Skip to main content
Log in

Origins of the African Yam bean (Sphenostylis stenocarpa, leguminosae): evidence from morphology, isozymes, chloroplast DNA, and linguistics

Origenes del “frijol yam” de la Africa (Sphenostylis stenocarpa, LEGUMINOSAE): Evidencia de morfologia, isoenzimas, ADN del cloroplasto, y la lingüistica.

  • Published:
Economic Botany Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1993

Abstract

Cladistic and phenetic analyses of morphological, chloroplast DNA, and isozyme variation were used to examine relationships among multiple accessions of Sphenostylis sten ocarpa, representing wild and cultivated populations from throughout the range of the species. In morphometric and isozyme analyses, greater variability was detected among wild than among cultivated populations, and no differentiation was found between races cultivated for tubers and those cultivated for seeds. cpDNA data, however, revealed five groups of plastomes within S. stenocarpa: one in accessions cultivated for tubers, one in accessions cultivated for seeds, and three among wild accessions. Linguistic evidence and observations on the uses of the species in its two main areas of cultivation suggest independent origins of tuber- and seed- cultivated races. The data support two alternative explanations for the distribution of extant cultivated accessions ofS. stenocarpa. The first hypothesis is that the species was domesticated independently in western and central Africa, but that domestication events involved selection from a single restricted gene pool. The second hypothesis is that a single domestication event occurred in one of the two areas, but that human dispersal to the second area occurred prior to dispersal within either area.

Resumen

Se llevaron a cabo analisis cladísticos y fenéticos de la variación morfológica, del ADN del cloroplasto y de las isoenzimas, para examinar las relaciones entre múltiples especímenes de Sphenostylis stenocarpa, que re presentan poblaciones silvestres y cultivadas de todo el rango de distribución de la especie. En los analisis morfométricos y de isoenzimas, se detectó mayor variabilidad entre las poblaciones silvestres que entre las cultivadas, y no se encontraron diferencias entre las razas cultivadas para tubérculo y las cultivadas para semillas. El ADN del cloroplasto, sin embargo, reveló cinco grupos de plastomas: uno en los especímenes cultivados para tubérculo, uno en los cultivados para semillas, y tres en los silvestres. Por otra parte, evidencias lingüisticas y observaciones de los usos de la especie en sus dos principales areas de cultivo, sugieren un origen independiente de las razas cultivadas para tubérculo y de las cultivadas para semillas. Los datos soportan dos expli caciones alternativas de la distribución de las formas cultivadas existentes de S. stenocarpa. La primera hipótesis es que la especie fue domesticada independientemente en el centro y en el oeste de Africa, pero ambos eventos involucraron selección a partir de un germoplasma único y res tringido. La segunda hipótesis es que hubo un único evento de domesticaciún en una de las dos reas, pero que la dispersión por humanos hacia la segunda rea ocurrió antes que la dispersión dentro de la primera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ashton, G. C, and A. W. H. Braden. 1961. Serum β-globulin polymorphism in mice. Austral. J. Biol. Sci. 14: 248–254.

    CAS  Google Scholar 

  • Bretting, P. K., M. M. Goodman, and C. W. Stuber. 1990. Isozymatic variation in Guatemalan races of maize. Amer. J. Bot. 77:211–225.

    Article  Google Scholar 

  • Broich, S. L., and R. G. Palmer. 1980. A cluster analysis of wild and domesticated soybean phe notypes. Euphytica 29:23–32.

    Article  Google Scholar 

  • Dalziel, J. M. 1937. The useful plants of West Trop ical Africa. Crown Agents for the Colonies, London.

    Google Scholar 

  • Doebley, J. F., M. M. Goodman, and C. W. Stuber. 1985. Isozyme variation in races of maize from Mexico. Amer. J. Bot. 72:629–639.

    Article  CAS  Google Scholar 

  • Doyle, J. J. 1988. 5S ribosomal gene variation in the soybean and its progenitor. Theoret. Appl. Genet. 75:621–624.

    Article  CAS  Google Scholar 

  • —,and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11–15.

    Google Scholar 

  • —,J. L. Doyle., and A. H. D. Brown. 1990. A chlo roplast-DNA phytogeny of the wild perennial rel atives of soybean(Glycine subgenusGlycine): con gruence with morphological and crossing groups. Evolution 44:371–389.

    Article  CAS  Google Scholar 

  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.

    Article  PubMed  CAS  Google Scholar 

  • —,and B. Vogelstein. 1984. Addendum:a technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266–267.

    Article  PubMed  CAS  Google Scholar 

  • Fivaz, D., and P. E. Scott. 1977. African languages, a genetic and decimalised classification for bibliographic and general reference. G. K. Hall & Co., Boston.

    Google Scholar 

  • Garvin, D. F., M. L. Roose, and J. G. Waines. 1989. Isozyme genetics and linkage in tepary bean,Pha seolus acutifolius A. Gray. J. Hered. 80:373–376.

    Google Scholar 

  • Harlan, J. R. 1971. Agricultural origins:centers and noncenters. Science 174:468–474.

    Google Scholar 

  • —,J. M. J. de Wet, and A. Stemler. 1976. Plant domestication and indigenous African agriculture. Pages 3–19in J. R. Harlan, J. M. J. de Wet, and A. Stemler, eds. Origins of African plant domestica tion. Mouton Publishers, The Hague.

    Google Scholar 

  • Hennig, W. 1966. Phylogenetic systematics. Uni versity of Illinois Press, Urbana.

    Google Scholar 

  • Ignart, F., and N. F. Weeden. 1984. Allozyme vari ation in cultivars ofCurcurbita pepo L. Euphytica 33:779–785.

    Article  CAS  Google Scholar 

  • Jain, S. K., L. Wu, and K. R. Vaidya. 1980. Levels of morphological and allozyme variation in Indian amaranths: a striking contrast. J. Hered. 71:283- 285.

    Google Scholar 

  • Kay, D. E. 1973. Root crops. Tropical Products Institute, London.

    Google Scholar 

  • Ladin, B. F., J. J. Doyle, and R. N. Beachy. 1984. Molecular characterization of a deletion mutation affecting the alpha-subunit of beta-conglycinin of soybean. J. Molec. Appl. Genet. 2:372–380.

    CAS  Google Scholar 

  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Murdock, G. P. 1959. Africa:its peoples and their culture history. McGraw-Hill, New York.

    Google Scholar 

  • Myers, J. R., and N. F. Weeden. 1988. A proposed revision of guidelines for genetic analysis inPha seolus vulgaris L. Annu. Rept. Bean Imp. Coop. 31:16–19.

    Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. Amer. Nat. 106:283–292.

    Article  Google Scholar 

  • —. 1978. Estimation of average heterozygosity and genetic distance from a small number of in dividuals. Genetics 59:583–590.

    Google Scholar 

  • Nixon, K. C, and Q. D. Wheeler. 1990. An amplification of the phylogenetic species concept. Cladistics 6:211–223.

    Google Scholar 

  • Okigbo, B. N. 1973. Introducing the yam beanSphenostylis stenocarpa (Hochst, ex A. Rich.) Harms. Pages 224–238in Proceedings of the first UTA Grain Legume Improvement Workshop. In ternational Institute of Tropical Africa, Ibadan, Nigeria.

    Google Scholar 

  • Oram, R. N., M. A. Q. Shaikh, K. M. S. Zaman, and A. H. D. Brown. 1987. Isozyme similarity and genetic differences in morphology between Hypro sola, a high yielding, high protein mutant of chick pea(Cicer arietinum L.) and its parental cultivar. Environmental and Experimental Botany 27:455- 462.

    Article  Google Scholar 

  • Palmer, J. D., R. A. Jorgensen, and W. F. Thompson. 1985. Chloroplast DNA variation and evolution inPisum: patterns of change and phylogenetic anal ysis. Genetics 109:195–213.

    PubMed  CAS  Google Scholar 

  • Palmer, J. D., and W. F. Thompson. 1981. Clone banks of the mung bean, pea and spinach chloroplast ge nomes. Gene 15:21–26.

    Article  PubMed  CAS  Google Scholar 

  • Pimentel, R. A., and J. D. Smith. 1986. Biostat II. Sigma Soft, Placentia, California.

    Google Scholar 

  • Potter, D. 1991. Systematic studies ofSphenostylis andNesphostylis. Ph.D. Dissertation, Cornell Uni versity.

  • Potter, D.. 1992 Economic botany ofSphenostylis. Econ. Bot. 46:262–275.

    Google Scholar 

  • Purseglove, J. W. 1976. The origins and migrations of crops in tropical Africa. Pages 291–309in J. R. Harlan, J. M. J. de Wet, and A. Stemler, eds., Or igins of African plant domestication. Mouton Pub lishers, The Hague.

    Google Scholar 

  • Shaw, T. 1976. Early crops in Africa: A review of evidence. Pages 107–153in J. R. Harlan, J. M. J. de Wet, and A. B. L. Stemler, eds., Origins of Af rican plant domestication. Mouton Publishers, The Hague.

    Google Scholar 

  • Sneath, P. H. A., and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Southern, E. M. 1975. Detection of specific sequenc- es among DNA fragments separated be gel electro phoresis. J. Mol. Biol. 98:503–517.

    Article  PubMed  CAS  Google Scholar 

  • Stuber, C. W., M. M. Goodman, and F. M. Johnson. 1977. Genetic control and racial variation of β-glu- cosidase isozymes in maize(Zea mays L.) Biochem. Genet. 15:383–394.

    CAS  Google Scholar 

  • Throckmorton, L. H. 1977.Drosophila systematics and biochemical evolution. Ann. Rev. Ecol. Syst. 8:235–254.

    Article  CAS  Google Scholar 

  • Wahl, G. M., M. Stern, and G. R. Stark. 1979. Ef ficient transfer of large DNA fragments from aga rose gels to diazobenzyloxymethyl paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. USA 76:3683–3688.

    Article  CAS  Google Scholar 

  • Watrous, L. E., and Q. D. Wheeler. 1981. The out group comparison method of character analysis. Syst. Zool. 30:1–11.

    Article  Google Scholar 

  • Weeden, N. F. 1984. Distinguishing among white seeded bean cultivars by means of allozyme geno types. Euphytica 33:199–208.

    Article  CAS  Google Scholar 

  • —,J. J. Doyle, and M. Lavin. 1989. Distribution and evolution of a glucosephosphate isomerase du plication in the Leguminosae. Evolution 43:1637- 1651.

    Article  Google Scholar 

  • Wendel, J. F., and N. F. Weeden. 1989. Genetics of plant isozymes. Pages 46–72in D. E. Soltis and P. S. Soltis, eds., Isozymes in plant biology. Dioscorides Press, Portland, Oregon.

    Google Scholar 

  • Wheeler, Q. D., and K. C. Nixon. 1990. Another way oflooking at the species problem: a reply to de Queiroz and Donoghue. Cladistics 6:77–81.

    Google Scholar 

  • Wrigley, C. 1960. Speculations on the economic prehistory of Africa. J. Afr. Hist. 1:189–203.

    Article  Google Scholar 

  • Zohary, D. 1984. Modes of evolution in plants under domestication. Pages 579–586in W. F. Grant, ed., Plant biosystematics. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02862027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, D., Doyle, J.J. Origins of the African Yam bean (Sphenostylis stenocarpa, leguminosae): evidence from morphology, isozymes, chloroplast DNA, and linguistics. Econ Bot 46, 276–292 (1992). https://doi.org/10.1007/BF02866626

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02866626

Key Word

Navigation