlorophyll. Jour. Am. Chem. Soc.64: 3037–3040. 1942.

    Article  CAS  Google Scholar 

  168. Okanenko, A. S. The chlorophyll content in sugar beet leaves. Zhur. Inst. Bot. Akad. Nauk URSR, No. 18–19 (26–27) : 111–125. 1938. [Abs.]

  169. Olsen, C. Chlorophyll content of beech leaves (Fagus sivatica) exposed to light and shade. Compt. Rend. Trav. Lab. Carlsberg, Chim.24: 99–102. 1942.

    CAS  Google Scholar 

  170. Oserkowsky, J. Quantitative relation between chlorophyll and iron in green and chlorotic pear leaves. Pl. Phys.8: 449–468. 1933.

    CAS  Google Scholar 

  171. Ovchinnikov, N. N. Chemism of photosynthesis. Compt. Rend. Acad. Sci. URSS31: 163–164. 1941.

    CAS  Google Scholar 

  172. Pallares, E. S.,et al. Fixation of chlorophyll inEuglena viridus by vitamins. Quimica (Mex.)3: 5–7. 1945.

    CAS  Google Scholar 

  173. Pepkowitz, L. P. Some observations on the photochemical destruction of carotene. Jour. Biol. Chem.155: 219–225. 1944.

    CAS  Google Scholar 

  174. Pickett, W. F. andBirkeland, C. J. The influence of some spray materials in the internal structure and chlorophyll content of apple leaves. Kan. Agr. Exp. Sta., Bull.53. 1942.

  175. — andKenworthy, A. L. The relationship between structure, chlorophyll content, and photosynthesis in apple leaves. Proc. Am. Soc. Hort. Sci.37: 371–373. 1940.

    CAS  Google Scholar 

  176. Pirschle, K. Chlorophyll content of autopolyploid plants. Naturwiss.29: 45–46. 1941.

    Article  CAS  Google Scholar 

  177. Pollacci, G. Influence of the pyrrole nucleus on chlorophyll formation. Ber.53: 540–542. 1935.

    CAS  Google Scholar 

  178. — andOddo, B. Influence of the pyrrole nucleus on chlorophyll formation. Compt. Rend. Accad. Lincei24: 37–39. 1915.

    Google Scholar 

  179. —, —, andGallotti, M. Influence of the pyrrole nucleus on the formation of chlorophyll. Boll. Soc. Ital. Biol. Sper.10: 565–567. 1935.

    Google Scholar 

  180. Porret, D. Reversible bleaching of chlorophyll. Nature140: 321. 1937.

    Article  CAS  Google Scholar 

  181. Porter, T.,et al. Carotene and chlorophyll content of fresh and processed Swiss chard and beet greens. Food Res.9: 434–441. 1944.

    CAS  Google Scholar 

  182. Powers, W. L. Boron in relation to soil fertility in the Pacific Northwest. Proc. Soil Sci. Soc. Am.4: 290–296. 1939.

    CAS  Google Scholar 

  183. Pruckner, F.,et al. Chlorophyll. CI. Rotation dispersion and apparent optical inactivity of several chlorophyll derivatives. Ann.546: 41–49. 1940.

    CAS  Google Scholar 

  184. Rabideau, G. S.,et al. Absorption and reflection spectra of leaves. Am. Jour. Bot.33: 769–777. 1946.

    Article  CAS  Google Scholar 

  185. Rabinowitch, E. Photosynthesis. Vol. I. 1945.

  186. Randoin, L.,et al. Ascorbic acid content of chlorophyllous tissues. Compt. Rend. Soc. Biol.126: 1068. 1937.

    CAS  Google Scholar 

  187. Richter, O. Yolk of egg, white of egg, cow milk, chyle and chlorophyll gypsum plate photographs. Fundamenta Radiol. (Berlin)5: 56–78. 1939; Chem. Zentr. 1940, II, 716.

    CAS  Google Scholar 

  188. Robinson, R. Relation of some complex natural products to the simple sugars and amino acids. Proc. Univ. Durham Phil. Soc.8.1: 14–59. 1927–8.

    Google Scholar 

  189. Rohde, G. Significance of potassium in chlorophyll production in plants. Z. Pflanzenkr. Pflanzenschutz45: 499–510. 1935. [Abs.]

    CAS  Google Scholar 

  190. Roubaix, J. de andLazar, G. Chlorophyll and beet. Pub. Inst. Belge amelioration betterave10: 191–198. 1942. [Abs.]

    Google Scholar 

  191. Salageanu, N. The limit of chlorophyll assimilation in weak light. Bull. Sect. Sci. Acad. Roumaine21: 147–171. 1938–1939. [Abs.]

    Google Scholar 

  192. Schenck, G. O. andZiegler, K. The synthesis of ascaridole. Naturwiss.32: 157. 1945.

    CAS  Google Scholar 

  193. Schropp, W. Trace elements and the quality of cultivated plants. Forschungsdienst, Sonderheft12: 90–108. 1940. [Abs.].

    CAS  Google Scholar 

  194. Seybold, A. Does the chlorophyll content of leaves show daily variations? Bot. Arch.43: 71–77. 1941.

    CAS  Google Scholar 

  195. —. Some problems of the physiology of chlorophyll. Scientia71: 19–23. 1942.

    CAS  Google Scholar 

  196. — andEgle, K. Contribution to the knowledge of protochlorophyll (II). Planta29: 119–128. 1938–39.

    Article  Google Scholar 

  197. ——. Contribution to the knowledge of bacteriochlorophyll. Sitzber. Heid. Akad. Wiss. Math.-Nat.-Klasse, Abh.1: 7–17. 1939.

    Google Scholar 

  198. ——. The physical condition of chlorophyll in the plastids. Bot. Arch.41: 578–603. 1940. [Abs.]

    CAS  Google Scholar 

  199. ——. The pigment content of green spores and seeds. Bot. Arch.43: 78–83. 1941. [Abs.]

    CAS  Google Scholar 

  200. —,et al. Chlorophyll and carotenoid determinations on freshwater algae. Bot. Arch.42: 239–253. 1941.

    CAS  Google Scholar 

  201. — andHulsbruch, W. Further analyses of chlorophyll and carotenoid in fresh-water algae. II. Bot. Arch.44: 336–341. 1943.

    CAS  Google Scholar 

  202. — andWeissweiler, A. Spectrophotometric measurements of green plants and chlorophyll solutions. Bot. Arch.43: 252–290. 1942. [Abs.]

    CAS  Google Scholar 

  203. Shcheglova, O. A. The relation of the energy of photosynthesis to the quantity of chlorophyll in leaves of buckwheat. Exp. Bot. No. 4, Trudy Bot. Inst., Acad. Sci. USSR, IV, 63–69 (in English, 69–70). 1940. [Abs.]

    Google Scholar 

  204. Shemin, D. andRittenberg, D. Utilization of glycine for the synthesis of a porphyrin. Jour. Biol. Chem.159: 567–568. 1945.

    CAS  Google Scholar 

  205. ——. Biological utilization of glycine for the synthesis of protoporphyrin. Jour. Biol. Chem.155: 621–625. 1946.

    Google Scholar 

  206. Shemin, D.,et al. The relationship of serine to porphyrin synthesis. Jour. Biol. Chem.183: 767–769. 1950.

    CAS  Google Scholar 

  207. Sideris, C. P. Chlorophyll and protein interrelationships inAnanas comosus (L.) Merr. Pl. Phys.22: 160–173. 1947.

    CAS  Google Scholar 

  208. — andYoung, H. Y. Effects of Fe on chlorophyll pigments, … ofAnanas comosus (L.) Merr. supplied with NO3 or NH4+ salts. Pl. Phys.19: 52–75. 1944.

    CAS  Google Scholar 

  209. ——. Effect of K on chlorophyll, ascorbic acid, and carbohydrates ofAnanas comosus (L.) Merr. Pl. Phys.20: 649–670. 1945.

    CAS  Google Scholar 

  210. —,et al. Effects of Fe on the growth and ash constituents ofAnanas cosmosus (L.) Merr. Pl. Phys.18: 608–632. 1943.

    CAS  Google Scholar 

  211. Singh, B. N.,et al. Influence of artificial fertilizers on the photosynthetic efficiency ofAndropogon sorghum. Proc. Indian Acad. Sci.9B: 151–168. 1939.

    CAS  Google Scholar 

  212. Sisakyan, N. M. andKobyakoia, A. M. Activity and condition of enzymes in plastids. Biokhimiya13: 88–94. 1948.

    CAS  Google Scholar 

  213. Skopintsev, B. A. andBruk, E. S. Study of the regeneration of N and P compounds in the course of decomposition of dead plankton. Compt. Rend. Acad. Sci. URSS26: 807–810. 1940.

    CAS  Google Scholar 

  214. Smith, E. L. Chlorophyll as the prosthetic group in the green leaf. Science91: 199–200. 1940.

    Article  PubMed  CAS  Google Scholar 

  215. —. Chlorophyll-protein compounds of the green leaf. Jour. Gen. Physiol.24: 565–582. 1941.

    Article  CAS  Google Scholar 

  216. —. The chlorophyll-protein compound of the green leaf. Chron. Bot.7: 148–149. 1942.

    CAS  Google Scholar 

  217. — andPickels, E. G. Micelle formation in aqueous solutions or digitonin. Proc. Nat. Acad. Sci.26: 272–277. 1940.

    Article  PubMed  CAS  Google Scholar 

  218. ——. Effect of detergents in the chlorophyllprotein compound of spinach. Jour. Gen. Physiol.24: 753–764. 1941.

    Article  CAS  Google Scholar 

  219. Smith, J. H. C. Organic compounds of Mg and their relation to chlorophyll formation. Jour. Am. Chem. Soc.69: 1492–1496. 1947.

    Article  CAS  Google Scholar 

  220. —. Protochlorophyll, precursor of chlorophyll. Arch. Biochem.19: 449–454. 1948.

    PubMed  CAS  Google Scholar 

  221. Sorby, H. C. On comparative vegetable chromatology. Proc. Royal Soc., London21: 442–483. 1873.

    Article  Google Scholar 

  222. Spoehr, H. A. andMilner, H. W. The chemical composition ofChlorella; effect of environmental conditions. Pl. Phys.24: 120–149. 1949.

    Article  CAS  Google Scholar 

  223. Stephenson, R. B. A preliminary investigation of the effects of naphthalene-acetic acid upon the growth and composition of oats. Trans. Illinois State Acad. Sci.35: 83–84. 1942.

    CAS  Google Scholar 

  224. Stewart, R. andEyster, H. C. A study of the green pigments in the lotus embryo. Proc. S. D. Acad. Sci.19: 89–91. 1939.

    CAS  Google Scholar 

  225. Stoll, A. andWiedemann, H. Chlorophyll. Chemie Org. NaturforbstoffeI: 159–254.

  226. Strain, H. H. andManning, W. M. Isomerization of chlorophyllsa andb. Jour. Biol. Chem.146: 275–276. 1942.

    CAS  Google Scholar 

  227. —,et al. ChlorophyllC of diatoms and dinoflagellates. Jour. Biol. Chem.144: 625–636. 1942.

    CAS  Google Scholar 

  228. —,et al. ChlorophyllC (chlorofucine). Jour. Biol. Chem.148: 655–658. 1943.

    CAS  Google Scholar 

  229. Thomas, J. Origin of the tetrapyrrole nucleus. Bull. Soc. Chin. Biol.20: 471–635. 1938.

    CAS  Google Scholar 

  230. Troensgaard, N. andMygind, H. G. Demonstration of pyrrole and pyridine ring systems in proteins. Zeits. Physiol. Chem.184: 147–156. 1949.

    Google Scholar 

  231. Turner, W. Theory of porphyrinogenesis. Jour. Lab. & Clin. Med.26: 323. 1940.

    CAS  Google Scholar 

  232. Virtanen, A.,et al. Investigations on vitamin formation in plants. I. Biochem. Zeits.267: 179–191. 1933.

    CAS  Google Scholar 

  233. Warburg, O. andLüttgens, W. Carbon dioxide assimilation. Naturwiss.32: 301. 1944.

    Article  CAS  Google Scholar 

  234. ——. Carbon dioxide assimilation. Naturwiss.32: 161. 1944.

    Article  CAS  Google Scholar 

  235. ——. Photochemical reduction of quinone in green cells and grana. Biokhimiya11: 303–222. 1946.

    CAS  Google Scholar 

  236. Weast, C. A. andMackinney, G. Chlorophyllase. Journ. Biol. Chem.133: 551–558. 1940.

    CAS  Google Scholar 

  237. Wendel, K. Daily variations in the content of chlorophyll in plants. Zeits. Ges. Naturw.6: 327–329. 1941.

    CAS  Google Scholar 

  238. White, P. R. Vegetable staticks. Am. Sci.30: 119–136. 1942.

    Google Scholar 

  239. Wilschke, A. The fluorescence of the components of chlorophyll. Zeits. Wissensch. Mikr.31: 338–361. 1914. [Abs.]

    Google Scholar 

  240. Wiixstätter, R. andPage, H. J. Pigments of brown algae. Ann.404: 237–271. 1914.

    Google Scholar 

  241. - andStoll, A. Investigation on chlorophyll. 1913.

  242. Yamahuzi, K.,et al. Coupling reaction between splitting of water and oxidation processes. Biocem. Zeits.303: 260–265. 1939.

    CAS  Google Scholar 

  243. Yin, H. C. andTung, Y. T. Phosphorylase in guard cells. Science108: 87–88. 1948.

    Article  PubMed  CAS  Google Scholar 

  244. Zaitseva, A. A. Content of chlorophyll in wheat as related to development. Compt. Rend. Acad. Sci. URSS25: 695–699. 1939.

    CAS  Google Scholar 

  245. —. Chlorophyll in wheat as related to development. Compt. Rend. Acad. Sci. URSS27: 59–62. 1940.

    CAS  Google Scholar 

  246. —. The effect of vernalizing on the chlorophyll content of wheat seedlings. Compt. Rend. Acad. Sci. URSS27: 271–273. 1940.

    CAS  Google Scholar 

  247. Zhukovskii, V. S. Photosynthesis of formaldehyde from CO2 and H3O under the effect of infra-red radiation. Trudy Beloruss. Sel’sko-Khoz. Inst. #8 (30), 150–152. 1939. [Abs.]

    Google Scholar 

  248. Zscheile, F. P. The third component of chlorophyll. Bot. Gaz.95: 529–562. 1934.

    Article  CAS  Google Scholar 

  249. —. Number of chlorophyll components. Bot. Gaz.103: 401–430. 1941.

    Article  CAS  Google Scholar 

  250. — andComar, C. Influence of preparative procedure on the purity of chlorophyll components as shown by absorption spectra. Bot. Gaz.102: 463–481. 1941.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 132 from the Institute for Atomic Research and the Department of Botany, Iowa State College, Ames, Iowa. This document is based in part on work performed in the Ames Laboratory of the Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronoff, S. Chlorophyll. Bot. Rev 16, 525–588 (1950). https://doi.org/10.1007/BF02868972

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868972

Keywords

Navigation