Skip to main content
Log in

Light as an ecological factor and its measurement

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Adams, J. Relation of flax to varying amounts of light. Bot. Gaz.70: 153–156. 1920.

    Article  Google Scholar 

  2. Adams, W. R. The change in the environmental factors caused by thinnings in pine plantations. Vermont Agr. Exp. Stat. Bull. 310. 1930.

  3. Aikman, J. M. The effect of physical factors on the development of woodland and prairie associations in Iowa. Proc. Iowa Acad. Sci.37: 209. 1930.

    Google Scholar 

  4. Arcichovsky, V. Eine neue Methode zur Messung des relativen Lichtgenusses der Pflanzen. Planta16: 600–606. 1932.

    Article  Google Scholar 

  5. Arnold, W. The effect of ultraviolet light on photosynthesis. Jour. Gen. Phys.17: 135–143. 1933.

    Article  CAS  Google Scholar 

  6. Arthur, J. M. Personal communication. 1935.

  7. —. Weight of plant tissue produced in relation to the efficiency of an incandescent filament lamp. Abstract, Amer. Jour. Bot.19: 848–849. 1932.

    Google Scholar 

  8. —,Guthrie, J. D. andNewell, J. M. Some effects of artificial climates on the growth and chemical composition of plants. Amer. Jour. Bot.17: 416–482. 1930. 372

    Article  CAS  Google Scholar 

  9. — andNewell, John M. The killing of plant tissue and the inactivation of tobacco mosaic virus by ultraviolet radiation. Amer. Jour. Bot.16: 338–353. 1929.

    Article  CAS  Google Scholar 

  10. — andStewart, W. D. Transpiration of tobacco plants in relation to radiant energy in the visible and infrared. Contr. Boyce Thompson Inst. Plant Res.5: 483–501. 1933.

    CAS  Google Scholar 

  11. Atkins, W. R. G. The measurement of daylight in relation to plant growth. Empire For. Jour.11: 42–52. 1932.

    Google Scholar 

  12. — andPoole, H. H. Photo-electric measurements of illumination in relation to plant distribution, II. Sci. Proc. Royal Dublin Society19: 259–309. 1929.

    Google Scholar 

  13. — andStanbury, F. A. III. Sci. Proc. Royal Dublin Society19: 517–531. 1930.

    Google Scholar 

  14. — andPoole, H. H. IV. Sci. Proc. Royal Dublin Society20: 13–48. 1931.

    Google Scholar 

  15. ——. The photoelectric measurements of the penetration of light of various wave lengths into the sea and the physiological bearing of the results. Phil. Trans. Roy. Soc. London, B222: 129–164. 1933.

    Article  Google Scholar 

  16. ——. The use of cuprous oxide and other rectifier photocells in submarine photometry. Jour. Marine Biol. Assoc. United Kingdom19: 67–72. 1933.

    Google Scholar 

  17. Barr, P. M. The effects of soil moisture on the establishment of spruce reproduction in British Columbia. Yale Univ. School of For. Bull.26. 1930.

  18. Beljakoff, Eugen. Von den Schwankungen im Verlauf der Photosynthese. Planta8: 269–286. 1929.

    Article  Google Scholar 

  19. Benedict, H. M. Effect of ultraviolet radiation on growth and on the calcium and phosphorus contents of plants. Bot. Gaz.96: 330–341. 1934.

    Article  CAS  Google Scholar 

  20. Birge, E. A. andJuday, C. Transmission of solar radiation by the waters of inland lakes. Trans. Wis. Acad. Sci.24: 510–580. 1929.

    Google Scholar 

  21. —. A second report on solar radiation and inland lakes. Trans. Wis. Acad. Sci.25: 285–335. 1930.

    Google Scholar 

  22. Bosian, Georg. Assimilations- und Transpirationsbestimmungen an Pflanzen des Zentralkaiserstuhls. Zeits. Bot.26: 209–284. 1933.

    Google Scholar 

  23. Bourn, W. S. Ecological and physiological studies on certain aquatic angiosperms. Contr. Boyce Thompson Inst.4: 425–496. 1932.

    Google Scholar 

  24. Brackett, F. S. Radiometers used by Division of Radiation and Organisms of Smithsonian Institution, Washington, D. C. (Unpublished).

  25. Burns, G. Richard. A portable instrument for measuring solar radiation in the forests. Vermont Agr. Exp. Sta. Bull. 261. 1927.

  26. —. Measurements of light by thermopiles. Ecology12: 243. 1931.

    Article  Google Scholar 

  27. —. Photosynthesis in various portions of the spectrum. Plant Phys.8:247–262. 1933.

    CAS  Google Scholar 

  28. Chodat, Fernand. Influence de la lumière sur la transpiration végétale. Compt. Rend. Séance Soc. Phys. et Hist. Nat. Genève48: 55–58. 1931.

    Google Scholar 

  29. Clarke, G. L. andOster, R. H. The penetration of the blue and red components of daylight into Atlantic coastal waters and its relation to phytoplankton metabolism. Biol. Bull.67: 59–75. 1934.

    Article  Google Scholar 

  30. Clements, Frederic E. andLong, Francis L. Factors in elongation and expansion under reduced light intensity. Plant Phys.9: 767–782. 1934.

    CAS  Google Scholar 

  31. — andMartin, E. V. Effects of soil temperature on transpirations inHelianthus annus. Plant Phys.9: 619–630. 1934.

    Article  CAS  Google Scholar 

  32. -,Weaver, John E. andHanson, Herbert C. Plant competition — an analysis of community functions. Carnegie Inst. Wash. Pub. 398. 340 pp. 1929.

  33. Darrow, G. M. Tomatoes, berries and other crops under continuous light in Alaska. Science78: 370. 1933.

    Article  PubMed  Google Scholar 

  34. Daxer, Heinrich. Über die Assimilationsökologie der Waldbodenflora. Jahrb. wiss. Bot.80: 363–420. 1934.

    Google Scholar 

  35. Dexter, S. T. Decreasing hardiness of winter wheat in relation to photosynthesis, defoliation and winter injury. Plant Phys.8: 297–304. 1933.

    CAS  Google Scholar 

  36. —. Effect of several environmental factors on the hardening of plants. Plant Phys.8: 123–139. 1933.

    CAS  Google Scholar 

  37. —. Growth, organic nitrogen fractions, and buffer capacity in relation to hardiness in plants. Plant Phys.10: 149–158. 1935.

    CAS  Google Scholar 

  38. Espino, R. B. andPanataleon, F. Influence of light upon growth and development of plants with special reference to the comparative effects of morning light and of the afternoon light. Philippine Agric.19: 563–576. 1931.

    Google Scholar 

  39. Fabricius, L. Der Einfluss des Wurzelwettbewerbs des Schirmstandes auf die Entwichlung des Jungwuchses. Forstwissen. Centralbl.49: 329–345. 1927.

    Article  Google Scholar 

  40. —. Neue Versuche zur Feststellung des Einflusses von Wurzelwettbewerb und Lichtentzug des Schirmstandes auf den Jungwuchs. Forstwissen. Centralbl.51: 477–506. 1930.

    Article  Google Scholar 

  41. —. Neuere Versuchsergebnisse zur Frage des Wurzelwettbewerbs und der Schattenfestigkeit der Holzarten. Verhandl. Int Kongr. Forst. Versuchsanst. (Stockholm) 1929:370–380. 1930.

    Google Scholar 

  42. Fischer, Hugo. Versuche über Humus-Kohlensäure und weiteres über Kohlensäure-Düngung. Angew. Bot.10: 152–156. 1928.

    Google Scholar 

  43. Fricke, Karle. Licht- und Schattenholzarten. Centralbl. Gesamte Forstwesen30: 315–325. 1904.

    Google Scholar 

  44. Fuller, Harry J. Stimulatory effects of radiation from a quartz mercury vapor arc upon higher plants. Ann. Missouri Bot. Gard.18: 17–40. 1931.

    Article  Google Scholar 

  45. —. The injurious effects of ultraviolet and infrared radiations on plants. Ann. Missouri Bot. Gard.19: 79–84. 1932.

    Article  Google Scholar 

  46. Funke, G. L. On the influence of light of different wave lengths on the growth of plants. Rec. Trav. Bot. Neerl.28: 430–485. 1931.

    Google Scholar 

  47. Gabrielson, E. K. Die Kohlensäureassimilation der Laubblätter in verschiedenen Spektralgebieten. Planta23: 474–478. 1935.

    Article  Google Scholar 

  48. Garner, W. W. andAllard, H. A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Jour. Agr. Res.18: 553–606. 1920.

    Google Scholar 

  49. ——. Further studies in photoperiodism. Jour. Agr. Res.23:871–920. 1923.

    Google Scholar 

  50. ——. Photoperiodic response of soybeans in relation to temperature and other environmental factors. Jour. Agr. Res.41: 719–735. 1930.

    Google Scholar 

  51. Gast, P. R. A thermoelectric radiometer for silvical research. Harvard Forest Bull. 14. 1930.

  52. Geiger, Max. Studien zum Gaswechsel einer extremen SchattenpflanzeAspidistra. Jahrb. wiss. Bot.67: 635. 1927.

    Google Scholar 

  53. Gile, P. L. Absorption of nitrates by corn in the dark. Science81: 520–521. 1935.

    Article  PubMed  CAS  Google Scholar 

  54. Goebel, K. Ueber die Einwirkung des Lichtes auf die Flächentwicklung der Farnprothallien. Rec. Trav. Bot. Neerl.25A: 122–128. 1928.

    Google Scholar 

  55. Grasovsky, A. Some aspects of light in the forest. Bull. Yale Univ. School For. 23. 53 pp. 1929.

  56. Gray, G. F. Relation of light intensity to fruit setting in the sour cherry. Mich. Agr. Exp. Sta. Tech. Bull. 135. 35 pp. 1934.

  57. Hall, Ralph C. A simple inexpensive instrument for the measurement of light. Ecology13: 214–217. 1932.

    Article  Google Scholar 

  58. Hanson, Schantz. Ecological changes due to thinning jack pine. Dissertation, Yale University. 1935.

  59. Harder, R., Filzer, Paul andLorenz, Arthur. Ueber Versuche zur Bestimmung der Kohlensäureassimilation immergrüner Wüstenpflanzen während der Trockenzeit in Beni Unif (Algerische Sahara). Jahrb. wiss. Bot.75: 45–194. 1931.

    Google Scholar 

  60. Hartley, Carl. Stem lesions caused by excessive heat. Jour. Agr. Res.14: 595–604. 1918.

    Google Scholar 

  61. Heinicke, A. J. andHoffman, M. B. The rate of photosynthesis of apple leaves under natural conditions. I. Cornell Agr. Exp. Sta. Bull. 577. 1933.

  62. Henckel, P. A. andLitvinov, L. S. Über die jährlichen Veränderungen der Photosynthesefähigkeit bei einigen Pflanzen. Bull. Inst. Rech. Biol. & Stat. Biol. Univ. Perm.7: 134–146. 1930. (Russian with German summary).

    Google Scholar 

  63. Hibbard, R. P. andGrigsby, B. H. Relations of light, potassium and calcium deficiencies to photosynthesis, protein synthesis, and translocation. Mich. Agr. Exp. Sta. Tech. Bull. 141. 1934.

  64. Hibben, Samuel C. Influence of colored light on plant growth. Trans. Illum. Eng. Soc. 1924.

  65. —. Some light reflecting properties of flowers and foliage. Trans. Illum. Eng. Soc.24: 752–769. 1929.

    Google Scholar 

  66. Hicks, P. A. Interaction of factors in the growth ofLemna. V. Some preliminary observations upon the interaction of temperature and light on the growth ofLemna. Ann. Botany48: 515–525. 1934.

    Google Scholar 

  67. Hofmann, Elise. Der Ausdruck optimalen Lichtgenusses im Blattbau der Pflanze. Botanisches Archiv.18: 288–295. 1927.

    Google Scholar 

  68. Holch, A. E. Development of roots and shoots of certain deciduous seedlings in different forest sites. Ecology12: 259–298. 1931.

    Article  Google Scholar 

  69. Holman, Richard. On solarization of leaves. Univ. Cal. Publ. in Botany16: 139–151. 1930.

    CAS  Google Scholar 

  70. Hoover, W. H., Johnson, Earl S. andBrackett, F. S. Carbon dioxide assimilation in a higher plant. Smithsonian Misc. Collections 8 (16) 19 pp. Pub. No. 3186. 1933.

  71. Hopkins, E. W. The effect of long and short day and shading on nodule development and composition of the soybean. Soil Science39: 297–322. 1935.

    Article  CAS  Google Scholar 

  72. Howlett, B. A. The design and use of a photoelectric photometer. Proc. Ind. Acad. Sci.42: 177–179. 1933.

    Google Scholar 

  73. Ivanov, L. A. Lichtbedingungen in Buchenwäldern in der Krim. Izv. Leningr. Lesn. Inst. (Mitt. Leningr. Forstinst.)34: 27–62. 1927. (Russian with German summary).

    Google Scholar 

  74. —. Solar radiation as an ecological factor. Bull. Appl. Bot., Gen. and Plant Breed. (Leningrad)18: 345–368. 1928.

    Google Scholar 

  75. — andKossowitsch, N. L. Ueber die Arbeit des Assimilationsapparates verschiedener Baumarten. 1. Planta8: 427–464. 1929.

    Article  Google Scholar 

  76. — andOrlova, I. M. K. vorposu o zimnem fotosinteze nashikh khvoinykh (Zur Frage über die Winterassimilation von Kohlensäure unserer Nadelhölzer). Zhurn. Russk. Bot. Obshch.16: 139–157. 1931. (Russian with German summary).

    Google Scholar 

  77. Johnson, Earl S. The function of radiation in the physiology of plants. Smithsonian Misc. Coll.87 (3180): 15 pp. 1932.

  78. Kimball, Herbert H. Records of total solar radiation intensity and their relation to daylight intensity. Monthly Weather Rev.52: 473–479. 1924.

    Article  Google Scholar 

  79. —. Intensity of solar radiation at the surface of the earth and its variations with latitude, altitude, season and time of the day. Monthly Weather Rev.63: 1–4. 1935.

    Article  Google Scholar 

  80. Klugh, A. Brooker. The effect of light of different wave lengths on the rate of reproduction ofVolvox and ofClosterium. New Phyt.24: 186–190. 1925.

    Article  CAS  Google Scholar 

  81. —. Studies on the photosynthesis of marine algae. Contr. Can. Biol. and Fish6: 43–63. 1930.

    Google Scholar 

  82. Knuchel, H. Spektrophotometrische Untersuchungen im Walde. Mitt. Schweiz. Centralanst. Forstversuchswesen 11. 1914.

  83. Korstian, C. F. Some ecological effects of shading coniferous nursery stock. Ecology6: 45–51. 1925.

    Google Scholar 

  84. —. Plant competition under forest canopies. Abst. Bull. Ecol. Soc. America15: 39. 1934.

    Google Scholar 

  85. — andFetheroff, N. J. Control of stem girdle of spruce transplants caused by excessive heat. Phytopath.11: 485–490. 1921.

    Google Scholar 

  86. Kostytschev, S., Bazyrina, K. andTschesnokov, W. Untersuchungen über die Photosynthese der Laubblätter unter natürlichen Verhältnissen. Planta5: 696–724. 1928.

    Article  Google Scholar 

  87. — andBerg, V.. Untersuchungen über den Tagesverlauf der Photosynthese in Transkaukasien (Küsternregion des Schwarzen Meeres). Planta11: 144–159. 1930.

    Article  Google Scholar 

  88. — andKardo-Syssoiewa, H. Untersuchungen über den Tagesverlauf der Photosynthese in Zentralasien. Planta11: 117–143. 1930.

    Article  Google Scholar 

  89. —,Kudriavzewa, M. andSmirnova, M. Der tägliche Verlauf der Photosynthese bei Landpflanzen. Planta1: 679–699. 1926.

    Article  Google Scholar 

  90. -,Rosumov, E. andChesnokov, B. Experiments on photosynthesis in natural conditions. Abstract of paper given before Congress of Russian Botanists—Leningrad. 1928.

  91. — andSoldatenkow, S. Der tägliche Verlauf und die specifische Intensität der Photosynthese bei Wasserpflanzen. Arch, wiss. Bot.2: 1–9. 1926.

    Google Scholar 

  92. —,Tschesnokov, W. andBazyrina, K. Untersuchungen über den Tagesverlauf der Photosynthese an der Küste des Eismeeres. Planta11: 160–168. 1930.

    Article  Google Scholar 

  93. Kurssanow, A. L. Über den Einfluss der Kohlenhydrate auf den Tagesverlauf der Photosynthese. Planta20: 535–548. 1933.

    Article  Google Scholar 

  94. Leonard, C. S. andArthur, J. M. The reputed influence of ultraviolet light on the yield ofDigitalis glucosides. Jour. Amer. Pharm. Ass.23: 224–228. 1934.

    CAS  Google Scholar 

  95. Li, Tsi-Tung. The effect of intense sunlight on tree seedlings. Lingnan Science Journal6: 315–321. 1928.

    Google Scholar 

  96. Lipmäa, T. Pflanzenökologische Untersuchungen aus Norwegisch- und Finnisch-Lappland unter besonderer Berücksichtigung der Lichtfrage. Acta Inst. et Hort. Bot. Tartuensis2: 146 pp. 1929.

  97. Livingston, Burton E. Blackened spheres for atmometry. Science58: 182. 1923.

    Article  PubMed  Google Scholar 

  98. — andBeall, Ruth. The soil as direct source of carbon dioxide for ordinary plants. Plant Phys.9: 237–260. 1934.

    CAS  Google Scholar 

  99. Loehwing, W. F. Some effects of insolation on mineral nutrition ofTriticum. Proc. Soc. Exp. Biol. and Medicine26: 662–663. 1929.

    Google Scholar 

  100. Lojkin, M. Some effects of ultraviolet rays on the vitamin D content of plants as compared with the direct irradiation of the animal. Contr. Boyce Thompson Inst. Plant Res.3: 245–265. 1931.

    CAS  Google Scholar 

  101. Lundegårdh, H. Environment and plant development. Trans. and Ed. by E. Ashby, London, 1931.

  102. Lunez, G. La lumière et les forêts. Bull. Soc. Contr. For. Belgique35: 128–139. 1932.

    Google Scholar 

  103. McCrea, A. The effect of ultraviolet light uponDigitalis purpurea. Science67: 277–278. 1928.

    Article  PubMed  Google Scholar 

  104. —. The effect uponDigitalis purpurea of radiation through solarized ultraviolet transmitting glass. Science69: 628–629. 1929.

    Article  PubMed  Google Scholar 

  105. —. Prolonged effect onDigitalis purpurea of exposure under ultraviolet transmitting glass. Science71: 346. 1930.

    Article  PubMed  Google Scholar 

  106. -. Some physiological effects of radiation on plant life. Physical Therapeutics, May, 1931.

  107. Martin, Emmet V. Effect of solar radiation on transpiration ofHelianthus annuus. Plant Phys.10: 341–354. 1935.

    CAS  Google Scholar 

  108. Meier, Florence E. Colonial formation of unicellular green algae under various light conditions. Smithsonian Misc. Coll.92 (5) Pub. No. 3256. 1934.

  109. -. Effects of intensities and wave lengths of light on unicellular green algae. Smithsonian Misc. Coll.92(6): 27 pp. 1934.

  110. -. Lethal response of the algaeChlorella vulgaris to ultraviolet rays. Smithsonian Misc. Coll.92: (3) 12 pp. 1934.

  111. Miller, Elmer S. andBurr, G. O. Carbon dioxide balance at high light intensities. Plant Phys.10: 93–114. 1935.

    CAS  Google Scholar 

  112. Mitchell, Harold L. Pot culture tests of forest soil fertility. The Black Rock For. Bull. 5. 137 pp. 1934.

  113. Montfort, Camill. Die photosynthetischen Leistungen litoraler Fargentypen in grösserer Meerestiefe. Jahrb. wiss. Bot.72: 776–843. 1930.

    Google Scholar 

  114. Mudrack, F. Über die Assimilationstätigkeit und das Wachstum vonFicaria verna. Planta23: 71–104. 1934.

    Article  CAS  Google Scholar 

  115. Müller, D. Die Kohlensäureassimilation bei arktischen Pflanzen und die Abhängigkeit der Assimilation von der Temperatur. Planta6: 22–39. 1928.

    Article  Google Scholar 

  116. Neurnbergk, E. Physikalische Methoden der pflanzlichen Lichtphysiologie. Abderhalden: Handbuch Biol. Arbeitsmethoden. Abt. 11, Teil 4, Lief.399: 739–750. 1932.

    Google Scholar 

  117. Paetz, Kurt W. Untersuchungen über die Zusammenhänge zwischen stomatärer Öffnungsweite und bekannten Intensitäten bes-. timmter Spektralbezirke. Planta10: 611–665. 1930.

    Article  Google Scholar 

  118. Pearson, G. A. The other side of the light question. Jour. For.27: 807–812. 1929.

    Google Scholar 

  119. —. Light and moisture in forestry. Ecology 11(1): 145–159, illus. 1930.

    Article  Google Scholar 

  120. Penfound, William T. Plant anatomy as conditioned by light intensity and soil moisture. Amer. Jour. Bot.18: 558–572. 1931.

    Article  Google Scholar 

  121. —. The anatomy of the castor bean as conditioned by light intensity and soil moisture. Amer. Jour. Bot.19: 538–546. 1932.

    Article  Google Scholar 

  122. Pfeiffer, Norma E. Anatomical study of plants grown under glasses transmitting light of various ranges and wave lengths. Bot. Gaz.85: 427–436. 1928.

    Article  Google Scholar 

  123. Pokrowski, G. I. Über die Lichtabsorption von Blättern einiger Bäume. Biochem. Zeits.165: 420–426. 1925.

    Google Scholar 

  124. Popp, H. W. A physiological study of the effect of light of various ranges of wave length on the growth of plants. Amer. Jour. Bot.13: 706–736. 1926.

    Article  CAS  Google Scholar 

  125. — andBrown, Florence. A review of recent work on the effect of ultraviolet radiation upon seed plants. Bull. Torrey Club60: 161–210. 1933.

    Article  CAS  Google Scholar 

  126. Raisanzew, A. W. Zur Frage über die Saisonveränderungen des Assimilationsapparates bei einigen von unseren wintergrünen Pflanzen. Bull. Inst. Recherches Biol. Sta. Perm7: 105–132. 1930.

    Google Scholar 

  127. Ramaley, Francis. Growth of plants under continuous light. Science73: 566–567. 1931.

    Article  PubMed  Google Scholar 

  128. —. Some Caryophyllaceous plants influenced in growth and structure by artificial illumination supplemental to daylight. Bot. Gaz.92: 311–320. 1931.

    Article  Google Scholar 

  129. Reid, Mary E. Growth of tomato cuttings in relation to stored carbohydrate and nitrogen compounds. Amer. Jour. Bot.13: 548–574. 1926.

    Article  Google Scholar 

  130. —. Effect of variations in the amounts of available carbon and nitrogen on the growth of wheat seedlings. Amer. Jour. Bot.16: 770–779. 1929.

    Article  CAS  Google Scholar 

  131. —. Growth of seedlings in light and in darkness in relation to available nitrogen and carbon. Bot. Gaz.87: 81–118. 1929.

    Article  CAS  Google Scholar 

  132. —. Relation of composition of seed and the effects of light to growth of seedlings. Amer. Jour. Bot.16: 747–769. 1929.

    Article  CAS  Google Scholar 

  133. —. The influence of nutritive conditions of seeds and cuttings upon the development of roots. Gard. Chron. III,88: 392–393. 1930.

    Google Scholar 

  134. -. The influence of nutritive conditions of seeds and cuttings upon the development of roots. Rep. and Proc. Int. Hort. Congr. London 1930: 165–169.

  135. —. Effects of shade on the growth of velvet bent and metropolitan creeping bent. Bull. U. S. Golf Assoc. Green Sect.13: 131–135. 1933.

    Google Scholar 

  136. Rübel, Eduard. Lichtklima und Lichtgenuss. Abderhalden: Handbuch biol. Arbeitsmethoden Abt. 11, Teil S, Lief.279: 233–292. 1928.

    Google Scholar 

  137. Salisbury, E. J. The oak-hornbeam woods of Hertfordshire. Jour. Ecology4: 83–117. 1916;6: 14–52. 1918.

    Article  Google Scholar 

  138. Sayre, J. D. Opening of stomata in different ranges of wave lengths of light. Plant Phys.4: 323–328. 1929.

    CAS  Google Scholar 

  139. Schanderl, Hugo andKaempfert, Wolfang. Über die Strahlungsdurchlässigkeit von Blättern und Blattgeweben. Planta18: 700–750. 1933.

    Article  CAS  Google Scholar 

  140. Schoder, Annemarie. Ueber die Beziehungen des Tagesganges der Kohlensäureassimilation von Frielandpflanzen zu den Aussenfaktoren. Jahrb. wiss. Bot.76: 441–484. 1932.

    Google Scholar 

  141. Schomer, H. A. Photosynthesis of water plants at various depths in the lakes of Northeastern Wisconsin. Ecology15: 217–218. 1934.

    Article  Google Scholar 

  142. Seybold, A. Über die optischen Eigenschaften der Laubblätter. I. Planta16: 195–225. 1932.

    Article  Google Scholar 

  143. —, Über die optischen Eigenschaften der Laubblätter. II. Planta18: 479–508. 1932.

    Article  CAS  Google Scholar 

  144. —. Über die optischen Eigenschaften der Laubblätter. III. Planta20: 577–601. 1933.

    Article  Google Scholar 

  145. —. Über die optischen Eigenschaften der Laubblätter. IV. Planta21: 215–265. 1933.

    Google Scholar 

  146. —. Über den Lichtgenuss der Sonnen- und Schattenpflanzen. Ber. deut. Bot. Ges.52: 493–505. 1934.

    Google Scholar 

  147. —. Über die Lichtenergiebilanz submerser Wasserpflanzen. vornehmlich der Meersesalgen. Jahrb. wiss. Bot.79: 593–654. 1934.

    Google Scholar 

  148. Sheard, C. andHiggins, G. M. The influence of direct irradiation by a quartz mercury arc lamp upon the germination and growth of certain seeds. Plant Phys.2: 461–473. 1927.

    CAS  Google Scholar 

  149. —. The influence of selective and general irradiation of a quartz mercury arc lamp upon the germination and growth of seeds. Science II.65: 282–284. 1927.

    Google Scholar 

  150. Shirley, Hardy L. The influence of light intensity and light quality upon the growth of plants. Amer. Jour. Bot.16: 354–390. 1929.

    Article  CAS  Google Scholar 

  151. —. Light sources and light measurements. Plant Phys.6: 447–466. 1931.

    CAS  Google Scholar 

  152. -. Light and moisture as factors in forest succession. Abst. in Bull. Ecol. Soc. America13: Article 31, Dec. 1932.

  153. —. Light intensity in relation to plant growth in a virgin Norway pine forest. Jour. Agr. Res.44: 227–244. 1932.

    Google Scholar 

  154. -. Influence of light intensity on higher plants. Submitted for publication in Survey of Effects of Radiation on Organism by National Research Council.

  155. —. Observations on drought injury in Minnesota forests. Ecology15: 42–48. 1934.

    Article  Google Scholar 

  156. -. Some factors influencing drought resistance in conifers. Submitted for publication to Jour. Ag. Res., May, 1935.

  157. Shreve, Forrest. Physical conditions in sun and shade. Ecology12: 96–104. 1931.

    Article  Google Scholar 

  158. Shull, Charles A. Reflection of light from the surfaces of leaves. Science67: 107. 1928.

    Article  PubMed  Google Scholar 

  159. —. A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz.87: 583–607. 1929.

    Article  Google Scholar 

  160. Sierp, H. Untersuchungen über die Öffnungsbewegung der Stomata in verschiedenen Spektralbezirken. Flora28: 269–285. 1933.

    Google Scholar 

  161. Singh, B. N. andLal, K. N. Limitations of Blackman’s law of limiting factors and Harder’s concept of relative minimum as applied to photosynthesis. Plant Phys.10: 245–268. 1935.

    CAS  Google Scholar 

  162. Spohn, H. Über die optischen Eigenschaften herbstlich gefärbter Laubblätter. Planta23: 240–248. 1934.

    Article  CAS  Google Scholar 

  163. Stålfelt, M. G. Untersuchungen zur Ökologie der Kohlensäureassimilation der Nadelbäume. Medd. Statens Skogsförsökanstalt21: 249–258. 1925.

    Google Scholar 

  164. —. Die physiologisch-ökologischen Bedingungen der Kronenreinigung, Schaftreinigung und der Natürlichen Bestandesreinigung der Fichte. Skogsvårdsför, Tidskr.29: 1–44. 1932.

    Google Scholar 

  165. -.Steinbauer, George Peter. Light as a factor in the growth and metabolism of coniferous seedlings. Diss. Univ. of Minn. 1929.

  166. —. Growth of tree seedlings in relation to light intensity and concentration of nutrient solution. Plant Phys.7: 742–745. 1932.

    Article  Google Scholar 

  167. Stephan, J. Der Einfluss von Lichtqualität und Quantität (einschliesslich Ultrarot) auf das Wachstum der Brutkörper vonMarchantia polymorpha. Planta6: 510–518. 1928.

    Article  Google Scholar 

  168. —. Untersuchungen über die Lichtwirkung bestimmter Spektrabezirke und bekannter Strahlungsintensitäten auf Farne und Moose. Planta5: 381–443. 1928.

    Article  Google Scholar 

  169. Stewart, W. D. andArthur, John M. Some effects of radiation from a quartz mercury vapor lamp upon the mineral composition of plants. Contr. Boyce Thompson Inst.6: 225–245. 1934.

    CAS  Google Scholar 

  170. Stocker, O. Über die Assimilationsbedingungen im tropischen Regenwald. Ber. deut. bot. Ges.49: 267–273. 1931.

    CAS  Google Scholar 

  171. Sweet, Orman E. Carbohydrate-nitrogen and base element relationships of peas grown in water culture under various light exposures. Plant Phys.9: 301–322. 1934.

    Google Scholar 

  172. Teodoresco, E. C. Observations sur la croissance des plantes aux lumières de diverses longueurs d’onde. Ann. Sci. Nat. Bot. X11: 201–336. 1929.

    Google Scholar 

  173. —. Le développement des algues et la refrangibilité de la lumière. Rev. Gen. Bot.46: 289–320. 1934.

    Google Scholar 

  174. Thomson, Wallace A. The photo-electric measurement and photographic recording of daylight. Can. Jour. Res.4: 559–564. 1931.

    Google Scholar 

  175. Tottingham, W. E. andLowsma, H. Effect of light upon nitrate assimilation in wheat. Jour. Amer. Chem. Soc.50: 2436–2445. 1928.

    Article  CAS  Google Scholar 

  176. Tottingham, W. E., Stephens, H. L. andLease, E. J. Influence of shorter light rays upon the assimilation of nitrate by the young wheat plant. Plant Phys.9: 127–142. 1934.

    CAS  Google Scholar 

  177. Toumey, J. W. The vegetation of the forest floor; light versus soil moisture. Proc. Int. Congr. Plant Sci. Ithaca, 1926,1: 575–590. 1929.

    CAS  Google Scholar 

  178. - andKienholz, R. Trenched plots under forest canopies. Yale For. School Bull. No. 30. 1931.

  179. - andNeethling, Earnest J. Insolation — a factor in the natural regeneration of certain conifers. Yale For. School Bull. No. 11. 1924.

  180. Tschudy, R. H. Depth studies on photosynthesis of the red algae. Amer. Jour. Bot.21: 546–555. 1934.

    Article  CAS  Google Scholar 

  181. Tysdal, H. M. Influence of light, temperature and soil moisture on the hardening process in alfalfa. Jour. Agr. Res.46: 483–515. 1933.

    Google Scholar 

  182. Tyson, J. Influence of soil conditions, fertilizer treatments, and light intensity on growth, chemical composition and enzymic activities of sugar beets. Mich. Agr. Exp. Sta. Tech. Bull. 108. 44 pp. 1930.

  183. Volk, O. H. Ein neuer für botanische Zwecke geeigneter Lichtmesser. Ber. deut. bot. Ges.52: 195–202. 1934.

    Google Scholar 

  184. Warburg, O. andNegelein, E. Über den Einfluss der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilatio’n. Zeits. Phys. Chem.106: 191–219. 1923.

    CAS  Google Scholar 

  185. Withrow, Robert B. A new thermopile for recording pyrheliometers. Amer. Soc. Plant Phys. New Orleans, December 29–31, 1931.

  186. -. Plant forcing with electric lights. Ind. Agr. Exp. Sta. Circ. 206. 12 pp. 1934.

  187. — andBenedict, H. M. A preliminary investigation of the growth promoting effect of selected ultraviolet radiations on plants. Bull. Basic. Sci. Res. Univ. Cincinnati3: 161–174. 1931.

    Google Scholar 

  188. Zacharowa, T. M. Über den Gasstoffwechsel der Nadelholzpflanzen im Winter. Planta8: 68–83. 1929.

    Article  Google Scholar 

  189. Zemcuznikov, E. andSkaskin, Th. Über den verlauf der Tageassimilation einiger Weizenvarietäten. Arb. Nordkaukas. Assoz. Wiss. Forschungsinst. Rostow7: 5–19. 1927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The term “light” will be used in this paper as synonymous with solar radiation received at the surface of the earth unless otherwise qualified.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirley, H.L. Light as an ecological factor and its measurement. Bot. Rev 1, 355–381 (1935). https://doi.org/10.1007/BF02868928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02868928

Keywords

Navigation