The systematics and ecology of soil algae

Summary

Algae occur in nearly all terrestrial environments on earth and are invariably encountered both on and beneath soil surfaces. The algal flora of the soil includes members of the Cyanochloronta, Chlorophycophyta, Euglenophycophyta, Chrysophycophyta, and Rhodophycophyta. Thirty-eight genera of prokaryotic and 147 genera of eukaryotic algae include terrestrial species, the majority of which are edaphic. Whereas systematic nomenclature of blue-green algae adheres to traditional classification based upon morphological features, proper taxonomic treatment of eukaryotic soil algae is predicated on standard methods of culture and interpretation of physiological attributes, plant mass characteristics, and morphological properties of axenic clones.

While knowledge of the physiological ecology of soil algae is primarily based on laboratory evidence, it is well established that solar radiation, water, and temperature are the most important abiotic factors governing their distribution, metabolism, and life history strategies. Biotic interactions are often as important, whereas ionic factors (including pH), oxidation-reduction potential, and soil texture are less important, if only because their influences are less well understood.

Algae play an important role in primary and secondary plant community succession by acting as an integral part of the colonial synusium. The principal functional attributes of algal communities in soil include primary production, dinitrogen fixation, and stabilization of aggregates. Although as many as 108 algae per gram have been documented, soils commonly support between 103 and 104 per gram. As an avenue for the incorporation of carbon and nitrogen and for minimizing erosion through stabilization of aggregates, algae are valuable in agriculture. Although manipulation of edaphic algal populations in temperate countries is of novel occurence, their successful use in India as a means for reclaiming saline soils and as a source of fertilizer nitrogen is well documented.

Soil algae are affected by synthetic pesticides and pollutants. In general, most herbicides, fungicides, and soil fumigants are detrimental to soil algae while most insecticides are not. Algae have been utilized as biological assay organisms for anticipating crop response to both fertilizers and pesticides because of their biochemical similarity to higher plants and their quick generation time.

As future research with soil algae leads to a greater awareness of their importance in soil, it might be anticipated that manipulation of populations in agricultural systems of temperate regions will become more widespread with consideration of the potential benefits of soil algae made by scientists in other disciplines.

Zusammenfassung

Unter fast allen terrestrischen Bedingungen können Algen vorkommen, ganz besonders auf oder direkt unter den Bodenoberflächen. Die Algenflora auf den Böden umfaßt unter anderem Vertreter der Cyanochloronta, Chlorophycophyta, Euglenophycophyta, Chrysophycophyta und Rhodophycophyta. Acht und dreissig Gattungen prokaryotischer und 147 eukaryotischer Algen zeichnen sich durch terrestrische Arten aus, die meist edaphisch vorkommen.

Während die taxonomische Nomenklatur der Cyanochloronta noch an der auf morphologischen Kriterien beruhenden traditionellen Klassifikation festhält, basiert die beste taxonomische Behandlung der eukaryotischen Bodenalgen auf Standardmethoden der Kultur sowie der Auswertung physiologischer Kennzeichen. Morphologische Eigenschaften sollten nur von axenisch kultivierten Klonen herangezogen werden.

Obwohl unsere Kenntnis der physiologischen Ökologie der Bodenalgen weitgehend durch Laborbefunde erreicht wurde, ist doch gut belegt, daß die wichtigsten abiotischen Faktoren, die Verbreitung, Stoffwechsel und Lebensstrategie regulieren, Sonnenstrahlung, Wasser und Temperatur sind. Biotische Interaktionen sind oft von gleicher Bedeutung; Ionen-Bedingungen (einschließlich pH), Redox-Potentiale und Bodentextur erscheinen vielleicht nur deshalb weniger bedeutungsvoll, weil ihr Einfluß weniger gut verstanden wird.

Algen spielen eine entscheidende Rolle bei den primären und sekundären Pflanzensukzessionen, da sie ein integraler Teil der beginnenden Besiedlung darstellen (Kleinlebensgemeinschaften). Die wichtigsten funktionellen Beiträge der Algengesellschaften umfassen u.a. Primärproduktion, N2-Fixierung und Stabilisierung des Bodens. Bis zu 108 Algen pro Gramm wurden nachgewiesen, doch enthalten Böden pro Gramm meist zwischen 103-104 Individuen.

Für die Agrikultur sind die Algen wegen des Einbaus von Kohlenstoff und Stickstoff wertvoll, ebenso wegen ihrer erosionsmindernden Eigenschaften. Obwohl die Manipulation von Populationen edaphischer Algen in temperierten Gebieten noch ganz neuartig ist, wird sie erfolgreich in Indien bei der Wiederbesiedlung saliner Böden und als Quelle gebundenen (Dünger-) Stickstoffs angewendet.

Bodenalgen werden von synthetischen Pestiziden und Verschmutzungen beeinflußt. Im allgemeinen gilt, daß die meisten Herbizide, Fungizide und Bodenräuchermittel starke Wirkungen haben, viele Insektizide jedoch heine. Algen werden auch als Testorganismen zur Abschätzung der Effekte von Düngemitteln und Pestiziden auf die Kulturpflanzen verwendet, da sie biochemisch sehr ähnlich wie die Höheren Pflanzen reagieren und zudem eine kurze Generationszeit haben.

Weitere Forschung an Bodenalgen wird zur verbesserten Kenntnis ihrer Bedeutung führen und es kann erwartet werden, daß ihre Nutzung sich auch in der Landwirtschaft temperierter Zonen ausbreitet, insbesondere wenn man auch ihre mögliche Verwendung berücksichtigt, die durch Forschungen anderer Disziplinen angeregt wird.

This is a preview of subscription content, access via your institution.

Bibliography

  1. Adachi, M. andK. Hamda. 1971.Chlorella assay of the activity of herbicides. Weed Res.1970: 54–58.

    Google Scholar 

  2. Addison, D. A. andC. E. Bardsley. 1968.Chlorella vulgaris assay of the activity of soil herbicides. Weed Sci.16: 427–429.

    CAS  Google Scholar 

  3. Agardh, C. A. 1812. Disposito Algarum Suecial. Lundae.

  4. -. 1817. Synopsis Algarum Scandinaviae. Lundae.

  5. Aiyer, R. S. 1965. Comparative algological studies in rice fields in Kerala State. Agric. Res. Jour. Kerala3: 1–4.

    Google Scholar 

  6. —,G. S. Venkataraiman andW. V. B. Sundara Rao. 1964. Effect of nitrogen-fixing blue-green algae andAzotobacter chroococcum on vitamin C content of tomato fruits. Sci. & Cult.30: 557.

    Google Scholar 

  7. Akehurst, S. C. 1931. Observations on pond life, with special reference to the possible causation of swarming of phytoplankton. J. Roy. Microscop. Soc. London51: 237–265.

    CAS  Google Scholar 

  8. Akiyama, M. 1961. Aerial and terrestrial algae in San-in region, Honshu. Japan. Bull. Shimane Univ. Nat. Sci.10: 75–89.

    Google Scholar 

  9. —. 1965. Some soil algae from Japan. Bull. Shimane Univ. Nat. Sci.15: 96–117.

    Google Scholar 

  10. —. 1966. Some algal vegetation of γ-irradiated field and natural strongly radioactive district in Japan. Bull. Shimane Univ. Nat. Sci.16: 20–31.

    Google Scholar 

  11. Aleksakhina, T. I. 1971. Characteristics of soil algae in different forest types. Bot. Žurn. (Moscow & Leningrad)56: 1658–1669.

    Google Scholar 

  12. —. 1972. Soil algae in the rhizosphere of predominant plants in forest biogeocenoses. Ekologiya3: 45–52.

    Google Scholar 

  13. Aleksandrova, I. V. 1951. The process of humus formation in several primitive mountain soils. Počvověděnie1951: 604–616.

    Google Scholar 

  14. Aleksiyeva, G. 1960. Types of composition of soil algae in some typical soils to the east of Plovdiv (Bulgaria). Proc. Sci. Higher Inst. Agric. Vasil Kolavov8: 10–15.

    Google Scholar 

  15. Alexander, V. A. 1975. Nitrogen fixation by blue-green algae in polar and subpolar regions.In: W. D. P. Stewart (ed.). Nitrogen fixation by free-living microorganisms. IBP Programme 6. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  16. — andD. M. Schell. 1973. Seasonal and spatial variation of nitrogen fixation in the Banow Alaska tundra. Arctic Alp. Res.5: 77–88.

    CAS  Article  Google Scholar 

  17. Ali, S. andG. R. Sandhu. 1972. Blue-green algae of the saline soils of the Punjab. Oikos23: 228–272.

    Article  Google Scholar 

  18. —,M. I. Rajoka andG. R. Sandhu. 1978. Blue-green algae of different rice growing soil series of the Punjab, India. Pakistan J. Bot.10: 197–208.

    Google Scholar 

  19. Alimagno, B. V. andT. Yoshida. 1977. In situ acetylene-ethylene assays of biological nitrogen fixation in lowland rice soils. Pl. & Soil47: 239–244.

    CAS  Article  Google Scholar 

  20. Allen, M. B. 1952. The cultivation of Myxophyceae. Arch. Mikrobiol.17: 34–53.

    CAS  Article  Google Scholar 

  21. —. 1956a. Photosynthetic nitrogen fixation by blue-green algae. Sci. Monthly83: 100–106.

    CAS  Google Scholar 

  22. —. 1956b. Excretion of organic compounds byChlamydomonas. Arch. Mikrobiol.24: 163–168.

    PubMed  CAS  Article  Google Scholar 

  23. — andD. I. Arnon. 1955a. Studies on nitrogen fixing blue-green algae. II. The Na requirements ofAnabaena cylindrica Lemm. Physiol. Pl. (Copenhagen)8: 653–660.

    CAS  Article  Google Scholar 

  24. ——. 1955b. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation byAnabaena cylindrica Lemm. Pl. Physiol. (Lancaster)30: 366–372.

    CAS  Google Scholar 

  25. Allen, M. M. andR. Y. Stanier. 1968. Selective isolation of blue-green algae from water and soil. J. Gen. Microbiol.51: 203.

    PubMed  CAS  Google Scholar 

  26. Allen, T. F. H. 1971. Multivariate approaches to the ecology of algae on terrestrial rock surfaces in North Wales. J Ecol.59: 803–826.

    Article  Google Scholar 

  27. Allison, F. E., S. R. Hoover andH. J. Morris. 1937. Physiological studies with the nitrogenfixing alga,Nostoc muscorum. Bot. Gaz.98: 433–463.

    CAS  Article  Google Scholar 

  28. Amma, P., R. Anandavalli, S. Aiyer andN. Subramoney. 1966. Occurrence of blue-green algae in the arid soils of Kerala. Agric. Res. J. Kerala4(2): 10–21.

    Google Scholar 

  29. Anantani, Y. S. andK. V. Marathe. 1972a. Observations on algae of some arid and semiarid soils of Rajasthan. J. Univ. Bombay41: 88–91.

    Google Scholar 

  30. — andK. V. Marathe. 1972b. Soil aggregating effects of some algae occurring in the soils of Kutch and Rajasthan. J. Univ. Bombay41: 94–100.

    Google Scholar 

  31. Anderson, J. R. 1978. Pesticide effects on non-target soil microorganisms.In: I. R. Hill and S. J. L. Wright (eds.). Pesticide microbiology. Academic Press. London.

    Google Scholar 

  32. — andE. A. Drew. 1976. Effects of pure paraquat dichloride, “Gramoxone W” and formulation additives on soil microbiological activities. I. Estimation of soil biomass in laboratory treated soil. Zentralbl. Bakteriol., 2. Abt.131: 125–135.

    CAS  Google Scholar 

  33. Androsova, Y. Y. 1964. Concerning the composition of algae of the soil of one city Novosibirsk and its environs.In: Algae and fungi of western Siberia. Izd. AN SSSR, Novosibirsk.

    Google Scholar 

  34. Arce, G. 1956. A study of Chlorophyceae from Cuban soils. Ph.D. Dissertation, Vanderbilt Univ., Nashville.

    Google Scholar 

  35. — andH. C. Bold. 1958. Some Chlorophyceae from Cuban soil. Amer. J. Bot.45: 492–503.

    Article  Google Scholar 

  36. Archibald, P. A. 1969. A study of the algal flora of bogs with special reference to the genusChlorococcum. Ph.D. Dissertation, Univ. of Texas, Austin.

    Google Scholar 

  37. —. 1970.Pseudochlorococcum, a new Chlorococcalean genus. J. Phycol.6: 127–132.

    Google Scholar 

  38. —. 1972a. A preliminary survey of the edaphic algae of Costa Rica and San Andreas Isle. Soil Sci.113: 63–64.

    Google Scholar 

  39. —. 1972b. The genusNautococcus Korschikov (Chlorophyceae, Chlorococcales). Phycologia11: 207–212.

    Google Scholar 

  40. —. 1973. The genusNeochloris Starr. Phycologia12: 187–193.

    Google Scholar 

  41. —. 1975.Trebouxia de Pulmaly (Chlorophyceae, Chlorococcales) andPseudotrebouxia gen. nov. (Chlorophyceae, Chlorosarcinales). Phycologia14: 125–137.

    Google Scholar 

  42. —. 1977. Physiological characteristics ofTrebouxia (Chlorophyceae, Chlorococcales). Phycologia16: 295–300.

    Google Scholar 

  43. -and H. C. Bold. 1970a. Phycological studies XI. The genusChlorococcum Menegnini. Univ. of Texas Publ. No. 7015, Austin.

  44. — andH. C. Bold. 1970b. Reclassification of three unicellular green algae. Phytomorphology20: 383–389.

    Google Scholar 

  45. —. 1975. Notes on the edaphic algae of the Galápagos. Soil Sci.120: 400–402.

    Article  Google Scholar 

  46. —. 1970. Autosporogenesis inPseudochlorococcum typicum. Phytomorphology20: 374–382.

    Google Scholar 

  47. Arirk, J. H. 1970. Soil algae of northwest Florida. J. Florida Acad. Sci.33: 247–252.

    Google Scholar 

  48. Aristovskaya, T. V., A. Y. Daragan, L. V. Zykina andR. S. Kutuzova. 1969. Microbiological factors in the movement of some mineral elements in the soil. Soviet Soil Sci.5: 538–546.

    Google Scholar 

  49. Arneson, R. 1973.Pseudotetracystis, a new Chlorosarcinacean alga. J. Phycol.9: 10–14.

    Google Scholar 

  50. Arvik, J. H., D. L. Hyzak andR. L. Zimdahl. 1973. Effect of metribuzin and two analogs on five species of algae. Weed Sci.21: 173–175.

    CAS  Google Scholar 

  51. — andD. L. Willson. 1974. Soil algae of Eniwetok Atoll, The Marshall Islands. Pacific Sci.28: 189–190.

    Google Scholar 

  52. —,D. L. Willson andL. C. Darlington. 1971. Response of soil algae to picloram-2,4-D mixtures. Weed Sci.19: 276–278.

    CAS  Google Scholar 

  53. Ashton, F. M., T. Bisalputra andE. B. Risely. 1966. Effects of atrazine onChlorella vulgaris. Amer. J. Bot.53: 217–219.

    CAS  Article  Google Scholar 

  54. Atkins, C. A. 1965. The action of pesticides on algae. M. Sc. Agr. Thesis, Univ. of Sydney.

  55. — andY. T. Tchan. 1967. Study of soil algae VI. Bioassay of atrazine and the prediction of its toxicity in soils using algal growth method. Pl. & Soil27: 432–442.

    Article  Google Scholar 

  56. Atlas, R. M. andJ. S. Hubbard. 1974. Applicability of radiotracer methods of measuring14CO2 assimilation for determining microbial activity in soil including a new in situ method. Microbial Ecol.1: 145–163.

    CAS  Article  Google Scholar 

  57. Atlavinyte, O. andC. Pociene. 1974. The effect of earthworms and their activity on the amount of algae in the soil. Pedobiologia13: 445–455.

    Google Scholar 

  58. Audus, L. J. 1970. The action of herbicides on the microflora of the soil. Proc. 10th Brit. Weed Control Conf. Pp. 1036–1051.

  59. Baatz, I. 1939. Über das Verhalten von Bodenalgen in Kurzwelligen Infrarot. Arch. Mikrobiol.10: 508–514.

    Article  Google Scholar 

  60. Bai, N. J. 1972. The genusWestiellopsis Janet.In: T. V. Desikachary (ed.). The taxonomy and biology of blue-green algae. Univ. of Madras, India.

    Google Scholar 

  61. Bailey, D., A. P. Mazurak andJ. R. Rosowski. 1973. Aggregation of soil particles by algae. J. Phycol.9: 99–101.

    Google Scholar 

  62. Baker, A. F. and H. C. Bold. 1970. Phycological studies X. Taxonomic studies in the Oscillatoriaceae. Univ. of Texas Publ. No. 7004, Austin.

  63. Balandreau, J. P., C. R. Millier andY. R. Dommergues. 1974. Diurnal variations of nitrogenase activity in the field. Appl. Microbiol.27: 662–665.

    PubMed  CAS  Google Scholar 

  64. Balezina, L. S. 1965. The effect of fertilizers and lime on the development of soil algae. Tr. Kirosk. Sel’skokhog Inst. 18. No. 30.

  65. —. 1967. Effect of some herbicides on development of soil algae. Mikrobiologya36: 163–167.

    Google Scholar 

  66. —. 1975. Effect of mineral and organic fertilizers on the development of algae in a sod-podzolic soil. Mikrobiologya44: 306–309.

    Google Scholar 

  67. Balloni, W. and R. Materassi. 1968. Preliminary observations on the algal microflora of some Venezuelan soils.In: Trans. 9th Intl. Cong. Soil Sci. Adelaide, Australia.

  68. Banerji, J. C. 1935. On algae found in soil samples from an alluvial paddy field of Faridpur, Bengal. Sci. & Cult.1: 298–299.

    Google Scholar 

  69. Batterton, J. C., G. M. Bousch andF. Matsumura. 1971. Growth response of blue-green algae to aldrin, dieldrin, endrin and their metabolites. Bull. Environ. Contam. Toxicol.6: 589–594.

    PubMed  CAS  Article  Google Scholar 

  70. —,G. M. Bousch andF. Matsumura. 1972. DDT: Inhibition of sodium chloride tolerance by the blue-green algaAnacystis nidulans. Science176: 1141–1143.

    PubMed  CAS  Article  Google Scholar 

  71. Beadle, N. C. W. andY. T. Tchan. 1955. Nitrogen economy in semi-arid plant communities. Part I. The environment and general considerations. Proc. Linn. Soc. New South Wales80: 62–70.

    CAS  Google Scholar 

  72. Beaney, W. D. andL. R. Hoffman. 1968. Two new species ofOedocladium. J. Phycol.4: 221–229.

    Article  Google Scholar 

  73. Beck, T. 1969. Model trials on the behavior of monolinuron. 3. Influence on the biological activity of soil in comparison with other soil herbicides. Mitt. Biol. Bundesanst. Land-Forstw. Berlin132: 71–72.

    Google Scholar 

  74. Becquerel, P. 1936. La vie latente de quelques algues et animaux inferieurs aux basses temperatures et la conservation de la vie dans l’univers. Compt. Rend. Hebd. Séances Acad. Sci.202: 978–981.

    Google Scholar 

  75. —. 1942. Revivescence et longévité des certaine algues en vie latente dans les terres desseches des plantes des vieux herbiers. Compt. Rend. Hebd. Séances Acad. Sci.214: 986–988.

    Google Scholar 

  76. Bednarova, M., T. Kalina andV. Sasek. 1976. Selection and application of antibiotics for the removal of fungal and bacterial contamination in algal cultures. Preslia48: 259–272.

    Google Scholar 

  77. Beijernick, M. W. 1889. Over gelatin culturen van uncellige groenwieren. Zentralbl. Bakteriol., 2. Abt.8: 460–462.

    Google Scholar 

  78. —. 1890. Culturvesuche mit zoochlorellen, lichengonidien und anderen niederen algen. Bot. Zeitung Berlin48: 725.

    Google Scholar 

  79. —. 1898. NoitzüberPleurococcus vulgaris. Zentralbl. Bakteriol., 2. Abt.4: 785–787.

    Google Scholar 

  80. —. 1901. Über oligonitrophile M. Kraben. Zentralbl. Bakteriol., 2. Abt.7: 561–582.

    Google Scholar 

  81. Belcher, J. H. andG. E. Fogg. 1958. Studies on the growth of Xanthophyceae in pure culture. III.Tribonema aequale Pascher. Arch. Mikrobiol.30: 17–22.

    PubMed  CAS  Article  Google Scholar 

  82. Belles, W. S. 1972. Effect of dinitramine on soil microorganisms. Proc. North Cent. Weed Control Conf.27: 50–51.

    Google Scholar 

  83. Benoit, R. E. andR. E. Cameron. 1967. Microbial ecology of some dry valley soils of Antarctica. Proc.1967: 3.

    Google Scholar 

  84. — andC. L. Hall, Jr. 1970. The microbiology of some dry valley soils of Victorialand, Antarctica.In: M. Holdgate (ed.). Antarctic ecology. Academic Press, NY.

    Google Scholar 

  85. Berkaloff, C. 1975. Evolution of ultrastructure and photosynthetic activity of the green algaProtosiphon botryoides during regreening following the removal of nitrogen deficiency. J. Microscop. Biol. Cell.24: 365–376.

    Google Scholar 

  86. Berman, D. I., Z. F. Pivovarova andV. B. Gel’man. 1978. Irregularities in the distribution of soil algae underArtemisia santolinifolia Turcz. ex. Bess in the steppes of the northeastern Yakutsk SSR. Bot. Žurn. (Moscow & Leningrad)63: 1196–1198.

    Google Scholar 

  87. Berner, T. andM. Evenari. 1978. The influence of temperature and light penetration on the abundance of hypolithic algae in the Negev Desert of Israel. Oekologia.33: 255–260.

    Google Scholar 

  88. Bershova, O. J., Z. P. Kopteva andE. V. Tantsyurenko. 1968. Theuiter relationships between the blue-green algae-the causative agents of water bloom and bacteria.In: A. V. Topzchevsky (ed.). Tsvetenie Vody. Naukova Dumka, Kev. USSR.

    Google Scholar 

  89. Bertagnolli, B. C. andM. J. Nadakuvukaren. 1970. Effect of 2,4-dichlorophenoxyacetic acid on the fine structure ofChlorella pyrenoidosa Chick. J. Phycol.6: 98–100.

    CAS  Google Scholar 

  90. Biehel, P. andD. Chamberlin. 1970. Effect of nitrogen concentration on the life cycle of a heterothallicCylindrocystis. J. Phycol.6: 12.

    Google Scholar 

  91. Bischoff, H. W.and H. C. Bold. 1964. Phycological studies IV. Some soil algae from Enchanged Rock and related algal species. Univ. of Texas Publ. No. 6318, Austin.

  92. Bisiach, M. 1972. Preliminary laboratory tests for the control of algae in rice fields. Rivista Patol. Veg.8: 159–181.

    Google Scholar 

  93. Bjalfre, G. 1962. Nitrogen fixation in cultures of algae and other microorganisms. Physiol. Pl. (Copenhagen).15: 122–129.

    Article  Google Scholar 

  94. Blackwell, W. H. 1963. Some algae from the soil of an Alabama pine forest. M. S. Thesis. Univ. of Alabama.

  95. Blum, J. L. 1972. Vaucheriaceae. North American Flora. Ser. II Part 8. New York Botanical Garden.

  96. Blythe, T. O. andR. E. Frans. 1972. The effect of fluormeturon on the growth ofChlorella pyrenoidosa. Proc. 5th Weed Sci. Soc. (1912): 420.

    Google Scholar 

  97. Bold, H. C. 1933. The life history and cytology ofProtosiphon botryoides. Bull. Torrey Bot. Club.60: 241–300.

    Article  Google Scholar 

  98. —. 1942. The cultivation of algae. Bot. Rev.8: 69–138.

    Google Scholar 

  99. -. 1970. Some aspects of the taxonomy of soil algae.In: J. F. Fredrick and R. M. Klien (eds.). Phylogeny and morphogenesis in the algae. Ann. New York Acad. Sci. 175: 601–616.

  100. — andS. J. MacEntee. 1973. Phycological notes II.Euglena myxocylindrica sp. nov. J. Phycol.9: 152–156.

    Google Scholar 

  101. ——. 1974. Phycological notes III. Two new saccate unicellular Chlorophyceae. J. Phycol.10: 189–193.

    Google Scholar 

  102. ——. 1960. Some new attributes for clarifying species of Chlorococcales. News Bull. Phycol. Soc. Amer.40: 63–64.

    Google Scholar 

  103. ——. 1962. Some supplementary attributes in the classification ofChlorococcum species. Arch. Mikrobiol.42: 267–288.

    PubMed  CAS  Article  Google Scholar 

  104. ——. 1978. Introduction to the algae. Structure and reproduction. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  105. Bolyshev, N. N. 1952. The origin and evolution of takyr soils. Počvověděnie.5: 403–417.

    Google Scholar 

  106. —. 1955. The origin and evolution of takyr soils. Moscow Univ. Press., Moscow.

    Google Scholar 

  107. —. 1968. Algae and their role in the foundation of soils. Moscow Univ. Press., Moscow.

    Google Scholar 

  108. — andT. I. O. Evdokimova. 1944. The nature of takyr crusts. Počvověděnie.8: 345–352.

    Google Scholar 

  109. — andE. A. Manucharova. 1947. The distribution of algae in the profile of some desert soils. Vestn. Moskovsk. Univ., Ser. Biol.8: 115–130.

    Google Scholar 

  110. — andL. N. Novichkova-Ivanova. 1978. The algal flora of initial stages of soil formation on blanket loams under the condition of a lysimeter. Bot. Žurn. (Moscow & Leningrad).63: 690–696.

    Google Scholar 

  111. — andE. A. Shtina. 1959. The vegetation and soils in the environs of the delta lakes of the Volga. Vestn. Moskavsk. Univ., Ser. Biol.20: 4–11.

    Google Scholar 

  112. Bond, R. D. andJ. R. Harris. 1964. The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi. Austral. J. Soil Res.2: 111–122.

    Article  Google Scholar 

  113. Booth, W. E. 1941a. Algae as pioneers in plant succession and their importance in erosion control. Ecology22: 38–46.

    Article  Google Scholar 

  114. —. 1941b. Revegetation of abandoned fields in Kansas and Oklahoma. Amer. J. Bot.28: 415–423.

    Article  Google Scholar 

  115. —. 1946. The thermal death point of certain soil-inhabiting algae. Proc. Montana Acad. Sci.5/6: 21–23.

    Google Scholar 

  116. Bornet, E. and C. Flahault. 1886–1888. Revision des Nostocacées Heteroaysteés. Ann. Sci. Nat. Ser. VII. Bot.T. III, IV, V, VII.

  117. Borowiec, S., M. Gladoch, J. Honczarenko, H. Kwarta andD. Zembrzuska. 1975. Changes in the composition of an agrocenose as assessed twenty-two years after treatment with excessive amounts of Verindal F (streumittel). Ekol. Polska23: 3–18.

    Google Scholar 

  118. Bortels, H. 1940. Über die bedeutung des molybdams für Stickstoffbindendende Nostocaceen. Arch. Mikrobiol.11: 155–186.

    CAS  Article  Google Scholar 

  119. Bowyer, L. andW. Skerman. 1968. Production of axenic cultures of soil-borne and endophytic blue-green algae. J. Gen. Microbiol.54: 299–303.

    PubMed  CAS  Google Scholar 

  120. Boyd, W. L., I. Rothenberg andJ. W. Boyd. 1970. Soil microorganisms of Paradise Harbor, Antarctica. Ecology51: 1040–1045.

    Article  Google Scholar 

  121. Boyer, C. S. 1927. Synopsis of the North American Diatomaceae. Part I and II. Proc. Acad. Nat. Sci. Philadelphia. Suppl. 1–583.

  122. Brannon, M. S. 1945. Factors affecting growth and distribution of Myxophyceae in Florida. Proc. Florida Acad. Sci.8: 296–303.

    CAS  Google Scholar 

  123. Breazeale, J. M. 1929. Algae and their effect upon the growth of citrus seedlings. M. S. Thesis, Univ. of Arizona, Tucson.

    Google Scholar 

  124. Bredemühl, I. 1949. Über die Verbreitung der Erddiatomeen. Arch. Mikrobiol.14: 407–449.

    Article  Google Scholar 

  125. Bristol, B. M. 1919a. On the retention of vitality by algae from old stored soils. New Phytol.18: 92–107.

    Article  Google Scholar 

  126. —. 1919b. On a Malay form ofChlorococcum humicola (Näg.) Raben. J. Linn. Soc. Bot. London44: 473–482.

    Google Scholar 

  127. Bristol-Roach, B. M. 1926. On the relation of certain soil algae to some soluble carbon compounds. Ann. Bot.60: 149–200.

    Google Scholar 

  128. —. 1927a. On the algae of some normal English soils. J. Agric. Sci.17: 563–588.

    Google Scholar 

  129. —. 1927b. Methods for use in studying the algae of the soil. Ab. Handb. Biol. Arbeitsmethodon, Abt. XI. Teil.3: 747–751.

    Google Scholar 

  130. —. 1927c. On the carbon nutrition of some algae isolated from soil. Ann. Bot.41: 509–517.

    Google Scholar 

  131. —. 1928a. On the influence of light and of glucose on the growth of a soil alga. Ann. Bot.42: 317–345.

    Google Scholar 

  132. —. 1928b. The present position of our knowledge of the distribution and function of algae in the soil. Proc. 1st Inter. Cong. Soil. Sci.3: 30–38.

    Google Scholar 

  133. Broadhead, E. 1958. The psocid fauna of larch trees in northern England—an ecological study of mixed species populations exploiting a common resource. J. Animal Ecol.27: 217–263.

    Article  Google Scholar 

  134. Broady, P. A. 1976. Six new species of terrestrial algae from Signy Island, South Orkney Islands, Antarctica. Brit. Phycol. J.11: 387–405.

    Article  Google Scholar 

  135. —. 1978. The terrestrial algae of Glerardalur Akureyri, Iceland. Acta Bot.5: 3–62.

    Google Scholar 

  136. —. 1979a. Qualitative and quantitative observations on green and yellow-green algae in some English soils. Brit. Phycol. J.14: 151–160.

    Article  Google Scholar 

  137. —. 1979b. Quantitative studies on the terrestrial algae of Signy Island, South Orkney Islands. Brit. Antarct. Surv. Bull.48: 31–42.

    Google Scholar 

  138. —. 1979c. Preliminary survey of the terrestrial algae of the Antarctic Peninsula and South Georgia. Brit. Antarct. Surv. Bull.48: 47–70.

    Google Scholar 

  139. —. 1980. Wind dispersal of terrestrial algae at Signy Island, South Orkney Islands. Brit. Antarct. Surv. Bull.48: 99–102.

    Google Scholar 

  140. Brock, T. D. 1973. Primary colonization of Surtsey with special reference to the blue-green algae. Oikos24: 239–243.

    Article  Google Scholar 

  141. Bromfield, S. M. 1976. The deposition of manganese oxide by an alga on acid soil. Austral. J. Soil Res.14: 95–102.

    CAS  Article  Google Scholar 

  142. Brooker, M. P. andR. W. Edwards. 1973. Effects of the herbicide paraquat on the ecology of a reservoir. I. Botanical and chemical aspects. Freshwater Biol.3: 157–175.

    Article  Google Scholar 

  143. Brooks, A. J. 1968. The discoloration of roofs in the United States and Canada by algae. J. Phycol.4: 250.

    Article  Google Scholar 

  144. Brown, F., W. F. J. Cuthbertson andG. E. Fogg. 1956. Vitamin B12 activity ofChlorella vulgaris Bey andAnabaena cylindrica Lemm. Nature177: 188.

    CAS  Article  Google Scholar 

  145. Brown, R. M., Jr. 1969. Studies of Hawaiian freshwater and soil algae. I. The atmospheric dispersal of algae and fern spores across the island of Oahu, Hawaii.In: B. C. Parker and R. M. Brown (eds.). Contributions in phycology. Allen Press, Lawrence, Kansas.

    Google Scholar 

  146. — andH. Bischoff. 1962. A new and useful method for obtaining axenic cultures of algae. News Bull. Phycol. Soc. Amer.15: 43–44.

    Google Scholar 

  147. — andH. C. Bold. 1964. Phycological studies V. Comparative studies of the algal generaTetracystis andChlorococcum. Univ. of Texas Publ. No. 6417, Austin.

    Google Scholar 

  148. —,— andH. C. Bold. 1964. Airborne algae: their abundance and heterogeneity. Science143: 583–585.

    PubMed  Article  Google Scholar 

  149. — andR. M. Lester. 1965. Comparative immunology of the algal generaTetracystis andChlorococcum. J. Phycol.1: 60–65.

    Article  Google Scholar 

  150. — andR. J. McLean. 1969. New taxonomic criteria in the classification ofChlorococcum species. II. Pyrenoid fine structure. J. Phycol.5: 114–118.

    Article  Google Scholar 

  151. Brown, T., F. Richardson andM. Vaughn. 1967. Development of red pigmentation inChlorococcum wimmeri. (Chlorophyta: Chlorococcales). Phycologia6: 167–184.

    CAS  Google Scholar 

  152. Brunel, J., G. W. Prescott andL. M. Tiffany. 1950. The culturing of algae. A symposium. Charles F. Kettering Foundation. Yellow Springs, OH.

    Google Scholar 

  153. Brunnthaler, J. 1915. Protococcales.In: A. Pascher, (ed.). Die Susswasserflora Deutschlands, Osterreichsund der Schweiz. 5. Chlorophyceae. 2: 52–205.

  154. Bunt, J. S. 1954. A comparative account of the terrestrial diatoms of Macquaric Island. Proc. Linn. Soc. New South Wales79: 40–53.

    Google Scholar 

  155. —. 1961. Nitrogen fixing blue-green algae in Australian rice soils. Nature192: 479–480.

    Article  Google Scholar 

  156. Busygina, E. A. 1976. Some algal communities on ameliorated cutover peatlands. Počvověděnie12: 103–109.

    Google Scholar 

  157. But, V. P. 1962. The effects of additional ultraviolet radiation on the development of soil algae. Uzbeksk. Biol. Žum.2: 30–33.

    Google Scholar 

  158. -. 1967. Soil algae of the vegetation associations in Western Pamir.In: E. A. Shtina (ed.). The present state and prospects of the study of soil algae in the U.S.S.R. Trudy Kirovskogo Sel’skokhozyaistvennogo Inst.20: 113–118.

  159. Butler, G. L. 1977. Algae and pesticides. Residue Rev.66: 19–62.

    CAS  Google Scholar 

  160. Cain, B. J. 1963. The morphology, taxonomy, and physiology of certainChlamydomonas- like Algae. Ph.D. Dissertation, Univ. of Texas, Austin.

    Google Scholar 

  161. —. 1964. A preliminary survey of the algal flora of soils of certain areas of Texas. Southw. Naturalist9: 166–170.

    Article  Google Scholar 

  162. Cairns, A., M. E. Dutch, E. M. Guy andJ. D. Stout. 1978. Effect of irrigation with municipal water or sewage effluent on the biology of soil cores. I. Introduction, total microbial populations and respiratory activity. New Zealand Agric. Res.21: 1–10.

    Google Scholar 

  163. Calder, E. A. 1959. Nitrogen fixation in a Uganda swamp soil. Nature184: 746.

    CAS  Article  Google Scholar 

  164. Calle, J. M. L. 1970. Effects of 2,4-D and 2,4,5-T ethyl esters on the microflora of a sand and a clay soil. Meded. Fac. Landboucowet. Rijksuniv. Gent35: 599–614.

    Google Scholar 

  165. Cameron, R. E. 1958. Fixation of nitrogen by algae and associated organisms in semi-arid soils: Identification and characterization of soil organisms. M. S. Thesis, Univ. of Arizona, Tucson.

    Google Scholar 

  166. —. 1960. Communities of soil algae occurring in the Sonoran Desert in Arizona. J. Arizona Acad. Sci.1: 85–88.

    Google Scholar 

  167. —. 1961. Algae of the Sonoran Desert in Arizona. Ph.D. Dissertation, Univ. of Arizona, Tucson.

    Google Scholar 

  168. —. 1962a. Species ofNostoc Vaucher occurring in the Sonoran Desert in Arizona. Trans. Amer. Microscop. Soc.81: 379–384.

    Article  Google Scholar 

  169. —. 1962b. Soil studies—Microflora of desert regions. J. P. L. Space Programs Summary. No. 37-15. Vol.IV: 12–20.

    Google Scholar 

  170. —. 1963a. Algae of southern Arizona. Part I. Introduction—Blue-green algae. Rev. Algol. N. S.6: 282–318.

    Google Scholar 

  171. —. 1963b. Morphology of representative blue-green algae. Ann. New York Acad. Sci.108: 412–420.

    CAS  Article  Google Scholar 

  172. —. 1964a. Terrestrial algae of southern Arizona. Trans. Amer. Microscop. Soc.133: 212–218.

    Article  Google Scholar 

  173. —. 1964b. Algae of southern Arizona. Part II. Algal flora (exclusive of blue-green algae). Rev. Algol. N. S.7: 151–177.

    Google Scholar 

  174. —. 1966. Soil studies—desert microflora. XIII. Identification of some algae from Antarctica. J. P. L. Space Programs Summary 37–40,IV: 123–133.

    Google Scholar 

  175. -. 1969a. Abundance of microflora in soils of desert regions. J. P. L. Tech. Report. 32–1378.

  176. —. 1969b. Cold desert problems and characteristics relevant to other arid lands.In: W. McGinnies and B. Goldman (eds.). Arid lands in perspective. Univ. Ariz. Press, Tucson.

    Google Scholar 

  177. —. 1970. Soil microbial ecology of Valley of 10,000 Smokes, Alaska. J. Arizona Acad. Sci.6: 11–40.

    Google Scholar 

  178. —. 1971. Antarctic soil microbiological and ecological investigations.In: L. Quam (ed.). Research in Antarctica. AAAS, Washington, D. C.

    Google Scholar 

  179. -. 1972a. Ecology of blue-green algae in Antarctic soils.In: T. V. Desikachary (ed.). The taxonomy and biology of blue-green algae. Symposium at Madras, India.

  180. —. 1972b. A comparison of soil microbial ecosystems in hot, cold, and popular desert regions.In: L. E. Rodin (ed.). Ecophysiological foundation of ecosystem productivity in arid zones. Leningrad, Nauka.

    Google Scholar 

  181. —. 1974. A review of the Russian book “Soil Algae” by M. M. Gollerbach and A. Shtina, including a translation of the bibliography. J. Phycol.13: 109.

    Google Scholar 

  182. ——. 1970. Microbial and ecological investigations of recent cinder cones, Deception Island, Antarctica—A preliminary report. Ecology51: 808–809.

    Article  Google Scholar 

  183. ——. 1965. Soil studies—Microflora of desert regions. VIII. Distribution and abundance of desert microflora. J. P. L. Space Programs Summary 37–34,IV: 193–201.

    Google Scholar 

  184. - and -. 1966a. Desert algae: Soil crusts and diaphanous substrata as algal habitats. J. P. L. Tech. Report 32–971.

  185. ——. 1966b. Soil studies. Desert microflora. XI. Desert soil algae survival at extremely low temperatures. J. P. L. Space Programs Summary 37–37,IV: 174–181.

    Google Scholar 

  186. — andH. P. Conrow. 1969a. Soil moisture, relative humidity, and microbial abundance on dry valleys of Southern Victoria Land. Antarctic J. U.S.4: 23–28.

    Google Scholar 

  187. ——. 1969b. Antarctic dry valley soil microbial incubation and gas composition. Antarctic J. U.S.4: 28–33.

    Google Scholar 

  188. —,C. N. David andJ. King. 1968. Soil toxicity in Antarctic dry valleys. Antarctic J. U.S.3: 164–166.

    Google Scholar 

  189. — andJ. R. Devaney. 1970. Antarctic soil algal crusts: scanning electron and optical microscope study. Trans. Amer. Microscop. Soc.89: 264–273.

    Article  Google Scholar 

  190. — andW. H. Fuller. 1960. Nitrogen fixation by some algae in Arizona soils. Soil Sci. Soc. Amer. Proc.24: 353–356.

    CAS  Google Scholar 

  191. —,D. R. Gensel andG. B. Blank. 1966. Soil Studies—Desert microflora. XII. Abundance of microflora in soil samples from the Chile Atacama Desert. Supportive research and advanced development. J. P. L. Space Programs Summary 37–38,IV: 140–147.

    Google Scholar 

  192. — andJ. King. 1970a. Soil microbial ecology of Wheeler Valley, Antarctica. Soil Sci.109: 110–120.

    Article  Google Scholar 

  193. ——. 1970b. Microbiology, ecology, and microclimatology of soil sites in dry valleys of Southern Victoria Land, Antarctica.In: M. Holdgate (ed.). Antarctic ecology. Academic Press, London.

    Google Scholar 

  194. —— andC. N. David. 1968. Soil microbial and ecological studies in Southern Victoria Land. Antarctic J. U.S.3: 121–123.

    Google Scholar 

  195. ———. 1970. Microbiology, ecology, and microclimatology of soil sites in dry valleys of Southern Victoria Land, Antarctica.In: M. W. Holdgate (ed.). Antarctic ecology. Academic Press, N. Y.

    Google Scholar 

  196. —,F. A. Morelli andG. B. Blank. 1965a. Soil studies—Microflora of desert regions. IV. Soil extract as a culture medium. J. P. L. Space Programs Summary 37–32,IV: 202–208.

    Google Scholar 

  197. ———. 1965b. Soil studies—Desert microflora. VI. Abundance of microflora in an area of soil at White Mountain Range, California. J. P. L. Space Programs Summary 37–32,IV: 212–214.

    Google Scholar 

  198. -,-and H. P. Conrow. 1970. Survival of microorganisms in desert soil exposed to five years of continuous very high vacuum. J. P. L. Tech. Report 32–1454.

  199. Carr, N. G. andB. A. Whitton (eds.). 1973. The biology of blue-green algae. Botan. Mono. No. 9., Blackwell Scientific Publ., Oxford.

    Google Scholar 

  200. Carson, J. L. andR. M. Brown, Jr. 1976. The correlation of soil algae, airborne algae, and fern spores with meteorological conditions on the island of Hawaii. Pacific Sci.30: 197–205.

    Google Scholar 

  201. ——. 1978. Studies of Hawaiian freshwater and soil algae. II. Algal colonization and succession on a dated volcanic substrate. J. Phycol.14: 171–178.

    CAS  Article  Google Scholar 

  202. Carton, J. H. 1976. The toxicity of benomyl, thiophanate-methyl and BCM to four fresh-water organisms. Bull. Environ, Contam. Toxicol.16: 214–218.

    Article  Google Scholar 

  203. Cave, M. andM. Pocock. 1951. The acetocarmine technique applied to the colonial Volvocales. Stain Technol.26: 173–174.

    PubMed  CAS  Google Scholar 

  204. Chanlygina, O. Y. 1975. Soil algae of a forest grass-forb meadow and the effect of cutting on their development and distribution. Bot. Žurn. (Moscow & Leningrad)60: 874–881.

    Google Scholar 

  205. —. 1976. Soil algae of pine and spruce forests of the Moscow oblast. Bot. Žurn. (Moscow & Leningrad)61: 1077–1088.

    Google Scholar 

  206. Chantanachat, S. and H. C. Bold. 1962. Phycological studies II. Some algae from arid soils. Univ. of Texas Publ. No. 6218, Austin.

  207. Chase, F. M. 1941. Increased stimulation of the algaStichococcus bacillaris by successive exposures to short wavelengths of the ultra-violet. Smithsonian Misc. Collection99: 1–17.

    Google Scholar 

  208. Cho, K. Y., Y. T. Tchan andE. H. M. Lo. 1972. Resistance ofChlorella to monuron, a herbicide inhibiting photosynthesis. Soil Biol.16: 18–21.

    Google Scholar 

  209. Chodat, R. 1909. Étude critique et expérimentale sur le polymorphisme des algues. Geneva.

  210. —. 1926. Scenedesmes. Étude de génétique, de systématique expériméntale et d’hydrobiologie. Rev. Hydrobiol.3: 71–258.

    Google Scholar 

  211. — andA. Chastain. 1957. Recherches sur le potentiel algologique des sols. Bull. Soc. Bot. France104: 437–451.

    Google Scholar 

  212. Cholodny, N. 1930. Über eine neue Methode zur Untersuchung der Bodenmikroflora. Arch. Mikrobiol.1(4): 620–652.

    Google Scholar 

  213. Choudhuri, G. N. andB. D. Sharma. 1975. A study on the nitrogen dynamics in a salt-affected (Usar) habitat near Varanasi. Tropical Ecol.16: 133–139.

    CAS  Google Scholar 

  214. Christie, A. E. 1969. Effects of insecticides on algae. Water Sewage Works116: 172–176.

    CAS  Google Scholar 

  215. Chrost, R. J. andD. Brzeska. 1978. Extracellular release of organic products and growth of bacteria inAnabaena cylindrica (blue-green alga) culture. Acta Mikrobiol. Polska27: 287–296.

    CAS  Google Scholar 

  216. Ciferri, R. 1960. Le associazioni di Alghe filamentose delle risaie pavesi e la loro evoluzione. Atti 1st Bot. Univ. Lab Crittogam. Pavia Ser.518: 270–281.

    Google Scholar 

  217. Clendenning, K. A., T. E. Brown andH. C. Eyster. 1956. Comparative studies of photosynthesis inNostoc muscorum andChlorella pyrenoidosa. Canad. J. Bot.34: 943–966.

    CAS  Google Scholar 

  218. Collins, F. 1909. The green algae of North America. Tufts Coll. Stud., Sci. Ser.2: 79–480.

    Google Scholar 

  219. Comerton, M. andJ. A. Houghton. 1975. A description of the algal constituents of the diet of the snailLymnaea truncata. Indian J. Agric. Res.14: 55–70.

    Google Scholar 

  220. ——. 1978. The effects of fertilizers on the algal flora of peat. Proc. Roy. Irish Acad. Ser. B,78: 233–246.

    Google Scholar 

  221. Compére, P. 1966. Observations on the algae in the peat bogs of the Hautes-Fagner of Belgium. Brussels Bull. Jard. Bot. Etat36: 5–51.

    Google Scholar 

  222. Copeland, J. J. 1936. Yellowstone thermal Myxophyceae. Ann. New York Acad. Sci.36: 1–232.

    Google Scholar 

  223. Couch, G. C. 1942. The algae of the Boston Mountain region of Arkansas. Ph.D. Dissertation, Ohio State Univ., Columbus.

    Google Scholar 

  224. Cox, E. R. 1967. Soil algae from Cedars of Lebanon State Forest, Wilson County, Tennessee. Ph.D. Dissertation, Univ. of Alabama, University.

    Google Scholar 

  225. —. 1971. A newMuriellopsis species (Chlorophyceae) from Tennessee soil. Phycologia10: 7–10.

    Google Scholar 

  226. — andT. R. Deason. 1968.Axilosphaera andHeterotetracystis, new Chlorosphaeralean genera from Tennessee. J. Phycol.4: 240–249.

    Article  Google Scholar 

  227. ——. 1969.Heterochlamydomonas, a new alga from Tennessee. J. Tennessee Acad. Sci.44: 105–107.

    Google Scholar 

  228. ——. 1972. Some corticolous algae of McMinn County, Tennessee, USA. J. Phycol.8: 203–205.

    Google Scholar 

  229. Coyle, E. E. 1935. Algae of some Ohio soils. Ph.D. Dissertation, Ohio State Univ., Columbus.

    Google Scholar 

  230. Cullimore, D. R. 1965. Studies on the algal bioassay of soil potassium using Tchan’s methods. Pl. & Soil23: 34–42.

    CAS  Article  Google Scholar 

  231. —. 1966a. A qualitative method of assessing the available nitrogen, potassium, and phosphorous in the soil. J. Sci. Food Agric.17: 7–8.

    Article  Google Scholar 

  232. —. 1966b. The assessment by bioassay using algae of the plant available sulphur in the soil. J. Sci. Food Agric.17: 7–11.

    Article  Google Scholar 

  233. —. 1966c. Influence of ionic phosphate diffusion in the soil on the growth ofHormidium feaccidum. Nature209: 326–327.

    CAS  Article  Google Scholar 

  234. -. 1967. A new biological assay method for estimating soil potassium. Potash Rev., Subject 5.

  235. —. 1971. Interaction between herbicides and soil microorganisms. Residue Rev.35: 65–80.

    PubMed  CAS  Google Scholar 

  236. —. 1975. The in vitro sensitivity of some species of Chlorophyceae to a selected range of herbicides. Weed Res.15: 401–406.

    CAS  Article  Google Scholar 

  237. — andA. E. McCann. 1977. Influence of four herbicides on the algal flora of a prairie soil. Pl. & Soil46: 499–510.

    CAS  Article  Google Scholar 

  238. — andM. Woodbine. 1963. A rhizosphere effect of the pea root on soil algae. Nature198: 304–305.

    Article  Google Scholar 

  239. Czeczuga, B. andM. Gierasimow. 1973. Influence of certain pesticides on microorganisms. Influence of DDT on the synthesis of particular amino acids inChlorella vulgaris andAnabaena cylindrica. Bull. Acad. Polska Sci. Biol.21: 751–758.

    CAS  Google Scholar 

  240. Dadhich, K. S., A. K. Varma andG. S. Venkataraman. 1969. The effect ofCalothrix inoculation on vegetable crops. Pl. & Soil31: 377–379.

    Article  Google Scholar 

  241. Daily, W. A. 1942. The Chlorococcaceae of Ohio, Kentucky, and Indiana. Amer. Midl. Naturalist27: 636–661.

    Article  Google Scholar 

  242. —. 1943. First reports for the algaeBorzia, Aulosira, andAsterocystis in Indiana. Butler Univ. Bot. Stud.6: 84–86.

    Google Scholar 

  243. Dalton, H. 1974. Fixation of dinitrogen by free-living microorganisms. Crit. Rev. Microbiol.3: 183–220.

    CAS  Article  Google Scholar 

  244. Dangeard, P. 1965. Sur deux Chlorococcales marines. Le Botaniste58: 65–74.

    Google Scholar 

  245. Dani, V. 1975. The effect of different light intensity, temperature, pH, and concentrations of pesticide ORGA-T on algal composition. Biol. Vestn.23: 75–88.

    Google Scholar 

  246. Dart, P. H. andJ. M. Day. 1975. Non-symbiotic nitrogen fixation in soil.In: N. Walker (ed.). Soil microbiology. J. Wiley and Sons, N. Y.

    Google Scholar 

  247. DaSilva, E. J., L. E. Henriksson andF. Henriksson. 1975. Effect of pesticides on bluegreen algae and nitrogen-fixation. Arch. Environ. Contam. Toxicol.3: 193–204.

    PubMed  CAS  Article  Google Scholar 

  248. De, P. K. 1939. The role of blue-green algae in nitrogen fixation in rice fields. Proc. Roy. Soc. London127: 121–139.

    CAS  Google Scholar 

  249. — andL. N. Mandal. 1956. Fixation of nitrogen by algae in rice soils. Soil Sci.31: 453–458.

    Google Scholar 

  250. — andM. Sulaiman. 1950a. Fixation of nitrogen in rice soils by algae as influenced by crop, CO2, and inorganic substances. Soil Sci.70: 137–151.

    CAS  Google Scholar 

  251. ——. 1950b. Influence of algal growth in the rice fields on the yield of crops. Indian J. Agric.20: 327–342.

    Google Scholar 

  252. Deason, T. 1959. Three Chlorophyceae from Alabama soil. Amer. J. Bot.46: 572–578.

    Article  Google Scholar 

  253. —. 1967.Pulchrasphaera, a new chlorococcalean genus. J. Phycol.3: 19–21.

    Article  Google Scholar 

  254. —. 1969. Filamentous and colonial soil algae from Dauphin Island, Alabama. Trans. Amer. Microscop. Soc.88: 240–246.

    Article  Google Scholar 

  255. —. 1971. The generaSpongiococcum andNeospongiococcum. I. The genusSpongiococcum and the multinucleate species of the genusNeospongiococcum. Phycologia10: 17–27.

    Google Scholar 

  256. —. 1976. The generaSpongiococcum andNeospongiococcum (Chlorophyceae, Chlorococcales). III. New species, biochemical characteristics and a summary key. Phycologia15: 197–213.

    Google Scholar 

  257. -and H. C. Bold. 1960. Phycological studies. I. Exploratory studies of Texas soil algae. Univ. of Texas Publ. No. 6022, Austin.

  258. — andE. R. Cox. 1971. The generaSpongiococcum andNeospongiococcum. II. Species ofNeospongiococcum with labile walls. Phycologia10: 255–262.

    Google Scholar 

  259. Deby, J. 1879. Les diatomées terrestres. J. Roy. Microscop. Soc.2: 162.

    Google Scholar 

  260. DeHalperin, D. R., M. C. Z. DeMule andG. Z. DeCaire. 1976. Algal crusts as sources of nitrogen in subhumid and semiarid soils: (Chaco and Formosa provinces, Argentina). Darwiniana20: 341–370.

    Google Scholar 

  261. —,M. L. Mendoza andG. Z. DeCaire. 1973. Axenic cultures of blue-green algae (Cyanophyta). Pysis. Sec. B. Aguas. Cont. Org.32: 67–84.

    Google Scholar 

  262. DeMenezes, L. E. 1973. Algae in the soil of the country side of Pernambuco. Univ. Fed. Pernambuco Inst. Micol. Publ.693: 1–8.

    Google Scholar 

  263. DeMeter, O. 1956. Über Modificationen bei Cyanophyceen. Arch. Mikrobiol.24: 105–133.

    PubMed  CAS  Article  Google Scholar 

  264. DeMule, M. C. Z., G. Z. DeCaire, S. Doallo, D. R. DeHalperin andL. DeHalperin. 1977. Action of aqueous and ethereal algal extracts ofNostoc muscorum Ag. (No. 79a): II. Effect on the development of the fungus,Cunninghamella blakesleena (−) in Mehlich’s medium. Bull. Soc. Argentina Bot.18: 121–128.

    Google Scholar 

  265. Denffer, D. 1948. Über einen Wachstum-Shemmstoff in alternden Diatomeeukulturen. Biol. Zentralbl.67: 7–26.

    CAS  Google Scholar 

  266. DeSanto, A. V., A. Alfani andS. Sopio. 1978. Microbial populations of two soils in the Beech forest of Moute Taburno (Campanian Apennines). Pedobiologia18: 48–56.

    Google Scholar 

  267. Desikachary, T. V. 1973. Status of classical taxonomy.In: N. G. Can and B. A. Whitton (eds.). The biology of blue-green algae. Univ. of Calif. Press, Berkeley.

    Google Scholar 

  268. Desortova, B. 1974. Some interesting algae from soil. Arch Hydrobiol. Suppl. B,46: 105–119.

    Google Scholar 

  269. Dhar, N. R. andG. N. Bhat. 1965. Influence of light sensitivity, organic matter and phosphate on: A) nitrogen fixation and B) availability of P2O5 in the presence and absence ofAnabaena naviculoides andChlorella pyrenoidosa. Proc. Nat. Acad. Sci. India, Sect. A,35(3): 309–326.

    Google Scholar 

  270. Diels, L. 1914. Die Algen vegetation der Südtiroler Dolmitriffe. Ein Beitraz zur Ökulogre der lithophyten. Berlin Deutch. Bot. Ges.32: 502–526.

    Google Scholar 

  271. Dillenius, J. J. 1741. Historia muscorum. Oxonii.

  272. Dillwyn, L. W. 1809. British confervae. London.

  273. Doemel, W. N. andT. D. Brock. 1971. The physiological ecology ofCyanidium caldarium. J. Gen. Microbiol.67: 17–32.

    Google Scholar 

  274. Domracheva, L. I. 1977. A study of spatial distribution of algae in soil. Bot. Žum. (Moscow & Leningrad)62: 1748–1753.

    Google Scholar 

  275. Dooley, F. andJ. A. Houghton. 1974. The nitrogen-fixing capabilities and the occurrence of blue-green algae in peat soils. Brit. Phycol. J.8: 289–293.

    Article  Google Scholar 

  276. ——. 1974. The physiology of some blue-green algal isolates from peat. Brit. Phycol. J.8: 295–300.

    Article  Google Scholar 

  277. Draganov, S. I. 1964. Research on algal flora of the soil in Bulgaria. I. Composition and propagation (spread) of blue-green algae in chernozem-clayey soil of a Sofian field. Godishnik Sof. Univ. Biol. Fak.57(1).

  278. Drebes, G. 1966. On the life history of the marine plankton diatomStephanopyxis palmeriana. Helgoländer Wiss. Meeresuntersuch.13: 101–114.

    Article  Google Scholar 

  279. Drew, E. A. andJ. R. Anderson. 1977. Studies on the survival of algae added to chemicallytreated soils. I. Methodology. Soil Biol. Biochem.9: 207–215.

    Article  Google Scholar 

  280. Drewes, K. 1928. Über die Assimilation des Luftstickstoffs durch Blaualgen. Zentralbl. Bakteriol., Hyg. 2. Abt.76: 88–101.

    CAS  Google Scholar 

  281. Drouet, F. 1937. The Brazilian myxophyceae. Amer. J. Bot.24: 598–608.

    Article  Google Scholar 

  282. —. 1943. Myxophyceae of eastern California and western Nevada. Florida Mus. Nat. Hist. Bot. Ser.20: 145–176.

    Google Scholar 

  283. —. 1958. Distribution of algae on the A. F. C. Nevada Test Site. 1958.In: A botanical study of nuclear effects on the Nevada Test Site, 1958. New Mexico Highland Univ., Las Vegas, New Mexico.

    Google Scholar 

  284. —. 1960. Algal flora of the Nevada Test Site. J. Colorado-Wyoming Acad. Sci.4: 31.

    Google Scholar 

  285. —. 1962a. The Oscillatoriaceae and their distribution in Antarctica. Polar Record11: 320–321.

    Google Scholar 

  286. —. 1962b. Gomont’s ecophenes of the blue-green alga,Microcoleus vaginatus (Oscillatoriaceae). Proc. Acad. Nat. Sci. Philadelphia114: 191–205.

    Google Scholar 

  287. —. 1963. Ecophenes ofSchizothrix calcicola (Oscillatoriaceae). Proc. Acad. Nat. Sci. Philadelphia115: 261–281.

    Google Scholar 

  288. —. 1964. Ecophenes ofMicrocoleus chtonoplastes. Rev. Algol.7: 315–324.

    Google Scholar 

  289. -. 1968. Revision of the classification of the Oscillatoriaceae. Monograph 15. The Acad. of Natural Sciences of Philadelphia.

  290. —. 1973. Revision of the Nostocaceae with cylindrical trichomes. Hafner Press, New York.

    Google Scholar 

  291. — andW. A. Daily. 1956. Revision of the coccoid Myxophyceae. Butler Univ. Bot. Stud.12: 1–218.

    Google Scholar 

  292. Durrell, L. W. 1956. Microgreenhouses. The Green Thumb. July 17.

  293. —. 1959. Algae in Colorado soils. Amer. Midl. Naturalist61: 322–328.

    Article  Google Scholar 

  294. —. 1962. Algae of Death Valley. Trans. Amer. Microscop. Soc.81: 268–273.

    Google Scholar 

  295. —. 1963a. Algae in tropical soils. Trans. Amer. Microscop. Soc.83: 79–85.

    Google Scholar 

  296. —. 1963b. Notes onCylindrospermum majus Kuetz. Trans. Amer. Microscop. Soc.83: 460.

    Google Scholar 

  297. — andL. M. Shields. 1961. Characteristics of soil algae relating to crust formation. Trans. Amer. Microscop. Soc.80: 73–79.

    Article  Google Scholar 

  298. Dutt, A. K., T. K. Datta andK. K. Gupta. 1976. Studies on high altitude saxicolous Cyanophyta: IV.Hyphomorpho borzu, sp. nov., a new alga from India. Giorn. Bot. Ital.110: 173–178.

    Google Scholar 

  299. Dutta, N. andC. Venkataraman. 1958. An exploratory study of the algae of some cultivated and uncultivated soils. Indian J. Agr.3: 109–115.

    Google Scholar 

  300. Duvigneaud, P. andJ. J. Symoens. 1950. Sur la strate algale des formations herbeuses du sud du Congo Belge. Compt. Rend. Hebd. Séances Acad. Sci.230: 676–678.

    Google Scholar 

  301. Dykstra, R. 1966. An investigation of some algae of the Texas Gulf coast. M. A. Thesis, Univ. of Texas, Austin.

    Google Scholar 

  302. —. 1971.Borodinellopsis texensis gen. et sp. nov. a new alga from the Texas Gulf Coast.In: B. C. Parker and R. M. Brown, Jr. (eds.). Contributions in phycology. Allen Press, Lawrence, Kansas.

    Google Scholar 

  303. Dykstra, R. F., F. MacEntee andH. C. Bold. 1975. Some edaphic algae of the Texas coast. Texas J. Sci.26: 171–177.

    Google Scholar 

  304. Ehi, H. 1964a. Über eine besondere form vonAsterococcus superbus und deren systematisch Stellung. Österr. Bot. Z.111: 354–365.

    Article  Google Scholar 

  305. Ehrenberg, C. G. 1843. Verbreitung und einfluss des mikroskopischen lebenz in Süd- und Nordamerika. Abh. Berl. Akad.

  306. -. 1854. Mikrogeologie. Leipzig.

  307. Ellis, R. J. andL. Machlis. 1968. Control of sexuality inGolenkinia. Amer. J. Bot.55: 600–610.

    Article  Google Scholar 

  308. Ellner, P. D. andE. Steers. 1955. Urea as a carbon source forChlorella andScenedesmus. Arch. Biochem. Biophys.59: 534–535.

    PubMed  CAS  Article  Google Scholar 

  309. El-Nawawy, N. A. S. andY. A. Hamadi. 1975. Research on blue-green algae in Egypt, 1958–1972.In: W. D. P. Stewart (ed.). Nitrogen fixation by free-living microorganisms. IBP. Programme 6. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  310. Elwell, H. M., J. W. Slosser andH. A. Daniel. 1939. Revegetative and gully-control experiments in the Red Plains Region. Soil Conservation5: 17–20.

    Google Scholar 

  311. Emeis, C. C. 1956. Untersuchungen über die antibakteriellen eigenschaften der algen. Akiv. Hygiene Bakteriol.140: 597–604.

    CAS  Google Scholar 

  312. England, R. B. 1958. A quantitative comparison of soil algae of central Oklahoma prairie and woodland soils. M. S. Thesis, Univ. of Oklahoma, Norman.

    Google Scholar 

  313. Engle, H. B. andL. McMurtey. 1940. Effect of algae in relation to aeration, light, and sources of phosphorus on growth of tobacco in solution cultures. J. Agric. Res.60: 487–502.

    CAS  Google Scholar 

  314. Englund, B. 1978. Algal nitrogen fixation on the lava field of Heimae, Ireland. Oecologia (Berlin)34: 45–56.

    Article  Google Scholar 

  315. Ercegovic, A. 1925. La vegetation des lithophytes sur les calcaires et les dolomitesen Croatie. Acta Bot. Inst. Bot. Univ. Zagreb1: 64–114.

    Google Scholar 

  316. Erickson, L. C., R. T. Wedding andB. C. Brannaman. 1955. Influence of pH and 2,4-dichlorophenoxyacetic acid and acetic acid activity inChlorella. Pl. Physiol. (Lancaster)30: 69–74.

    CAS  Google Scholar 

  317. Esmarch, F. 1911. Beitrag zur Cyanophyceenflora unserer Kolonien. Hamburg Wiss. Anst.28: 3.

    Google Scholar 

  318. —. 1914. Unter suehungren über die Verbreitung der Cyanophyceen auf und in vershiedenem böden. Hedwigia55: 224.

    Google Scholar 

  319. Ettl, H. 1964. Zwei neue Arten der Chlorophyceen—GattungSphaerellocystis. Phycologia4: 93–98.

    Google Scholar 

  320. -. 1976. Die GattungChlamydomonas Ehrenberg. Beihefte Nova Hedwigia. Heft 49.

  321. Evans, H. J. andL. F. Barber. 1977. Biological nitrogen fixation for food and fiber production: What are some immediately feasible possibilities? Science197: 332–339.

    PubMed  CAS  Article  Google Scholar 

  322. Evans, J. H. 1958. The survival of freshwater algae during dry periods. I. An investigation of the algae of five small ponds. J. Ecol.46: 149–167.

    Article  Google Scholar 

  323. —. 1959. The survival of freshwater algae during dry periods. II. Drying experiments. III. Stratification of algae in pond margin litter and mud. J. Ecol.47: 55–81.

    Article  Google Scholar 

  324. Eyster, C. 1958. The micro-element nutrition ofNostoc muscorum. Ohio J. Sci.58: 25–33.

    CAS  Google Scholar 

  325. —. 1972.Nostoc muscorum; its mineral nutrition and its use as a bioassay organism.In: T. V. Desikachary (ed.). The taxonomy and biology of blue-green algae. Symp. at Univ. of Madras, India.

    Google Scholar 

  326. Fairchild, E. D. andD. L. Willson. 1967. The algal flora of two Washington soils. Ecology48: 1053–1055.

    Article  Google Scholar 

  327. Faridi, M. 1961. A monograph of the fresh-water species ofCladophora andRhizoclonium. Ph.D. Dissertation, Univ. of Kansas, Lawrence.

    Google Scholar 

  328. Favali, M. A., N. Barbieri andM. Bassi. 1978. A green alga growing on a plastic film used to protect archeological remains. Int. Biodeterio. Bull.14: 89–92.

    Google Scholar 

  329. Fay, P. 1976. Factors influencing dark nitrogen fixation in a blue-green alga. Appl. Environ. Microbiol.31: 376–379.

    PubMed  CAS  Google Scholar 

  330. Federov, V. D. andM. M. Tellichenko. 1965. The ecology and physiology of blue-green algae. Moscow Univ. Press, Moscow.

    Google Scholar 

  331. Fehér, D. 1936. Über die Algenflora des Waldbodens. Silva.24: 101–104.

    Google Scholar 

  332. —. 1948. Researches on the geographical distribution of soil microflora. II. The geographical distribution of soil algae. Erdeśzeti Kisérletek.48: 57–93.

    Google Scholar 

  333. — andM. Frank. 1936. Untersuchungen über die Lichtökologie der Bodenalgen. Arch. Mikrobiol.7: 1–31.

    Article  Google Scholar 

  334. ——. 1939. II. Der unmittelbare Beweis des autotrophen Algenwadrstum beim Abschluss des sichtbaren Anteils der strahlenden Energie. Arch. Mikrobiol.10: 264–274.

    Article  Google Scholar 

  335. ——. 1940. Erganzende Bemerkungen zu unserem Arbeiten über die Lichtökologie der Bodenalgen. Arch. Mikrobiol.11: 80–84.

    Article  Google Scholar 

  336. Fields, M. C. andD. D. Hemphill. 1968. Influence of Siduron and its degradation products on soil micro-flora. Weed Sci.16: 417.

    CAS  Google Scholar 

  337. Fletcher, J. E. andW. P. Martin. 1948. Some effects of algae and molds in the rain-crust of desert soils. Ecology29: 95–100.

    Article  Google Scholar 

  338. Fletcher, W. W., R. C. Kirkwood andD. Smith. 1970. Investigations on the effect of certain herbicides on the growth of selected species of micro-algae. Meded. Fac. Landb. Rijksuniv. Gent35: 855–867.

    CAS  Google Scholar 

  339. Flint, E. A. 1958. Biological studies of some tussock grassland. IX. Algae. Preliminary observations. New Zealand J. Agric. Res.1: 991–997.

    Google Scholar 

  340. —. 1960. Microbiology of some soils from Antarctica. Nature188: 767–768.

    PubMed  CAS  Article  Google Scholar 

  341. Flint, L. H. 1947. Antibiotic activity in the genusHapalosiphon. Proc. Louisiana Acad. Sci.10: 40–43.

    Google Scholar 

  342. —. 1958. A green sand from the gulf. Proc. Louisiana Acad. Sci.18: 22–24.

    Google Scholar 

  343. — andC. F. Moreland. 1946. Antibiosis in blue-green algae. Amer. J. Bot.33: 218.

    Article  Google Scholar 

  344. Flueckiger, W. 1976. The effect of simazine on apparent O2-production of soil algaDictyococcus engadiensis (Kol. et F. Chod.) Vischer. Biochem. Physiol. Pflanzen.170: 269–272.

    CAS  Google Scholar 

  345. Fogel, S., P. L. Foster, P. Schenck and W. W. Walker. 1976. Soil treatment methods: production of algal biopolymers. U.S. Patents 3,958,364 and 3,969,844.

  346. Fogg, G. E. 1942. Studies on nitrogen fixation by blue-green algae. I. Nitrogen fixation byAnabaena cylindrica Lemm. J. Exp. Biol.19: 78–87.

    CAS  Google Scholar 

  347. —. 1947. Nitrogen fixation by blue-green algae. Endeavour6: 172–175.

    Google Scholar 

  348. —. 1949. Growth and heterocyst production inAnabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism. Ann. Bot.13: 241–259.

    CAS  Google Scholar 

  349. —. 1951. Growth and heterocyst production inAnabaena cylindrica Lemm. III. The cytology of heterocysts. Ann. Bot.15: 23–25.

    Google Scholar 

  350. —. 1952. Production of extracellular nitrogenous substances by a blue-green alga. Proc. Royal Soc. London139: 372–397.

    CAS  Google Scholar 

  351. —. 1956. Nitrogen fixation by photosynthetic organisms. Ann. Rev. Pl. Physiol.7: 51–70.

    CAS  Article  Google Scholar 

  352. — andJ. D. A. Miller. 1958. The effect of organic substances on the growth of the freshwater algaMonodus subterraneus. Verh. Intern. Ver. Limnol.13: 892–895.

    CAS  Google Scholar 

  353. — andH. Pattnaik. 1967. The release of extracellular nitrogenous products byWestiellopsis prolifica Janet. Phykos5: 58–67.

    Google Scholar 

  354. — andW. D. P. Stewart. 1968. In situ determinations of biological nitrogen fixation in Antarctica. Br. Antarct. Surv. Bull.15: 39–46.

    Google Scholar 

  355. ——,P. Fay andA. E. Walsby. 1973. The blue-green algae. Academic Press, New York.

    Google Scholar 

  356. Folk, R. L., H. H. Roberts andC. H. Moore. 1973. Black phytokarst from Hell, Cayman Islands, British West Indies. Bull. Geol. Soc. Amer.84: 2351–2360.

    Article  Google Scholar 

  357. Forest, H. S. 1962. Analysis of the soil algal community. Trans. Amer. Microscop. Soc.81: 189–198.

    Article  Google Scholar 

  358. —. 1965. The soil algal community. II. Soviet soil studies. J. Phycol.1: 164–171.

    Article  Google Scholar 

  359. —,H. L. Chance andM. M. Davis. 1959. The application of bacterial cytological technique to the taxonomy of blue-green algae. Rev. Algol.4: 170–180.

    Google Scholar 

  360. — andK. R. Khan. 1972. The blue-green algae—A program of evaluation of Francis Drouet’s taxonomy.In: T. V. Desikachary (ed.). The taxonomy and biology of bluegreen algae. Univ. of Madras, India.

    Google Scholar 

  361. —,C. S. Miller andC. E. Ragen. 1963. Interrelation of three algae in prairie soil cultures. Ecology44: 165–167.

    Article  Google Scholar 

  362. — andC. R. Weston. 1966. Blue-green algae from the Atacama Desert of northern Chile. J. Phycol.2: 163–164.

    Article  Google Scholar 

  363. —,D. Willson andR. B. England. 1959. Algal establishment on sterilized soil replaced in an Oklahoma prairie. Ecology40: 475–477.

    Article  Google Scholar 

  364. Fott, B. 1957. Taxonomie der mikroskopischen flora einheimischer bewässen. Preslia29: 278–319.

    Google Scholar 

  365. —. 1974. Taxonomie der Palmelloiden Chlorococcales (Family Palmogloeaceae). Preslia46: 1–31.

    Google Scholar 

  366. — andM. Nováková. 1969. A monograph of the genusChlorella, The freshwater species.In: Fott (ed.). Studies in phycology. Academia. Prague.

    Google Scholar 

  367. ——. 1971. Taxonomy of the palmelloid generaGloeocystis Nägeli andPalmogloea Kötzung (Chlorophyceae). Arch. Protistenk.113: 322–333.

    Google Scholar 

  368. Francé, R. H. 1913. Das Edaphon. Untersuchungen zur oekologie der boden bewohnen den mikroorganismen. Deutsche Mikro. Ges. Arbeit. Ausd. Biol. Inst.2: 1–99.

    Google Scholar 

  369. Frank, B. 1889. Über den experimentellen nachweis der Assimilationfreien Stickstoffs durch erdbewohnede Algen. Ber. Deut. Bot. Ges.7: 34–42.

    Google Scholar 

  370. Franz, E. H. andG. M. Woodwell. 1973. Effects of chronic gamma irradiation on the soil algal community of an oak-pine forest. Radiation Bot.13: 323–329.

    Article  Google Scholar 

  371. Fraymouth, J. 1928. The moisture relations of terrestrial algae. III. The respiration of certain lower plants, including terrestrial algae, with special reference to the influence of drought. Ann. Bot.42: 75–100.

    CAS  Google Scholar 

  372. Fremy, P. 1925. Essai sur l’ecologie des algues saxicoles, aériennes et subaériennes en Normandie. Nuov. Notarisia36: 297–304.

    Google Scholar 

  373. Friedmann, E. I. 1961.Chroococcidiopsis kashaü sp. nov. and the genusChroococcidiopsis. Ost. Bot. Zeit.108: 354–367.

    Article  Google Scholar 

  374. —. 1964. Xerophytic algae in the Negev Desert. Abs. 10th Int. Bot. Congr. (1964): 290–291.

    Google Scholar 

  375. —. 1966. Microscopy of algal chromatophores. Phycologia6: 29–36.

    Google Scholar 

  376. —. 1968. Endolithic algae in calcareous desert rocks. Amer. Zool.8: 79A.

    Google Scholar 

  377. —. 1971. Light and scanning electron microscopy of the endolithic desert algal habitat. Phycologia10: 411–428.

    Google Scholar 

  378. —. 1972. Ecology of lithophytic algal habitats in middle, eastern, and north American deserts.In: L. F. Bodin (ed.). Eco-physiological foundation of ecosystems productivity in arid zone. U.S.S.R. Acad. Sci., Nauka, Leningrad.

    Google Scholar 

  379. — andM. Galun. 1974. Desert algae, lichens, and fungi.In: G. W. Brown, Jr. (ed.). Desert biology II. Academic Press, New York.

    Google Scholar 

  380. —,Y. Lipkin andR. Ocampo-Paus. 1967. Desert algae of the Negev (Israel). Phycologia7: 185–200.

    Google Scholar 

  381. — andR. Ocampo-Paus. 1965. A newChlorosarcinopsis from the Negev desert. J. Phycol.1: 185–191.

    Article  Google Scholar 

  382. ——. 1966.Bracteacoccus minor (Chodat) Petrova var.desertorum n. var., a remarkable alga from the Negev. Nova Hedwigia10: 481–494.

    Google Scholar 

  383. ——. 1976. Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science193: 1247–1249.

    PubMed  Article  CAS  Google Scholar 

  384. Fries, E. M. 1825. Systema orbis vegetabilis. Lund, Sweden.

  385. Fritsch, F. E. 1907a. The role of algal growth in the colonization of new ground and in the determination of scenery. Geogr. J. (London)30: 531–548.

    Google Scholar 

  386. —. 1907b. A general consideration of the sub-aerial and freshwater algae of Ceylon. Proc. Roy. Soc. London79: 197–254.

    Google Scholar 

  387. —. 1916. The morphology and ecology of an extreme terrestrial form ofZygnema (Zygogonium) erecetoum, (Kütz) Hansg. Ann. Bot.30: 135.

    Google Scholar 

  388. —. 1922a. The terrestrial alga. J. Ecol.10: 220–236.

    Article  Google Scholar 

  389. —. 1922b. The moisture relations of terrestrial algae. I. Ann. Bot.36: 1–20.

    Google Scholar 

  390. —. 1936. The role of the terrestrial alga in nature.In: Essays in geobotany in honor of W. A. Setchell. Univ. of Calif., Berkeley.

    Google Scholar 

  391. —. 1944.Cladophorella calcicola, nov. gen. et sp., a terrestrial member of the Cladophorales. Ann. Bot.8: 157–171.

    Google Scholar 

  392. — andG. M. Haines. 1923. The moisture relations of terrestrial algae. II. Ann. Bot.37: 683–728.

    Google Scholar 

  393. — andR. John. 1942. An ecological and taxonomic study of the algae of British soils. II. Consideration of the species. Ann. Bot.6: 371–395.

    Google Scholar 

  394. — andW. Salisbury. 1915. Further observations on the heath association Hinheadcomnion. New Phytol.14: 116.

    Article  Google Scholar 

  395. Froggatt, P. J., P. J. Keay, J. F. Whitty, P. J. Dart and J. M. Day. 1972. Nitrogen fixation by free-living microorganisms. Report of the Rothamsted Exp. Sta. for 1972. Part 1: 87.

  396. Fukushima, H. 1959. General reports on the fauna and flora of the Ongul Island, Antartica, especially on freshwater algae. J. Yokohama Munic. Univ., Ser. C-31, No. 112.

  397. Fuller, W. H., R. E. Cameron andN. Raica. 1960. Fixation of nitrogen in desert soils by algae.In: Trans. 7th Cong. Intl. Soil. Sci. Madison3: 617–624.

    Google Scholar 

  398. — andR. N. Rogers. 1952. Utilization of the phosphorus of algal cells as measured by the Neubauer technique. Soil Sci.74: 417–430.

    CAS  Google Scholar 

  399. Gallon, J. R., T. A. LaRue andW. G. W. Kurz. 1972. Characteristics of nitrogenase activity in broken cell preparations of the blue-green algaGloeocapsa sp. LB 795. Canad. J. Microbiol.18: 327–332.

    CAS  Google Scholar 

  400. Gangawane, L. V. andR. S. Saler. 1979. Tolerances of certain fungicides by nitrogenfixing blue-green algae. Curr. Sci.48: 306–308.

    CAS  Google Scholar 

  401. Gärtner, G. 1976. List of the culture collection of algae at the Institute for Botanische Systematik und Geobotanik der Universität Innsbruck. Ber. Naturwiss. Med. Vereins Innsbruck63: 67–89.

    Google Scholar 

  402. Geitler, L. 1925. Cyanophyceae.In: A. Pascher (ed.). Die Süsswasserflor Deutschlands, Österreich und der Schweiz. Cyanophyceae.

  403. -. 1932. Cyanophyceae.In: L. Rabenhorst (ed.). Kryptogamenflora von Deutschland, Österreich und der Schweiz. Akad. Verlags Geseihschaft Leipzig 14: 673–1056.

  404. —. 1942. Zur Kenntns der Bewohner des Obaerflächen Häutchens einheimischer Gewässer. Biol. Gen.16: 450–475.

    Google Scholar 

  405. —. 1959. Die GattungCyanidium. Österr. Bot. Z.106: 172–173.

    Google Scholar 

  406. —. 1964. Zwei neue Sippen vonScotiella (Chlorophyceae). Österr. Bot. Z.111: 166–172.

    Article  Google Scholar 

  407. —. 1966. Die ChlorococcalenDictyochloris andDictyochlompsis, nov. gen. Österr. Bot. Z.113: 155–164.

    Article  Google Scholar 

  408. Gel’fand, E. S., M. A. Pusheva, M. M. Telitchenko andI. S. Shesterin. 1973. Study of the interrelation of protococcal green algae. Bjull. Moskovsk. Obsc. Isp. Prir., Otd. Biol.78: 127–131.

    Google Scholar 

  409. Geoghegan, M. J. 1957. The effect of some substituted methylureas on the respiration ofChlorella vulgaris var.viridis. New Phytol.56: 71–80.

    CAS  Article  Google Scholar 

  410. Gerloff, G. C., G. P. Fitzgerald andF. Skoog. 1950. The isolation, purification, and culture of blue-green algae. Amer. J. Bot.37: 216–218.

    CAS  Article  Google Scholar 

  411. Gerson, V. 1976a. The associations of algae with arthropods. Rev. Algol.11: 213–234.

    Google Scholar 

  412. —. 1976b. Associations of algae with arthropods. Addendum. Rev. Algol.11: 235–247.

    Google Scholar 

  413. Ghabbour, S. I., E. Y. El-Ayouty, M. S. Khadr andA. S. El-Tonsi. 1980. Grazing by microfauna and productivity of heterocystous nitrogen-fixing blue-green algae in desert soils. Oikos34: 209–218.

    Article  Google Scholar 

  414. Ghose, S. L. 1923. A systematic and ecological account of a collection of blue-green algae from Lahore and Simla. J. Linn. Soc, Bot.46: 333–346.

    Google Scholar 

  415. Gistl, R. 1932. Zur kenntnis der erdalgen. Arch. Mikrobiol.3: 634–649.

    CAS  Article  Google Scholar 

  416. —. 1933. Erdalgen und dungung. Arch Mikrobiol.4: 348–378.

    Article  Google Scholar 

  417. Glade, E. 1914. Zur kenntnis der GattungCylindrospermum. Beitr. Biol. Pflanzen.12: 295–343.

    Google Scholar 

  418. Glazovskaya, M. A. 1950. Rock weathering in the arable belt of central Tyan-Shan. Trudy Inst. Pocvov. Srdne-Aziatsk. Gosvd. Univ., Kazahstansk Ser.34: 28–48.

    Google Scholar 

  419. Gollerbakh, M. M. 1953. The role of algae in soil processes. Trudy Inst. Mikrobiol. (Moscow)1951: 98–108; 221–222.

    Google Scholar 

  420. —,L. N. Novichkova andN. V. Sdubnikova. 1956. The algae of takyrs.In: Takyrs of western Turkmeiua and routes of their agricultural conquest. Izd. AN S.S.S.R., Moscow.

    Google Scholar 

  421. — andE. A. Shtina. 1969. Soil algae. Acad. Sci. U.S.S.R., Moscow.

    Google Scholar 

  422. Gomont, M. 1892. Monographie des Oscillariees. Ann. Sci. Nat. Ser. VII. Bot. Tom.: 15–16.

  423. Gonzalves, E. A. andK. S. Gangla. 1949a. Observations on the algae of paddy field soils. J. Univ. Bombay18: 51–59.

    Google Scholar 

  424. ——. 1949b. The algae of cultivated soils with similar physical texture. Proc. Indian Sci. Congr. 36, IV,8: 6.

    Google Scholar 

  425. ——. 1949c. The algae of soils differing in physical texture. Proc. Indian Sci. Congr. 36, IV,7: 6.

    Google Scholar 

  426. -and V. S. Yalavigi. 1960. Algae in the rhizosphaeres of some crop plants.In: D. Raghaven and P. Kachvoo (eds.). Proc. symp. algology. Indian Coun. Agric. Res. New Delhi 1959: 335–342.

  427. Graebner, P. 1895. Studien über die norddeutsche heide. Bot. Jahrb. Syst.20: 500.

    Google Scholar 

  428. Granhall, O. 1970. Acetylene reduction by blue-green algae isolated from Swedish soils. Oikos21: 330–332.

    CAS  Article  Google Scholar 

  429. Granhall, U. 1975. Nitrogen fixation by blue-green algae in temperate soils.In: W. D. P. Stewart (ed.). Nitrogen fixation by free-living microorganisms. IBP Programme 6, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  430. — (ed.). 1976. Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria. Ecological Bulletins NFR Vol. 26. Proc. Inter. Symp. Uppsala, Sweden.

    Google Scholar 

  431. — andE. Henriksson. 1969. Nitrogen-fixing blue-green algae in Swedish soils. Oikos20: 175–178.

    Article  Google Scholar 

  432. — andH. Selander. 1973. Nitrogen fixation in a subarctic mine. Oikos24: 8–15.

    Article  Google Scholar 

  433. Gray, E. A. 1975. Survival ofEscherichia coli in stream water in relation to carbon dioxide and plant (the algaStichococcus bacillaris) photosynthesis. J. Appl. Bacteriol.38: 47–54.

    Google Scholar 

  434. Gregory, W. W., J. K. Reed andL. E. Priester. 1969. Accumulation of parathion and DDT by some algae and protozoa. J. Protozool.16: 69–71.

    PubMed  CAS  Google Scholar 

  435. Grintzesco, J. 1929. Contribution a l’étude de la microflore des sols de Roumaine. Congr. Intl. Agric. Bucarest Actes4: 565–568.

    Google Scholar 

  436. — andS. Péterfi. 1932. Sur quelques espèces appartenant au genreStichococcus de Roumaine. Rev. Algol.6: 159–175.

    Google Scholar 

  437. Gromov, B. V. 1957. The microflora of rock layers and primitive soils of some northern districts of the U.S.S.R. Mikrobiologya26: 52–59.

    CAS  Article  Google Scholar 

  438. —. 1964. Bacteria of the genusCaulobacter accompanying algae. Mikrobiolgiya33: 263–268.

    Google Scholar 

  439. Groover, R. D. andH. C. Bold. 1968. Phycological notes I.Oocystis polymorpha, sp. nov. Southw. Naturalist13: 129–135.

    Google Scholar 

  440. -and-. 1969. Phycological studies VIII. The taxonomy and comparative physiology of the Chlorosarcinales. Univ. of Texas Publ. No. 6907, Austin.

  441. — andA. M. Hofstetter. 1969.Planophila terrestris, a new green alga from Tennessee soil. Tulane Stud. Zool. & Bot.15: 75–80.

    Google Scholar 

  442. Gruia, L. 1970a. Algae of the soils of the Girbova Massif (Romania). Ann. Univ. Bucur. Biol. Veg.19: 109–115.

    Google Scholar 

  443. —. 1970b. Algae new to the flora of Romania: II. Xanthophyceae. Stud. Cercet. Biol. (Bucharest)22: 457–465.

    Google Scholar 

  444. —. 1971. Soil algae of the agigea Dunes Nature Preserve. Ocrot. Nat.15: 57–60.

    Google Scholar 

  445. —. 1973. Soil inhibiting algae of the region of the river Diftana, Romania: II. Ann. Univ. Bucur. Biol. Veg.22: 93–100.

    Google Scholar 

  446. Guillard, R. R. L., H. C. Bold andF. J. MacEntee. 1975. Four new unicellular chlorophycean algae from mixohaline habitats. Phycologia14: 13.

    Google Scholar 

  447. Gupta, A. B. 1955. OnScytonematopsis Kisselewa, a little known genus of Myxophyceae. Hydrobiologia7: 373–380.

    Google Scholar 

  448. Gupta, G. S. andP. N. Saxena. 1974. Effect of Panacide on some green and blue-green algae. Curr. Sci.43: 492–493.

    Google Scholar 

  449. — andA. C. Shukla. 1964. The effect of algae hormones on the growth and development of rice seedlings. Labd. J. Sci. Technol.2: 204.

    Google Scholar 

  450. Hadfield, W. 1960. Rhizosphere effect on soil algae. Nature185: 178–179.

    Article  Google Scholar 

  451. Hancock, K. F. 1960. Some factors affecting growth and production of motile cells in five chlorococcacean algae. Ph.D. Dissertation, Univ. of Alabama, Tuscaloosa.

    Google Scholar 

  452. Harder, R. 1917. Ernahrungsphsiologische untersuchengen an Cyanophyceen, nauptsachlich dem eudo phytischenNostoc puntiforme. Z. Bot.9: 145–242.

    Google Scholar 

  453. — andA. Oppermann. 1953. Über antibiotische Stoffe ben den grun AlgenStichococcus bacillaris undProtosiphon botryoides. Arch. Mikrobiol.19: 398–401.

    PubMed  CAS  Article  Google Scholar 

  454. Hardy, R. W. F., R. C. Burns andR. D. Holsten. 1973. Applications of the acetyleneethylene assay for measurement of nitrogen fixation. Soil Biol. Biochem.5: 47–81.

    CAS  Article  Google Scholar 

  455. — andA. H. Gibson (eds.). 1977. A treatise on dinitrogen fixation. J. Wiley and Sons, New York.

    Google Scholar 

  456. Hassall, K. A. 1961. Toxicity of trichloroacetates toChlorella vulgaris. Physiol. Pl. (Copenhagen)14: 140–149.

    CAS  Article  Google Scholar 

  457. Hauke-Pacewiczowa, T. 1971. The effect of herbicides on the activity of soil microflora. Pam. Pulawski46: 5–48.

    Google Scholar 

  458. Haystead, A. andW. D. P. Stewart. 1972. Characteristics of the nitrogenase system of the blue-green algaAnabaena cylindrica. Arch. Mikrobiol.82: 325–326.

    PubMed  CAS  Article  Google Scholar 

  459. Heering, W. 1907. Die Süsswasseralgen Schleswig-Holsteins. II. Chlorophyceae. Jahrb. Hamburg Wiss. Anst.24: 103–131.

    Google Scholar 

  460. -. 1914. Ulotrichales, Microsporales, Oedogoniales.In: A. Pascher (ed.). Die Süsswassflora Deutschlands, Österreich und der Schweiz. 6: Chlorophyceae. 3: 1–250.

  461. -. 1921. Siphonocladales, Siphonales.In: A. Pascher (ed.). Die Süsswasserflora Deutschlands, Österreich und der Schweiz. 7: Chlorophyceae. 4: 1–103.

  462. Helling, C. S. 1971. Pesticide mobility in soils. II. Applications of soil thin-layer chromatography. Soil Sci. Soc. Amer. Proc.35: 737–743.

    CAS  Google Scholar 

  463. -and D. D. Kaufman. 1970. Bioassay detection of pesticide movement on soil thinlayer Chromatographie plates. Abstr. Meet. Weed Soc. Amer. No. 105.

  464. —,D. F. Kaufman andC. T. Dieter. 1971. Algae bioassay in detection of pesticide mobility in soils. Weed Sci.19: 685–690.

    CAS  Google Scholar 

  465. Hemphill, D. D. and M. L. Fields. 1967. Effects of prolonged use of certain herbicides on soil microorganisms. Abstr. Meet. Weed Soc. Amer. No. 36.

  466. Henriksson, E. 1971. Algal nitrogen fixation in temperate regions.In: T. A. Lie and E. G. Mulder (eds.). Biological nitrogen fixation in natural and agricultural habitats. Pl. & Soil Special Vol.

  467. —,P. H. Enckell andE. Henriksson. 1972a. Determination of the nitrogen fixing capacity of algae in soil. Oikos23: 420–423.

    Article  Google Scholar 

  468. —,B. Englund, M. B. Heden andI. Was. 1972b. Nitrogen fixation in Swedish soils by blue-green algae.In: T. V. Desikachary (ed.). Taxonomy and biology of blue-green algae. Univ. Madras, India.

    Google Scholar 

  469. —,L. E. Henriksson andE. J. DaSilva. 1975. A comparison of nitrogen fixation by algae of temperate and tropical soils.In: W. D. P. Stewart (ed.). Nitrogen fixation by free-living microorganisms. Intl. Biol. Prog., Cambridge Univ. Press, Cambridge 6: 199–206.

    Google Scholar 

  470. Herndon, W. 1958a. Studies on chlorosphaeralean algae from soil. Amer. J. Bot.45: 298–307.

    Article  Google Scholar 

  471. —. 1958b. Some new species of chlorococcacean algae. Amer. J. Bot.45: 308–323.

    Article  Google Scholar 

  472. Hill, G. J. C. andL. Machlis. 1970. Defined medium for growth and gamete production by the green algaOedogonium cardiacum. Pl. Physiol. (Lancaster)46: 224–226.

    CAS  Google Scholar 

  473. Hill, I. R. andS. J. L. Wright (eds.). 1978. Pesticide microbiology. Academic Press, London.

    Google Scholar 

  474. Hilton, R. andF. Trainor. 1963. Algae from a Connecticut soil. Pl. & Soil19: 396–399.

    Article  Google Scholar 

  475. Hindák, F. 1962. System atische Revision der GattungenFusola Snow undElakatothrix Wille. Preslia34: 277–292.

    Google Scholar 

  476. —. 1968.Fottea cylindrica gen. et sp. nov., a new member of the ulotrichacean algae. Preslia40: 337–341.

    Google Scholar 

  477. —. 1970. Culture collection of algae at laboratory of algology in Trebon. Arch. Hydrobiol. Supp. 39. Algol. Stud.3: 86–126.

    Google Scholar 

  478. Hoare, D. S., S. L. Hoare andA. J. Smith. 1972. Heterotrophic potentialities of the blue-green algae.In: T. V. Desikachary (ed.). The taxonomy and biology of blue-green algae. Symp. at Univ. of Madras, India.

    Google Scholar 

  479. Hoek, C. V. 1963. Nomenclatural typification of some unicellular and colonial algae. Nova Hedwigia6: 277–296.

    Google Scholar 

  480. Höfler, K. 1951. Zur Kalteresistenz einiger Hochmoor algen. Verh. Zool.-Bot. Ges. Wien.92: 234–241.

    Google Scholar 

  481. Hofstetter, A. M. 1968. A preliminary report of the algal flora from selected areas of Shelby Co. J. Tennessee Acad. Sci.43: 20–21.

    Google Scholar 

  482. Holm-Hansen, O. 1963a. Viability of blue-green and green algae after freezing. Physiol. Pl. (Copenhagen)16: 530–540.

    Article  Google Scholar 

  483. —. 1963b. Algae: nitrogen fixation by Antarctic species. Science139: 1050–1060.

    Article  Google Scholar 

  484. —. 1964. Isolation and culture of terrestrial and freshwater algae of Antarctica. Phycologia4: 43–51.

    Google Scholar 

  485. —. 1968. Ecology, physiology, and biochemistry of blue-green algae. Ann. Rev. Microbiol.22: 47–70.

    CAS  Article  Google Scholar 

  486. —,G. C. Gerloff andF. Skoog. 1954. Cobalt as an essential element for blue-green algae. Physiol. Pl. (Copenhagen)7: 665–675.

    CAS  Article  Google Scholar 

  487. Horne, A. J. 1972. The ecology of nitrogen fixation in Signy Island, South Orkney Islands. Brit. Antarct. Surv. Bull.27: 1–18.

    Google Scholar 

  488. Huang, Chi-Yng. 1978. Effects of nitrogen-fixing activity of blue-green algae on the yield of rice plants. Bot. Bull. Acad. S.19(1): 41–52.

    CAS  Google Scholar 

  489. Huge, P. L. 1970. Contribution to study of the influence of methbenzthiazuron on the soil microorganisms. Meded. Fac. Landbouwwet. Rijksuniv. Gent35: 811–827.

    CAS  Google Scholar 

  490. Hunt, C. B. andL. W. Durrell. 1966. Distribution of fungi and algae. U.S. Geol. Surv. Prof. Pap.509: 55–66.

    Google Scholar 

  491. Hunt, M. E., G. L. Floyd andB. B. Stout. 1979. Soil algae in field and forest environments. Ecology60: 362–375.

    CAS  Article  Google Scholar 

  492. Ibrahim, A. N. 1972. Effect of certain herbicides on growth of nitrogen-fixing algae and rice plants. Symp. Biol. Hungary11: 445–448.

    CAS  Google Scholar 

  493. Ichimura, T. 1976. Axenic culture ofOocuptaenium elegans from Nepal. Bull. Jap. Soc. Phycol.24: 75–77.

    Google Scholar 

  494. Ikawa, M., D. S. Ma, G. B. Meeker andR. P. Davis. 1969. Use ofChlorella in mycotoxin and phycotoxin research. J. Agric. Food Chem.17: 425–429.

    CAS  Article  Google Scholar 

  495. Inger, L. 1970. Effect of two herbicides on nitrogen fixation by blue-green algae. Sud. Bot. Tidskr.64: 460–461.

    Google Scholar 

  496. Ionescu-Teculescu, V. andC. Chirila. 1971. Contributions to the knowledge of the algae in the rice cultures of Chirnogi (Ilfor). Ann. Univ. Bucur. Biol. Veg.20: 123–130.

    Google Scholar 

  497. Ishizawa, S. and T. Matsuguchi. 1966. Effects of pesticides and herbicides upon microorganisms in soil and water under waterlogged conditions. Bull. Nat. Inst. Agric. Sci., Tokyo (B)16: 1–90.

    Google Scholar 

  498. Iynegar, M. O. P. 1932.Fritschiella, a new terrestrial member of the Chaetophoraceae. New Phytol.31: 329–335.

    Article  Google Scholar 

  499. Izerott, H. 1937. Untersuchungen zum Wasserhaushalt vonPrasiola crispa. Jahrb. Wiss. Bot.84: 254–275.

    Google Scholar 

  500. Jacobs, R. andO. Lind. 1977. The combined relationship of temperature and molybdenum concentration to nitrogen fixation byAnabaena cylindrica. Microbial Ecol.3: 205–217.

    CAS  Article  Google Scholar 

  501. Jacobsen, H. C. 1910. Kulturversuche mit einigen niederen Volvocaceen. Z. Bot.2: 145.

    Google Scholar 

  502. Jacq, V. andP. A. Roger. 1977. Decrease of losses due to sulfate reducing processes in the spermosphere of rice by presoaking seeds in a culture of blue-green algae. Cah. O. R. S. T. O. M. Ser. Biol.12: 101–108.

    Google Scholar 

  503. Jagnow, G. 1973. The influence of irrigation and crop rotation on the humus and nitrogen balance and soil productivity in the Sodan Gezira. Z. Pflanzen. Boden Kd.134: 20–32.

    CAS  Article  Google Scholar 

  504. Jahnke, E. 1967. Die Rolle stickstoffbindender Blaualgen in mecklenburgischen Boden. Zentralbl. Bakteriol., Hyg. 2. Abt.121: 636–642.

    CAS  Google Scholar 

  505. Jakob, H. 1954a. Sur les propriétes antibiotiques et énergiques d’une algue du sol:Nostoc muscorum. Compt. Rend. Hebd. Séances Acad. Sci.238: 2018–2020.

    CAS  Google Scholar 

  506. —. 1954b. Compatibilités et antagonismes entre algues du sol. Compt. Rend. Hebd. Séances Acad. Sci.238: 938–941.

    Google Scholar 

  507. James, B. S., S. K. Hyun, E. W. Lee and A. Watanabe. 1970. An observation on the effects of nitrogen fixing blue-green algae at acidic soil of rice fields in Korea.In: T. V. Desikachary (ed.). Taxonomy and biology of blue-green algae. Symposium at Madras, India.

  508. James, E. J. 1935. An investigation of the algal growth in some naturally-occurring soils. Beih. Bot. Centralbl.53: 9–553.

    Google Scholar 

  509. James, P. F. 1955. The limits of life. J. Brit. Interplanetary Soc.14: 265–266.

    Google Scholar 

  510. Janet, M. 1941.Westiellopsis prolifica, gen. et sp. nov., a new member of the Stigonemataceae. Ann. Bot.5: 167–170.

    Google Scholar 

  511. Jha, K., M. A. Ali, R. N. Singh andP. Bhattacharya. 1965. Increasing rice production through the inoculation ofTolypothrix tenuis, a nitrogen-fixing blue-green alga. J. Indian Soc. Soil Sci.13: 161–166.

    Google Scholar 

  512. John, R. P. 1942. An ecological and taxonomic study of the algae of British soil. I. The distribution of the surface growing algae. Ann. Bot.6: 323–349.

    Google Scholar 

  513. Johnson, A. 1962a. Precursory studies on the epiterranean soil algae of Singapore and Malaya. Garden Bull., Singapore19: 379–384.

    Google Scholar 

  514. —. 1962b. A short note on some soil algae from New Guinea. Garden Bull., Singapore19: 375–377.

    Google Scholar 

  515. —. 1969. Blue-green algae of Malaysian rice fields. J. Singapore Nat. Acad. Sci.1: 30–36.

    Google Scholar 

  516. —. 1974a. A survey of the occurrence of epiterranean soil algae in Singapore Island. Garden Bull., Singapore26: 289–302.

    Google Scholar 

  517. —. 1974b. The soil algae of Cibodas Forest Reserve. Reinwardtia8: 495–498.

    Google Scholar 

  518. Jones, C. P. T. andJ. E. Mollison. 1948. A technique for the quantitative estimation of soil microorganisms. J. Gen. Microbiol.2: 54–69.

    CAS  Google Scholar 

  519. Jones, D. andE. Griffiths. 1964. The use of thin soil sections for the study of soil microorganisms. Pl. & Soil20: 232–240.

    Article  Google Scholar 

  520. Jones, J. 1930. An investigation into the bacterial associations of some Cyanophyceae with special reference to their nitrogen supply. Ann. Bot.44: 721–740.

    CAS  Google Scholar 

  521. Jones, K. 1977a. Acetylene reduction in the dark by mats of blue-green algae in sub-tropical grassland. Ann. Bot.41: 807–812.

    CAS  Google Scholar 

  522. —. 1977b. Acetylene reduction by blue-green algae in subtropical grassland. New Phytol.78: 421–426.

    CAS  Article  Google Scholar 

  523. —. 1977c. The effects of temperature on acetylene reduction by mats of blue-green algae in sub-tropical grassland. New Phytol.78: 433–436.

    CAS  Article  Google Scholar 

  524. —. 1977d. The effects of moisture on acetylene reduction by mats of blue-green algae in sub-tropical grassland. Ann. Bot.41: 801–806.

    CAS  Google Scholar 

  525. Jorgensen, E. G. 1956. Growth-inhibiting substances formed by algae. Physiol. Pl. (Copenhagen)9: 712–736.

    CAS  Article  Google Scholar 

  526. Jurgensen, M. F. 1973. Relationship between non-symbiotic nitrogen fixation and soil nutrient status: A review. J. Soil Sci.24: 512–522.

    CAS  Article  Google Scholar 

  527. — andC. B. Davey. 1968. Nitrogen-fixing blue-green algae in acid forest and nursery soils. Canad. J. Microbiol.14: 1179–1183.

    CAS  Google Scholar 

  528. Kabirov, R. R. 1978. Methods for studying the numbers and biomass of soil algae. Pocvověděnie5: 125–129.

    Google Scholar 

  529. — andR. G. Minibaev. 1976. Effect of the nanorelief on characteristics of soil algae. Bot. Z.61: 373–377.

    Google Scholar 

  530. Kaiser, P. andH. Reber. 1970. Interactions between simazine and the rhizosphere microorganisms of maize. Meded. Fac. Landb. Rijksuniv. Gent35: 689–705.

    CAS  Google Scholar 

  531. Kale, S. R. 1972. Effect of light on the development of heterocysts inAnabaena ambigua Rao.In: T. V. Desikachary (ed.). The taxonomy and biology of blue-green algae. Univ. of Madras, India.

    Google Scholar 

  532. —. 1969. Blue-green algae of Malaysian rice fields. J. Singapore Nat. Acad. Sci.1: 30–36.

    Google Scholar 

  533. —. 1974a. A survey of the occurrence of epiterranean soil algae in Singapore Island. Garden Bull., Singapore26: 289–302.

    Google Scholar 

  534. —. 1974b. The soil algae of Cibodas Forest Reserve. Reinwardtia8: 495–498.

    Google Scholar 

  535. Jones, C. P. T. andJ. E. Mollison. 1948. A technique for the quantitative estimation of soil microorganisms. J. Gen. Microbiol.2: 54–69.

    CAS  Google Scholar 

  536. Jones, D. andE. Griffiths. 1964. The use of thin soil sections for the study of soil microorganisms. Pl. & Soil20: 232–240.

    Article  Google Scholar 

  537. Jones, J. 1930. An investigation into the bacterial associations of some Cyanophyceae with special reference to their nitrogen supply. Ann. Bot.44: 721–740.

    CAS  Google Scholar 

  538. Jones, K. 1977a. Acetylene reduction in the dark by mats of blue-green algae in sub-tropical grassland. Ann. Bot.41: 807–812.

    CAS  Google Scholar 

  539. —. 1977b. Acetylene reduction by blue-green algae in subtropical grassland. New Phytol.78: 421–426.

    CAS  Article  Google Scholar 

  540. —. 1977c. The effects of temperature on acetylene reduction by mats of blue-green algae in sub-tropical grassland. New Phytol.78: 433–436.

    CAS  Article  Google Scholar 

  541. —. 1977d. The effects of moisture on acetylene reduction by mats of blue-green algae in sub-tropical grassland. Ann. Bot.41: 801–806.

    CAS  Google Scholar 

  542. Jorgensen, E. G. 1956. Growth-inhibiting substances formed by algae. Physiol. Pl. (Copenhagen)9: 712–736.

    CAS  Article  Google Scholar 

  543. Jurgensen, M. F. 1973. Relationship between non-symbiotic nitrogen fixation and soil nutrient status: A review. J. Soil Sci.24: 512–522.

    CAS  Article  Google Scholar 

  544. — andC. B. Davey. 1968. Nitrogen-fixing blue-green algae in acid forest and nursery soils. Canad. J. Microbiol.14: 1179–1183.

    CAS  Google Scholar 

  545. Kabirov, R. R. 1978. Methods for studying the numbers and biomass of soil algae. Pocvověděnie5: 125–129.

    Google Scholar 

  546. — andR. G. Minibaev. 1976. Effect of the nanorelief on characteristics of soil algae. Bot. Z.61: 373–377.

    Google Scholar 

  547. Kaiser, P. andH. Reber. 1970. Interactions between simazine and the rhizosphere microorganisms of maize. Meded. Fac. Landb. Rijksuniv. Gent35: 689–705.

    CAS  Google Scholar 

  548. Kale, S. R. 1972. Effect of light on the development of heterocysts inAnabaena ambigua Rao.In: T. V. Desikachary (ed.). The taxonomy and biology of blue-green algae. Univ. of Madras, India.

    Google Scholar 

  549. Kallio, P. andS. Kallio. 1975. Nitrogen fixation by free-living microorganisms in the Kevo district. Rep. Kevo Subarctic Res. Stat.12: 28–33.

    Google Scholar 

  550. Kamat, N. D. andM. Z. Patel. 1973. Soil algae of a rice field at different depths. Botanique (Nagpur)4: 101–106.

    Google Scholar 

  551. Kanthamma, S. 1940. On the life-history ofCharacium terrestris sp. nov. J. Indian Bot. Soc.18: 171–174.

    Google Scholar 

  552. Kantz, T. and H. C. Bold. 1969. Phycological studies IX. Morphological and taxonomic investigations ofNostoc andAnabaena in culture. Univ. of Texas Publ. No. 6924, Austin.

  553. Kar, S. andP. K. Singh. 1979. Detoxification of pesticides carbofuran and hexachlorocyclohexane by blue-green algae,Nostoc muscorum andWollea bhradwajae. Microbios Lett.10: 111–114.

    CAS  Google Scholar 

  554. Kärcher, H. 1931. Über die Kalteresistenz einiger Pilze und Algen. Planta14: 515–516.

    Article  Google Scholar 

  555. Karlander, E. P. andR. W. Krauss. 1966. Responses of heterotrophic cultures ofChlorella vulgaris Beyerinck to darkness and light. II. Action spectrum for the mechanism of the light requirement for heterotrophic growth. Pl. Physiol. (Lancaster)41: 7–14.

    CAS  Google Scholar 

  556. Kask, V. 1976. Effect of solar activity on biological processes: Some aspects of correlational analysis. Izv. Akad. Nauk. Estonsk. SSR, Ser. Biol.25: 194–200.

    Google Scholar 

  557. Kaszubiak, H. 1976a. The influence of mineral fertilizers on microorganisms in various conditions of the soil environment: II. The influence of mineral fertilizers on some groups of microorganisms at different soil moisture. Pol. J. Soil Sci.9: 41–46.

    CAS  Google Scholar 

  558. —. 1976b. Correlation between determinations of Chlorophyll-type compounds, nitrogen available for plants and number of algae in the soil. Pol. J. Soil Sci.9: 47–51.

    CAS  Google Scholar 

  559. Katznelson, H. 1946. The “rhizosphere effect” of mangels on certain microorganisms. Soil Sci.62: 343–354.

    CAS  Article  Google Scholar 

  560. Kennedy, I. R. 1970. Kinetics of acetylene and cyanide reduction by the nitrogen-fixing system ofRhizobium lupini. Biochem. Biophys. Acta222: 135–144.

    PubMed  CAS  Google Scholar 

  561. Kers, L. E. 1976. Vegetation with “stone windowed algae” in the high mountains of Sweden. Sven. Bot. Tidskr.70: 299–300.

    Google Scholar 

  562. Kessler, E. 1976. Comparative physiology, biochemistry, and the taxonomy ofChlorella (Chlorophyceae). Plant Syst. Evol.125: 129–138.

    Article  Google Scholar 

  563. Khoja, T. andB. A. Whitton. 1971. Heterotrophic growth of blue-green algae. Arch. Mikrobiol.79: 280–282.

    Article  Google Scholar 

  564. Kildema, K. andO. Roos. 1977. Initial data on the influence of industrial waste on the development of soil microflora. Izv. Akad. Nauk, Estonsk. SSR, Ser. Biol.26: 233–239.

    CAS  Google Scholar 

  565. Killian, C. 1953. Symposium discussion.In: Desert research. Proc. Int. Symp. Res. Counc. Isr., Spec. Publ.2: 301.

  566. — andD. Fehér. 1939. Recherches sur les phénomènes microbiologiques des sols Sahariens. Encyclopedie Biologique21: 1–127.

    Google Scholar 

  567. King, J. M. 1971. Comparative studies of some palmelloid green algae. Ph.D. Dissertation Univ. of Texas, Austin.

    Google Scholar 

  568. —. 1973.Gloeococcus minutissimus sp. nov. isolated from soil. J. Phycol.9: 349–352.

    Google Scholar 

  569. —. 1975a. Some edaphic algae from western Wisconsin. Trans. Wisconsin Acad. Sci.43: 200–205.

    Google Scholar 

  570. —. 1975b. A survey of the edaphic algae of western Wisconsin. Trans. Wisconsin Acad. Sci. Arts Lett.63: 200–205.

    Google Scholar 

  571. — andC. H. Ward. 1977. Distribution of edaphic algae as related to land usage. Phycologia16: 23–30.

    Google Scholar 

  572. Kirkwood, R. C. andW. W. Fletcher. 1970. Factors influencing the herbicidal efficiency of MCPA and MCPB in three species of micro-algae. Weed Res.10: 3–10.

    CAS  Article  Google Scholar 

  573. Kiss, A. 1966. Herbicides and soil algae. Novenyredelem2: 217–224.

    Google Scholar 

  574. Kobayashi, M., E. Takahashi andK. Kawaguchi. 1967. Distribution of nitrogen-fixing microorganisms in paddy soils of southeast Asia. Soil Sci.104: 113–118.

    Article  Google Scholar 

  575. Koffman, M. 1934. Die microfauna des Bodens, ihr Verhaltnis zu andern Mikroorganismen und ihre Rolle bei den mikrobiologischem Vorgangen im Boden. Arch. Mikrobiol.5: 246–302.

    Article  Google Scholar 

  576. Kolbe, R. W. 1932. Grundlienen einer Algeminen Oekologie der Diatomine. Ergbnisse Biol.8: 229–230.

    Google Scholar 

  577. Komaromy, Z. P. 1975. Algological investigations on Hungarian forest soils: III. Soil algal surface communities in Mts. Matra. Ann. Hist.-Nat. Mus. Natl. Hungary67: 19–23.

    Google Scholar 

  578. —. 1976. Soil algal growth as edaphic adaptation in Hungarian forest and grass steppe ecosystems. Acta Bot. Acad. Sci. Hung.22: 373–380.

    Google Scholar 

  579. —. 1977. The algal flora of the Ordoglyuk cave at Szoplak (Hungary). Ann. Hist.-Nat. Mus. Natl. Hungary69: 29–37.

    Google Scholar 

  580. —. 1979. Algae of Hungarian sandy soil: Some algological investigations in the Kiskunsag National Park, Hungary. Ann. Hist.-Nat. Mus. Natl. Hungary71: 57–64.

    Google Scholar 

  581. Koptyeva, Z. P. andO. V. Tantsyuvenko. 1971. Effects of blue-green algae on growth of rice seedlings. Mikrobiol. Žurn.33: 215–221.

    Google Scholar 

  582. Korinek, J. 1953. Isolation and multiplication of rhizobia by means of the artificial symbiosis with algae and oscillatorial. Bull. Intl. Acad. Tcheque Sci., Cl. Sci. Math., Natur, et Med.53(19): 50357.

    Google Scholar 

  583. Korschikov, A. A. 1926. On some new organisms from the groups Volvocales and Protococcales and on the genetic relations of these groups. Arch. Protistenk.55: 439–503.

    Google Scholar 

  584. Koster, J. T. 1963. Antillean Cyanophyceae from salt-pans and marine localities. Blumea12: 45–56.

    Google Scholar 

  585. Kovacik, L. 1975. Taxonomic review of the genusTetraedron (Chlorococcales). Arch. Hydrobiol.46: 354–391.

    Google Scholar 

  586. Krasil’nikov, N. A. 1949. The role of microorganisms in the weathering of (mountain) rocks. Mikrobiologiya 18. No. 4.

  587. -. 1956. Microflora of high-altitude rocks and nitrogen-fixing effect. Uspehi. Sovrem. Biol. 412.

  588. Kratky, B. A. andG. F. Warren. 1971. The use of three sample rapid bio-assays on forty-two herbicides. Weed Res.11: 257–262.

    CAS  Article  Google Scholar 

  589. Kratz, W. A. andJ. Myers. 1955. Nutrition and growth of several blue-green algae. Amer. J. Bot.42: 282–287.

    CAS  Article  Google Scholar 

  590. Krauss, M. P. 1966. Preparation of pure blue-green algae. Nature211: 301.

    Article  Google Scholar 

  591. Kruglov, J. W. andL. B. Kwiatkowskaya. 1975. The algae as indicatory culture of herbicide contamination in soil. Roczn. Glebozn.26: 145–148.

    CAS  Google Scholar 

  592. Kruglov, Y. V. andL. N. Paromenskaya. 1970. Detoxification of simazine by microscopic algae. Microbiologiya39: 139–142.

    Google Scholar 

  593. Krumbein, W. E. 1969. Über den Einfluss der Mikroflora auf die exogene Dynamuk (Verwitterung und Drustenbelding). Geol. Rundschau.58: 333–365.

    CAS  Article  Google Scholar 

  594. —. 1979. Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to bedrock formation and degradation (Gulf of Aqaba, Sinai, Egypt). Geomicrobiol. J.1: 139–203.

    CAS  Google Scholar 

  595. Kuchkarova, M. A. 1962. The algal flora of rice fields in the Tashkent region. Uzbeksk. Biol. Sum.1: 35–38.

    Google Scholar 

  596. Kumar, H. D. 1963. Effects of radiations on blue-green algae. I. The production and characterization of a strain ofAnacystis nidulans resistant to ultraviolet radiation. Ann. Bot.27: 723–733.

    Google Scholar 

  597. Kutzing, F. T. 1845–1871. Tabluae phycologicae. Nordhausen.

  598. Lange, O. L., E. B. Schulze andW. Koch. 1970. Ecophysiological investigations on lichens of the Negev Desert. III. CO2 gas exchange and water relations of crustose and foliose lichens in their natural habitat during the summer dry period. Flora (Jena), Abt. B,159: 525–528.

    Google Scholar 

  599. Langford, M. F. andE. R. Cox. 1971. Additions to the genusHeterochlamydomonas (Chlorophycophyta). J. Tennessee Acad. Sci.46: 66–71.

    Google Scholar 

  600. Lazaroff, N. 1955. The demonstration of a development cycle in the growth of a blue-green alga. Bacteriol. Proc.1959: 59.

    Google Scholar 

  601. —. 1966. Photoinduction and photo-reversal of the nostocacean developmental cycle. J. Phycol.2: 7–17.

    Article  Google Scholar 

  602. —. 1967. Algal response to pesticide pollutants. Bacteriol. Proc.6149: 48.

    Google Scholar 

  603. -. 1969. Control of hormogonial release and motility in a filamentous blue-green alga. Proc. XI. Int. Bot. Congr. (Seattle). Abst. 123.

  604. —. 1972. Experimental control of nostocacean development.In: T. C. Desikachary (ed.). The taxonomy and biology of blue-green algae. Symp. at Univ. Madras, India.

    Google Scholar 

  605. — andW. Vishniac. 1961. The effect of light on the development cycle ofNostoc muscorum, a filamentous blue-green alga. J. Gen. Microbiol.25: 365–374.

    PubMed  CAS  Google Scholar 

  606. ——. 1962. The participation of filament anastomosis in the development cycle ofNostoc muscorum, a blue-green alga. J. Gen. Microbiol.282: 203–210.

    Google Scholar 

  607. ——. 1964. The relationship of cellular differentiation to colonial morphogenesis of the blue-green alga,Nostoc muscorum. J. Gen. Microbiol.35: 447–457.

    PubMed  CAS  Google Scholar 

  608. Lee, K. W. 1978.Uronema trentonense sp. nov. (Chlorophycophyta, Ulotrichales): A new edaphic alga from New Jersey. Phycologia17: 191–195.

    Google Scholar 

  609. Lee, L. W. and H. C. Bold. 1974. Phycological studies XII.Characium and someCharacium-like algae. Univ. of Texas Publ. No. 7403, Austin.

  610. Lee, Y. S. andR. J. Bartlett. 1976. Stimulation of plant growth by humic substances. Soil Sci. Soc. Amer. Proc.40: 876–879.

    CAS  Google Scholar 

  611. Leedale, G. 1967. Euglenoid flagellates. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  612. Lefevre, M., H. Jakob andM. Nibet. 1949. Actions des substances excrétées en culture par certaines espèces d’algues sur le metabolisme d’autres espèces d’algues. Verh. Intl. Ver. Theor. Angew. Limnol.10: 259–264.

    Google Scholar 

  613. Lewin, J. C. 1953. Heterotrophy in diatoms. J. Gen. Microbiol.9: 305–313.

    PubMed  CAS  Google Scholar 

  614. Lewin, R. A. 1956. Extracellular polysaccharides of green algae. Canad. J. Microbiol.2: 665–672.

    CAS  Google Scholar 

  615. —. 1977. The use of algae as soil conditioners. CIBASIO. Trans.3: 33–35.

    Google Scholar 

  616. Lewis, J. A., G. C. Papavizas andT. S. Hora. 1978. Effect of some herbicides on microbial activity in soil. Soil Biol. Biochem.10: 137–142.

    CAS  Article  Google Scholar 

  617. Ley, S. H. 1959. The effect of nitrogen-fixing blue-green algae on the yields of rice plant. Acta Hydrobiol. Sin.4: 440–444.

    Google Scholar 

  618. —,Y. Tsing-Chuan, L. Fu-Jui, W. Lih-Mei andT. Shi-Kiung. 1959a. The nitrogen fixation of some blue-green algae from Chinese rice fields. Acta Hydrobiol. Sin.4: 445–450.

    Google Scholar 

  619. —————. 1959b. The effect of nitrogen-fixing blue-green algae on the yields of rice plant. Acta Hydrobiol. Sin.4: 451–453.

    Google Scholar 

  620. Lie, T. A. and E. G. Mulder. 1971. Biological nitrogen fixation in natural and agricultural habitats. Plant and Soil, Special Volume.

  621. Lipman, C. B. 1941. The successful revival ofNostoc commune from a herbarium specimen eighty-seven years old. Bull. Torrey Bot. Club68: 664–666.

    Article  Google Scholar 

  622. — andL. J. H. Teakle. 1925. Symbiosis betweenChlorella sp. andAzotobacter chroococcum and nitrogen fixation. J. Gen Physiol.7: 509–511.

    CAS  Article  PubMed  Google Scholar 

  623. Lockyer, D. R. andD. W. Cowling. 1977. Non-symbiotic nitrogen fixation in some soils of England and Wales. J. Brit. Grassland Soc.32: 7–11.

    CAS  Article  Google Scholar 

  624. Loeppky, C. andB. G. Tweedy. 1969. Effects of selected herbicides upon growth of soil algae. Weed Sci.17: 110–113.

    CAS  Google Scholar 

  625. Loftis, S. G. andE. B. Kurtz. 1980. Field studies of inorganic nitrogen added to semi-arid soils by rainfall and blue-green algae. Soil Sci.129: 150–155.

    CAS  Article  Google Scholar 

  626. Lowe, C. W. andA. V. Moyse. 1934. An investigation of some Manitoba soils for the presence of soil algae. Trans. Roy. Soc. Canada28: 119–152.

    Google Scholar 

  627. Lucas, C. E. 1949. External metabolities and ecological adaptation. Proc. Soc. Exptl. Biol.3: 336–356.

    Google Scholar 

  628. Lund, J. W. G. 1942. The marginal algae of certain ponds, with special reference to the bottom deposits. J. Ecol.30: 245–283.

    Article  Google Scholar 

  629. —. 1945. Observations on soil algae. I. The ecology, size, and taxonomy of British soil diatoms. New Phytol.44: 196–219.

    Article  Google Scholar 

  630. —. 1947. Observations on soil algae. II. Notes on groups other than diatoms. New Phytol.46: 35–60.

    Article  Google Scholar 

  631. —. 1955.Pseudochlorella nom. nov. Österr. Bot. Z.102: 36–37.

    Article  Google Scholar 

  632. —. 1957. Four new green algae. Rev. Algol.3: 26–44.

    Google Scholar 

  633. —. 1962. Soil algae.In: R. Lewin (ed.). Physiology and biochemistry of algae. Academic Press, New York.

    Google Scholar 

  634. —. 1967. Soil algae.In: A. Burges and F. Raw (eds.). Soil biology. Academic Press, New York.

    Google Scholar 

  635. Lundquist, I. 1970. Effect of two herbicides on nitrogen fixation by algae. Svensk. Bot. Tidskr.64: 460–461.

    Google Scholar 

  636. Lyngbye, H. C. 1819. Tentamen hydrophytologiae danicae. Hafniae.

  637. MacEntee, F. J. 1970. A preliminary investigation of the soil algae of northeastern Pennsylvania. Soil Sci.110: 313–317.

    Google Scholar 

  638. — andH. C. Bold. 1974. Some observations of edaphic algae in Pike County, Pennsylvania. Soil Sci.117: 66–69.

    Article  Google Scholar 

  639. ——. 1978. Some microalgae from sand. Texas J. Sci.30: 167–174.

    Google Scholar 

  640. —— andP. Archibald. 1973. Notes on some edaphic algae of the South Pacific and Malaysian areas, with special reference toPseudotetraedron polymorphum gen. et spec. nov. Soil Sci.124: 161–166.

    Google Scholar 

  641. ———. 1978. Correction of the namePseudotetraedron polymorphum (Chlorophyceae). J. Phycol.14: 234.

    Article  Google Scholar 

  642. —,Sister G. Schreckenberg andH. C. Bold. 1973. Some observations on the distribution of edaphic algae. Soil Sci.114: 171–179.

    Google Scholar 

  643. MacGregor, A. N. andD. E. Johnson. 1961. Capacity of desert algal crusts to fix atmospheric nitrogen. Soil Sci. Soc. Amer. Proc.35: 843–844.

    Google Scholar 

  644. MacKenzie, H. J. andH. W. Pearson. 1979. Preliminary studies on the potential use of algae in the stabilization of sand wastes and wind blow situations. Abst. Brit. Phycol. Soc. Winter Meeting. Brit. Phycol. J.14: 126.

    Google Scholar 

  645. Mackiewiez, M., K. Deubert, H. B. Gunner andB. M. Zuckerman. 1969. Study of parathion biodegradation using gnotobiotic techniques. J. Agric. Food Chem.17: 129–130.

    Article  Google Scholar 

  646. MacRae, I. C. andT. F. Castro. 1967. Nitrogen fixation in some tropical rice soils. Soil Sci.103: 277–280.

    CAS  Article  Google Scholar 

  647. Maher, Sister M. L. 1947. The role of certain environmental factors in growth and reproduction ofProtosiphon botryoides Klebs—II. Vegetative growth. Bull. Torrey Bot. Club74: 20–37.

    CAS  Article  Google Scholar 

  648. Malkomes, H. P. 1977. Bie influssung der Mikroflora verschiedener boden durch den Einsatz des Rubenherbizids. “Wacker Mubetex O.” Z. Pflanzenkrankh. Pflanzenschutz84: 215–226.

    Google Scholar 

  649. —. 1977. Behavior of soil microflora after application of the herbicide venzan (lenacil) to sugar beets. Z. Pflanzenkrankh. Pflanzenschutz84: 516–525.

    CAS  Google Scholar 

  650. Maloney, T. E. 1958. Control of algae with chlorophenyl dimethylurea. J. Amer. Water Works Assoc.50: 417–422.

    CAS  Google Scholar 

  651. Mal’tseva, N. M. 1977. Role of free-living nitrogen-fixing organisms in the nitrogen balance in soil. Microbiol. Žum. (Kiev)39: 780–751.

    CAS  Google Scholar 

  652. Marathe, K. V. 1964. A study of the effects of green manures on the subterranean algal flora of paddy field soils. J. Biol. Sci.7: 1.

    Google Scholar 

  653. —. 1965. A study of the subterranean algal flora of some mangrove swamps. J. Indian Soc. Soil Sci.13: 81–84.

    Google Scholar 

  654. -. 1970. Role of some blue-green algae in soil aggregation.In: T. V. Desikachary (ed.). Taxonomy and biology of blue-green algae. Symposium at Madras, India.

  655. — andY. S. Anantani. 1972. Observations on the algae of some Indian arid soils. Botanique (Nagpur)3: 13–20.

    Google Scholar 

  656. —. 1975. Algal crusts as nitrogen sources in some arid soils of India. J. Univ. Bombay44: 44–49.

    Google Scholar 

  657. — andP. R. Chaudhari. 1975. An example of algae as pioneers in the lithosphere and their role in rock corrosion. J. Ecol.63: 65–70.

    Article  Google Scholar 

  658. — andC. Khushaldas. 1975. Observations in the algal crusts of Nagpur soils. J. Univ. Bombay44: 66–76.

    Google Scholar 

  659. Markey, D. andR. H. Hevly. 1974. The algae of Lockett Meadow. J. Arizona Sci.8: 119–123.

    Google Scholar 

  660. Markova, G. I. 1974. Some data on the algal biomass in soils of the Kondara Gorge. Izv. Acad. Nauk. Tadziksk. SSR. Otd. Estestv. Nauk1: 30–34.

    Google Scholar 

  661. —. 1976. Growth dynamics of the blue-green algaMicrocoleus vaginatus (Vauch.) grown in ephemeral barley-almond grove communities. Bot. Žurn. (Moscow & Leningrad)61: 369–373.

    Google Scholar 

  662. Martin, J. P. andS. A. Waksman. 1940. Influence of microorganisms on soil aggregation and soil erosion. Soil Sci.50: 29–47.

    CAS  Article  Google Scholar 

  663. Martin, T. L. 1939. The occurrence of algae in some virgin Utah soils. Soil Sci. Soc. Amer. Proc.4: 249–250.

    Google Scholar 

  664. -. 1940. The occurrence of algae in some arid soils of Utah. Proc. 3rd Intl. Cong. Microbiol.

  665. Martínez-Vera, R. 1975. The algae of the soil: Their function and distribution. Acad. Cienc. Cuba Ser. Biol.49: 1–18.

    Google Scholar 

  666. Marton, A. 1973. Action of some bactericides and fungicides on the green algaStichococcus bacillaris. Stud. Cercet. Biol. Ser. Bot.25: 79–85.

    Google Scholar 

  667. Materassi, R. andW. Balloni. 1965. Quelques observations sur la presence de micro-or-ganismes autotrophes fixateurs d’azote dans les rivières. Ann. Inst. Pasteur3: 218–223.

    Google Scholar 

  668. Matorin, D. N., P. S. Venediktov andM. G. Makevnina. 1975. Use of recording method of afterglow of green algae in determining soil and water pollution by phytotoxic substances. Biol. Nauk. (Moscow)18: 122–125.

    CAS  Google Scholar 

  669. Mattox, K. and H. C. Bold. 1962. Phycological studies III. The taxonomy of certain ulotricacean algae. Univ. Texas Publ. No. 6222, Austin.

  670. Mayland, H. F. 1965. Nitrogen fixation by desert algal crust organisms. PhD. Dissertation Univ. of Arizona, Tucson.

    Google Scholar 

  671. — andT. M. Mclntosh. 1966a. Availability of biologically-fixed atmospheric nitrogen 15 to higher plants. Nature209: 421–422.

    CAS  Article  Google Scholar 

  672. ——. 1966b. Distribution of nitrogen fixed in desert algal-crust. Soil Sci. Soc. Amer. Proc.30: 606–609.

    CAS  Google Scholar 

  673. —— andW. H. Fuller. 1966. Fixation of isotopic nitrogen on a semi-arid soil by algal crust organisms. Soil Sci. Soc. Amer. Proc.30: 56–60.

    CAS  Google Scholar 

  674. McCann, A. E. andD. R. Cullimore. 1979. Influence of pesticides on the soil algal flora. Residue Rev.72: 1–32.

    CAS  Google Scholar 

  675. McDaniel, H. R., J. B. Middlebrook andR. O. Bowman. 1962. Isolation of pure cultures of algae from contaminated cultures. Appl. Microbiol.10: 232–235.

    Google Scholar 

  676. McGuire, R. F. 1969. Attributes ofChlorococcum species: A numerical analysis. J. Phycol.5: 220.

    Article  Google Scholar 

  677. Mcllvanie, S. K. 1942. Grass seedlings establishment and productivity—overgrazed versus protected range soils. Ecology23: 228–231.

    Article  Google Scholar 

  678. McLean, R. C. 1919. Studies in the ecology of tropical rainforest: With special reference to the forests of Brazil. J. Ecol.7: 5–54.

    Article  Google Scholar 

  679. McLean, R. J. 1967. Primary and secondary carotenoids ofSpongiochloris typica. Physiol. Pl. (Copenhagen)20: 41–47.

    CAS  Article  Google Scholar 

  680. —. 1968a. New taxonomic criteria in classification ofChlorococcum species. I. Pigmentation. J. Phycol.4: 328–332.

    Article  Google Scholar 

  681. —. 1968b. Ultrastructure ofSpongiochloris typica during senescence. J. Phycol.4: 277–282.

    Article  Google Scholar 

  682. — andF. R. Trainor. 1965.Fasciculochloris, a new chlorosphaeracean alga from a Connecticut soil. Phycologia4: 145–148.

    Google Scholar 

  683. McVeigh, I. andW. H. Brown. 1954. In vitro growth ofChlamydomonas chlamydogama Bold andHaematococcus pluvialis Flotow Em. Willie in mixed cultures. Bull. Torrey Bot. Club81: 218–233.

    CAS  Article  Google Scholar 

  684. Mehta, R. andK. Hawxby. 1978. Use of ultraviolet radiation to achieve bacteria-free algal culture. Proc. Oklahoma Acad. Sci.57: 54–60.

    Google Scholar 

  685. Melnikova, V. V. 1955. Algal flora of serozem soils of southern Tadzhikistan. Isv. Otd. Estestv. “Nauka”9: 131–141.

    Google Scholar 

  686. Meneghini, J. 1847. Monographia nostochinearum italisarum. Meru. Reale Accord. Sci. Torino. II,5: 1–143.

    Google Scholar 

  687. Metting, B. 1979. A comparative study of algal communities on cultivated and uncultivated portions of a Schumacher silt loam. Ph.D. Dissertation, Washington State Univ., Pullman.

    Google Scholar 

  688. —. 1980. New species of green microalgae (Chlorophycophyta) from an eastern Washington silt loam. Phycologia19: 296–306.

    Google Scholar 

  689. — andW. Rayburn. 1979a. Algal communities and soil microenvironments in an eastern Washington silt loam. Soil Sci.127: 74–78.

    CAS  Article  Google Scholar 

  690. ——. 1979b. The effects of the pre-emergence herbicide di-allate and the post-emergence herbicide MCPA on the growth of some soil algae. Phycologia18: 269–272.

    CAS  Google Scholar 

  691. Miguel, P. 1892. De la culture artificielle des Diatomées. Le Diatomiste.1: 73.

    Google Scholar 

  692. Mikhailova, E. I. andY. V. Kruglov. 1973. Effect of some herbicides on soil algoflora. Počvověděnie8: 81–85.

    Google Scholar 

  693. Miller, J. D. A. andG. E. Fogg. 1957. Studies on the growth of Xanthophyceae in pure culture. I. The mineral nutrition ofMonodus subterraneus Peterson. Arch. Mikrobiol.28: 1–17.

    PubMed  CAS  Article  Google Scholar 

  694. ——. 1958. Studies on the growth of Xanthophyceae in pure culture. II. The relation ofMonodus subterraneus to organic substances. Arch. Mikrobiol.30: 1–16.

    PubMed  CAS  Article  Google Scholar 

  695. Miller, V. 1927.Borodinella nouveau genre de Chlorophycées. Russk. Arh. Protistol.6: 209–223.

    Google Scholar 

  696. Milliger, L. 1969. Some soil algae from Bastrop State Park. Texas J. Sci.20: 221–235.

    Google Scholar 

  697. Mishustin, E. N. 1964. Biological nitrogen fixation in agriculture and prospects of utilizing nitrogen-fixing blue-green algae in agriculture. Proc. Sci. Adv. Comm. Physiol. Biochem. Mikroorganisms. Acad. Sci. USSR: 1–47.

  698. —,T. A. Kalininskaya andN. M. Shemakhanova. 1973. Fixation of molecular nitrogen by microorganisms: Review of works done in the USSR from 1966–1972. Izd. Akad. Nauk. SSR, Ser. Biol.6: 779–796.

    CAS  Google Scholar 

  699. Mitra, A. K. 1951. The algal flora of certain Indian soils. Indian J. Agric. Sci.21: 357–373.

    Google Scholar 

  700. —. 1959. Two new algae from Indian soils. Ann. Bot.14: 457–463.

    Google Scholar 

  701. — andD. C. Pandey. 1966. On a new species of the blue-green algaChlorogloeopsis with remarks on the production of heterocysts in the alga. Phykos5: 106–1.

    Google Scholar 

  702. Moewus, L. 1953. About the occurrence of freshwater algae in the semi-desert around Broken Hill. (N.S.W., Australia). Botanika Notiser4: 399–416.

    Google Scholar 

  703. Moore, A. W. 1963. Occurrence of non-symbiotic nitrogen-fixing organisms in Nigerian soils. Pl. & Soil19: 385–395.

    Article  Google Scholar 

  704. Moore, G. T. andN. Carter. 1926. Further studies on the subterranean algal flora of the Missouri Botanical Garden. Ann. Missouri Bot. Gard.13: 101–117.

    Article  Google Scholar 

  705. — andJ. L. Karrer. 1919. A subterranean algal flora. Ann. Missouri Bot. Gard.6: 281–307.

    Article  Google Scholar 

  706. Moore, R. B. 1970. Effects of pesticides on growth and survival ofEuglena gracilis Z strain. Bull. Environ. Contam. Toxicol.5: 226–230.

    CAS  Article  Google Scholar 

  707. Morelli, E. A., R. E. Cameron and G. B. Blank. 1965. Soil Studies—Micro-flora of desert regions. III. Microorganisms in Valley of 10,000 Smokes Desert. J.P.L. Space Programs Summary 37–32, IV: 196–202.

  708. Morgan, J. R. 1972. Effects of Aroclor 1242R (a polychlorinated biphenyl) and DDT on cultures of an alga, protozoan, daphnid, ostracod, and guppy. Bull. Environ. Contam. Toxicol.8: 129–137.

    PubMed  CAS  Article  Google Scholar 

  709. Mosier, A. R. 1978. Inhibition of photosynthesis and nitrogen fixation in algae by volatile nitrogen bases. J. Environ. Qual.7: 237–240.

    CAS  Google Scholar 

  710. Mosser, J. L., N. S. Fisher, T. C. Teng andC. F. Wurster. 1972. Polychlorinated biphenyls: toxicity to certain phytoplankters. Science175: 191–192.

    PubMed  CAS  Article  Google Scholar 

  711. Müller, J. 1953.Nautococcus constrictos Korsch. Mikrokosmos42: 150–152.

    Google Scholar 

  712. Munjko, I. andD. Brbic. 1977. Influence of styrene and alphamethylstyrene upon algae and moulds. Biologia (Bratislava)32: 173–177.

    CAS  Google Scholar 

  713. Nakano, H. 1917. Untersuchen über die Entwicklungs- und Ernahrungsphysiologie einiger Chlorophyceen. J. Coll. Sci. Imp. Univ. Tokyo40: 1–214.

    CAS  Google Scholar 

  714. Naumann, K. 1970a. Zur dynamik der Bodenmikroflora nach Anwendung von Pflanzenschutzmitteln. II. Die Reaktion verschiedener physiologischer Gruppen von Bodenbakterien auf den Einsatz von Parathion-methyl im Freiland. Zentralbl. Bakteriol., 2. Abt.124: 755–765.

    CAS  Google Scholar 

  715. —. 1970b. Zur dynamik des Bodenmikroflora nach anwendung von Pflanzenschutzmittein. VII. Die Wirkung einiger entseuchungsmittel auf die Bodenmikroorganismen. Zentralbl. Bakteriol., 2. Abt.125: 478–491.

    CAS  Google Scholar 

  716. —. 1971. Veränderungen in der zusammen Setzung der Bodenbakterienflora nach ein bringung von Pflanzenschutzmitteln in den Boden. Zentralbl. Bakteriol., 2. Abt.126: 530–544.

    CAS  Google Scholar 

  717. —. 1972. Die Wirkung einiger um welffaktoren auf die Reaktion der Bodenmikroflora gengen über Pflanzenschumitteln. Zentralbl. Bakteriol., 2. Abt.127: 379–396.

    CAS  Google Scholar 

  718. Naway, A. S., M. Lotei andM. Fahmy. 1958. Studies on the ability of some blue-green algae to fix atmospheric nitrogen and their effect on growth and yield of paddy soils. Agric. Res. Rev.36: 308–320.

    Google Scholar 

  719. Nekrasova, K. A. andN. A. Burova. 1970. Algae as indicators of soil fertility. Trudy Kirov. Sokh. Inst.22: 156–163.

    Google Scholar 

  720. — andE. A. Busygina. 1977. Some clarifications of the method of quantitative analysis in soil algae. Bot. Žum. (Moscow & Leningrad)62: 214–222.

    Google Scholar 

  721. — andV. N. Maksimov. 1972. Methods of mathematical planning of experimental studies of algal soil feeding and elucidation of their indicative properties. Zum. Obscej. Biol.33: 428–436.

    Google Scholar 

  722. Nichols, H. W. andH. C. Bold. 1965.Trichosarcina polymorpha gen. et sp. nov. J. Phycol.1: 34–38.

    Article  Google Scholar 

  723. Nordin, R. N. andD. W. Blinn. 1972. Analysis of a saline tall-grass prairie ecosystem. IV. Preliminary investigations of soil algae. Proc. North Dakota Acad. Sci.25: 8–17.

    Google Scholar 

  724. Norton, J. R. andJ. S. Davis. 1975. Soil algae from north central Florida. Florida Sci.38: 77–81.

    Google Scholar 

  725. Nováková, M. 1964.Asterococcus Scherffel andSphaerellocystis Ettl., two new genera of palmelloid green algae. Acta Univ. Carol. Biol.2: 155–166.

    Google Scholar 

  726. Novichkova-Ivanova, L. N. 1972a. Soil and aerial algae of polar deserts and arctic tundra.In: F. E. Wielgolaski and T. Rosswall (eds.). Proc. IV. Intl. Meet, on the Biological Productivity of Tundra. IBP Leningrad.

  727. —. 1972b. Soil algae of middle Asia deserts.In: L. E. Rodin (ed.). Physiological foundation of ecosystems productivity in arid zones. Sci. Publ. House Nauka, Leningrad.

    Google Scholar 

  728. Ocampo, R. 1973. Contribution towards an experimental taxonomy of unicellular bluegreen algae (Chroococcales). Ph.D. Dissertation, Florida State Univ., Tallahassee.

    Google Scholar 

  729. Ocampo-Paus, R. andI. Friedmann. 1966.Radiosphaera negevensis sp. n., a new chlorococcalean desert alga. Amer. J. Bot.53: 663–671.

    Article  Google Scholar 

  730. Odintsova, S. V. 1941. Niter formation in deserts. Dokl. Akad. Nauk. SSSR.32: 578–580.

    CAS  Google Scholar 

  731. Ogawa, R. E. andJ. F. Carr. 1969. The influence of nitrogen on heterocyst production in blue-green algae. Limnol. Oceanogr.14: 342–351.

    CAS  Google Scholar 

  732. Ohmori, M. andA. Hattori. 1974. Effect of ammonia on nitrogen fixation by the bluegreen algaAnabaena cylindrica. Pl. Cell Physiol.15: 131–142.

    CAS  Google Scholar 

  733. O’Kelley, J. C. andT. R. Deason. 1962. Effect of nitrogen, sulfur, and other factors on zoospore production byProtosiphon botryoides. Amer. J. Bot.49: 771–777.

    CAS  Article  Google Scholar 

  734. ——. 1976. Degradation of pesticides by algae. E.P.A. 600-76-022. Natl. Tech. Inform. Ser., Springfield, VA.

    Google Scholar 

  735. — andW. R. Herndon. 1961. Alkaline earth elements and zoospore release and development inProtosiphon botryoides. Amer. J. Bot.48: 796–802.

    CAS  Article  Google Scholar 

  736. Okuda, A. andM. Yamaguchi. 1955. Nitrogen-fixing microorganisms in paddy soils. (Part 1). Characteristics of the nitrogen fixation in paddy soils. Soil & Pl. Food1: 102–104.

    CAS  Google Scholar 

  737. - and -. 1956. Distribution of nitrogen-fixing microorganisms in paddy soils in Japan. Proc. VI. Congr. Intl. Soil Sci. Rapp. C, Paris.

  738. ——. 1960. Nitrogen-fixing microorganisms in paddy soils. VI. Vitamin B12 activity in nitrogen-fixing blue-green algae. Soil & Pl. Food6: 76–85.

    CAS