Skip to main content
  • Mechanisms of Photoinduced Electron Transfer—Proceedings of the International Symposium on Molecular Mechanisms of Electron Transfer, Basis of Solar Energy Storage, Cairo, January 1991
  • Published:

Intramolecular electron transfer in 4-(dialkylamino)pyrimidines. Study in solutions and supersonic jet

Abstract

The dual fluorescence (a andb) of 4-(dialkylamino)pyrimidines (4-DAAP) in solutions is explained in terms of the TICT state model. 4-DAAP form complexes with protic solvents: efficient radiationless depopulation is “switched on” by hydrogen bonding (HB). The photoinduced electron transfer is modified by HB or by coordination to the metal ion. In nitriles, two emitting states of 4-(N,N-dimethylamino)pyrimidine (I) and 4-(N,N-diethylamino)pyrimidine (II) reach equilibrium. In protic solvents, the fluorescencesa andb are not kinetically coupled: the different ground state complexes are responsible for each band. Jet-cooled 4-DAAP show only primary excited fluorescenceb. Microsolvation of pretwistedo-methylated compoundsIII andIV by small polar molecules, contrary to more planarI andII, gives rise to the long-wave (probably TICT) fluorescence.

This is a preview of subscription content, access via your institution.

References

  1. Allinger N L 1976Adv. Phys. Org. Chem. 13 1

    CAS  Article  Google Scholar 

  2. Anderson J B 1974Molecular beams and low density gas dynamics (ed.) P P Wegener (New York: Marcel Dekker) p. 1

    Google Scholar 

  3. Ashkenas H and Sherman F S 1966Rarefied gas dynamics, IVth Symposium (ed.) J M de Leeuw (New York: Academic Press) vol. 2, p. 84

    Google Scholar 

  4. August J, Palmer T F, Simons J P, Jouvet Ch and Rettig W 1988Chem. Phys. Lett. 145 273

    Article  CAS  Google Scholar 

  5. Barbara P F and Jarzeba W 1990Advances in photochemistry (eds) D H Volman, G S Hammond and C Gollwick (New York: J Wiley & Sons) vol. 15, p. 1

    Chapter  Google Scholar 

  6. Bilot L and Kawski A 1962Z. Naturforsch. A17 621

    Google Scholar 

  7. Birks J B 1977Nouv. J. Chim. 1 455

    Google Scholar 

  8. Bischof H, Baumann W, Detzer N and Rotkiewicz K 1985Chem. Phys. Lett. 116 180

    Article  CAS  Google Scholar 

  9. Brown D I, Hoerger E and Mason S F 1955J. Chem. Soc. 4035

  10. Cazeau-Dubroca C, Ait-Lyazidi S, Cambou P, Peirigua A, Cazeau Ph and Pesquer M 1989J. Phys. Chem. 93 2347

    Article  CAS  Google Scholar 

  11. Gibson E M, Jones A C and Phillips D 1987Chem. Phys. Lett. 136 454

    Article  CAS  Google Scholar 

  12. Gibson E M, Jones A C, Taylor A G, Bouwman W G, Phillips D and Sandell J 1988J. Phys. Chem. 92 5449

    Article  CAS  Google Scholar 

  13. Gordon R 1990J. Chem. Phys. 93 6908

    Article  CAS  Google Scholar 

  14. Grabowski Z R and Dobkowski J 1983Pure Appl. Chem. 55 245

    Article  CAS  Google Scholar 

  15. Grabowski Z R, Rotkiewicz K, Rubaszewska W and E Kirkor-Kamińska E 1978Acta Phys. Pol. A54 767

    Google Scholar 

  16. Grabowski Z R, Rotkiewicz K, Siemiarczuk A, Cowley D J and Baumann W 1979Nouv. J. Chim. 3 443

    CAS  Google Scholar 

  17. Grabowski Z R, Dobkowski J and Kühnle W 1984J. Mol. Struct. 114 93

    Article  CAS  Google Scholar 

  18. Grassian V H, Warren J A, Bernstein E R and Secor V H 1989J. Chem. Phys. 90 3994

    Article  CAS  Google Scholar 

  19. Grassian V H, Warren J A, Bernstein E R and Secor V H 1990J. Chem. Phys. 93 6910

    Article  Google Scholar 

  20. Herbich J, Grabowski Z R, Wójtowicz H and Golankiewicz K 1989J. Chem. Phys. 93 3439

    Article  CAS  Google Scholar 

  21. Herbich J, Karpiuk J, Grabowski Z R, Tamai N and Yoshihara K (to be published)

  22. Herbich J, Pérez Salgado F, Rettschnick R P H, Grabowski Z R and Wójtowicz H 1990J. Phys. Chem. 95 3491

    Article  Google Scholar 

  23. Hicks J, Vandersall M, Babarogić Z and Eisenthal K B 1985Chem. Phys. Lett. 116 18

    Article  CAS  Google Scholar 

  24. Hicks J M, Vandersall M T, Sitzmann E V and Eisenthal K B 1987Chem. Phys. Lett. 135 413

    Article  CAS  Google Scholar 

  25. Howell R, Jones A C, Taylor A G and Phillips D 1989Chem. Phys. Lett. 163 282

    Article  CAS  Google Scholar 

  26. Kahlow M A, Kang T J and Barbara P F 1987J. Phys. Chem. 91 6452

    Article  CAS  Google Scholar 

  27. Kajimoto O, Hayami S and Shizuka H 1991Chem. Phys. Lett. 177 219

    Article  CAS  Google Scholar 

  28. Kajimoto O, Yamasaki K, Arita K and Hara K 1986Chem. Phys. Lett. 130 63

    Article  Google Scholar 

  29. Kamlet M J, Abboud J L M and Taft R W 1981aProg. Phys. Org. Chem. 13 485

    Article  CAS  Google Scholar 

  30. Kamlet M J, Dickinson Ch and Taft R W 1981bChem. Phys. Lett. 77 69

    Article  CAS  Google Scholar 

  31. Kang T J, Kahlow M A, Giser D, Swallen S, Nagarajan V, Jarzeba W and Barbara P F 1988J. Phys. Chem. 92 6800

    Article  CAS  Google Scholar 

  32. Karpiuk J and Grabowski Z R 1989Chem. Phys. Lett. 160 451

    Article  CAS  Google Scholar 

  33. Kobayashi T, Futakami M and Kajimoto O 1986Chem. Phys. Lett. 130 63

    Article  CAS  Google Scholar 

  34. Kobayashi T, Futakami M and Kajimoto O 1987Chem. Phys. Lett. 141 450

    Article  CAS  Google Scholar 

  35. Kunst A G M 1991 Ph D thesis, University of Amsterdam

  36. Leinhos U, Kühnle W and Zachariasse K A 1991J. Phys. Chem. 95 2013

    Article  CAS  Google Scholar 

  37. Levy D H 1980Annu. Rev. Phys. Chem. 31 197

    Article  CAS  Google Scholar 

  38. Lipiński J, Chojnacki H, Grabowski Z R and Rotkiewicz K 1980Chem. Phys. Lett. 70 449

    Article  Google Scholar 

  39. Lippert E, Luder W and Boss H 1962Advances in molecular spectroscopy (ed.) A Mangini (Oxford: Pergamon) p. 443

    Google Scholar 

  40. Lippert E, Rettig W, Bonačić-Koutecky V, Heisel F and Mieché J A 1987Advances in chemical physics (eds) I Prigogine and A Rice (New York: J Wiley & Sons) vol. 68, p. 1

    Chapter  Google Scholar 

  41. Mataga N, Nishikawa S, Asahi T and Okada T 1990J. Phys. Chem. 94 1443

    Article  CAS  Google Scholar 

  42. Peng L W, Dantus M, Zewail A H, Kemnitz K, Hicks J M and Eisenthal K B 1987J. Phys. Chem. 91 6162

    Article  CAS  Google Scholar 

  43. Pilloud P, Suppan P and van Haelst L 1987Chem. Phys. Lett. 137 130

    Article  CAS  Google Scholar 

  44. Proba Z and Wierzchowski K L 1975Acta Biochim. Pol. 22 131

    CAS  Google Scholar 

  45. Rettig W 1980J. Lumin. 26, 21

    Article  Google Scholar 

  46. Rettig W 1986Angew. Chem., Int. Ed. Engl. 25 971

    Article  Google Scholar 

  47. Rettig W and Wermuth G 1985J. Photochem. 28 351

    Article  CAS  Google Scholar 

  48. Rotkiewicz K 1986Spectrochim. Acta A42 575

    Article  Google Scholar 

  49. Rotkiewicz K, Grellmann K H and Grabowski Z R 1973Chem. Phys. Lett. 19 315

    Article  CAS  Google Scholar 

  50. Rotkiewicz K and Rubaszewska W 1982J. Lumin. 27 221

    Article  CAS  Google Scholar 

  51. Siemiarczuk A, Grabowski Z R, Krówczyński A, Asher M and Ottolenghi M 1977Chem. Phys. Lett. 51 315

    Article  CAS  Google Scholar 

  52. Siemiarczuk A, Koput J and Pohorille A 1982Z. Naturforsch. A37 598

    Google Scholar 

  53. Su S G and Simon J D 1988J. Chem. Phys. 89 908

    Article  CAS  Google Scholar 

  54. Su S G and Simon J D 1989J. Chem. Phys. 93 753

    Article  CAS  Google Scholar 

  55. Subaric-Leitis A, Monte Ch, Rogan A, Rettig W, Zimmermann P and Heinze J 1990J. Chem. Phys. 93 4543

    Article  CAS  Google Scholar 

  56. Suppan P 1986Chem. Phys. Lett. 128 160

    Article  CAS  Google Scholar 

  57. Visser R J and Varma C A G O 1980J. Chem. Soc., Faraday Trans. II 76 453

    Article  CAS  Google Scholar 

  58. Visser R J, Varma C A G O, Konjinenberg J and Bergwerf P 1983J. Chem. Soc. Faraday Trans. II,79 347

    Article  CAS  Google Scholar 

  59. Visser R J, Weisenborn P C M, Konijnenberg J, Huizer B H and Varma C A G O 1986J. Photochem. 32 217

    Article  CAS  Google Scholar 

  60. Visser R J, Weisenborn P C M and Varma C A G O 1985Chem. Phys. Lett. 113 330

    Article  CAS  Google Scholar 

  61. Visser R J, Weisenborn P C M, Varma C A G O, de Haas M P and Warman J M 1984Chem. Phys. Lett. 104 38

    Article  CAS  Google Scholar 

  62. Wang Y and Eisenthal K B 1982J. Chem. Phys. 77 6076

    Article  CAS  Google Scholar 

  63. Wang Y, McAuliffe M, Novak F and Eisenthal K B 1981J. Phys. Chem. 85 3736

    Article  CAS  Google Scholar 

  64. Warren J A, Bernstein E R and Seeman J I 1988J. Chem. Phys. 88 871

    Article  CAS  Google Scholar 

  65. Weisenborn P C M, Huizer A H and Varma C A G O 1988Chem. Phys. 126 425

    Article  CAS  Google Scholar 

  66. Weisenborn P C M, Huizer A H and Varma C A G O 1989Chem. Phys. 133 437

    Article  CAS  Google Scholar 

  67. Weisenborn P C M, Varma C A G O, de Haas M P and Warman J M 1986Chem. Phys. Lett. 129 562

    Article  CAS  Google Scholar 

  68. Weller A 1982Z. Phys. Chem. (Münich) 133 93

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jerzy Herbich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herbich, J., Salgado, F.P. & Karpiuk, J. Intramolecular electron transfer in 4-(dialkylamino)pyrimidines. Study in solutions and supersonic jet. Proc. Indian Acad. Sci. (Chem. Sci.) 104, 117 (1992). https://doi.org/10.1007/BF02863357

Download citation

Keywords

  • Luminescence
  • TICT states
  • 4-(dialkylamino)pyrimidines
  • supersonic jet
  • electron transfer