Skip to main content
Log in

Abstract

Magnetotelluric soundings have been carried out across the archaean terrain of Singhbhum granite batholith from Bangriposhi to Keonjhar for a distance of about 100 km. One-dimensional inversion models reveal that the depth of the moho varied between 23 and 40 km. The depth of the lithosphere asthenosphere boundary varied from 58 to 76 km. A zone of higher electrical conductivity detected at the base of the lower crust just above the moho is present along the entire profile. Signals within the range of 0.25 to 600 seconds, which crossed the coherency threshold of 0.8 to 0.9, could be stacked. Resistivity ranges of the crust mantle silicates below Singhbhum granite batholith vary over a wide range. Resistivity ranges are (i) 30,000–80,000 ohm for Singhbhum granite phase II, (ii) 2,000 to 9,000 ohm-m for Singhbhum granite phase III, (iii) 250 to 2,200 ohm-m for lower crust (iv) 3,000 to 47,000 ohm for the upper mantle and (v) 200 to 2300 ohm-m for the asthenosphere. Sharp break in electrical resistivity at the (i) upper crust-lower crust (ii) lower crust upper mantle and (iii) lithosphere-asthenosphere boundary is obtained along the entire profile. Signals could see up to 100 km below the granite batholith. Singhbhum granite phase II and III could be demarcated on the basis of resistivity. Low resistive zones in the lower crust and upper mantle might have formed due to (i) water (ii) combined effect of water and carbon and (iii) high temperature and partial melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam A 1978 Geothermal effects in the formation of electrically conducting zones and temperature distribution within the earth;Phy. Earth. Plant. Interiors 17 21–28

    Article  Google Scholar 

  • Adam A 1980 Relation of mantle conductivity to physical conditions in the asthenosphere;Geophys. Survey 4 43–55

    Article  Google Scholar 

  • Adam A, Vanyan L L, Varlamov D A, Yegorov I V, Shilovsky A P and Shilovsky P P 1982b Depth of asthenospheric and crustal conducting layers in pannonian basis;Phys. Earth Planet. Inte. 28 251–260

    Article  Google Scholar 

  • Alabi A O, Cannfield P A and Gough I J 1975 The North American Central Plains conductivity anomaly;Geophys. Jour. Roy. Astr. Soc. 43 815–833

    Google Scholar 

  • Baksi A K, Archibald D A, Sarkar S N and Saha A K. 1987 40ar-39ar incremental heating study of mineral separates from the early Archaean East Indian Craton: Implication for the thermal history of a section of the Singhbhum granite batholithic complex;Indian Tectonophysics 105 163–176

    Google Scholar 

  • Ballhaus C G and Stumpft E F, 1985 Occurrence and petrological significance of graphite in the upper critical zone, Western Bushveld Complex, South Africa;Earth Plant. Sci. Lett. 74 58–68

    Article  Google Scholar 

  • Basu A R, Roy S L, Saha A K and Sarkar S N 1981 3800 million year old crust in eastern India and mantle differentiation;Science 212 1502–1506

    Article  Google Scholar 

  • Beamish D 1986 Deep crustal geoelectric structure beneath the Northumberland Basin;Geophy. J. Roy. Artr. Soc. 84 619–640

    Google Scholar 

  • Beck A E and Sass J H 1966 A preliminary value of high heat flow at the Muskox intrusion near copper mine, N.W.J., Canada;Earth and Planet Science Letters 1 123–129

    Article  Google Scholar 

  • Cantwell T, Nelson P and Webb J 1965 Deep resistivity measurements in the pacific north west;Jour, of Geophys. Research V. 70(8) 1931–1937

    Article  Google Scholar 

  • Carte A E and Van Rooyen A I M 1969 Further measurements of heat flow in South Africa;Geol. Soc. South Africa Special Publication No. 2 (Upper Mantle Project) pp. 445–448

  • Clifford F and Kennedy G C 1982 ‘Diamond’ In (Ed. Sybil P Parker) McGraw-Hill Encyclopedia of Science and Technology 5th Edition pp. 162–166

  • Connerney J E P, Nekunt A and Kuekes A P 1980 Deep crustal electrical conductivity in the Adirondacks;Jour. Geophy. Research 85 2605–2614

    Google Scholar 

  • Cox A and Hart R B, 1986 Plate Tectonics, how it works, Blackwell Scientific Publication Company

  • Datt R H and Batten R L 1988 Evolution of the earth, McGraw Hill Book Company

  • Depaolo D J 1983 Geochemical evolution of the crust and mantle;Reviews of Geophysics and Space Physics No 6 21 1347–1358

  • Drury M J and Hyndeman 1979 The electrical resistivity of oceanic basalts;Jour. Geophy. Res. 84 4537–4545

    Article  Google Scholar 

  • Duba A G and Shankland T J 1982 Free Carbon and electrical conductivity in the earth’s mantle;Geoph. Res. Lett. 9 1271–1275

    Article  Google Scholar 

  • Fyfe W S, Prince W J and Thomson A B 1978 Fluids in the earth’s crust. In developments in Geochemistry I, Elsevier, Amsterdam

    Google Scholar 

  • Garland G D 1975 Correlation between electrical conductivity and other geophysical parameters;Phy. Earth Planet. Inter 10 220–230

    Article  Google Scholar 

  • Gass I G, Smith P J, Wilson R C L 1973 (Eds) Understanding the earth, (2nd edition), The Arthemis Press, Suesex

    Google Scholar 

  • Ghosh S, Ray S L and Saha A K 1986 Petrochemistry and origin of the Manda-Asana-Besoi granite in the southeastern part of the Singhbhum granite batholith;Quartz. Jour. Geol. Min. Mat. Soc, Ind. No. 3 58 181–200

    Google Scholar 

  • Haroi K I and Simmons G 1969 Spherical harmonic analysis of terrestrial heat flow;Earth Plant. Sci. Lett. 6 386–395

    Google Scholar 

  • Haak V and Hutton R 1986 The nature of the lower continental crust, Geological Society Special Publication, No. 24 (eds) J B Carswell, D A Hall and Wedepol K H pp. 35–49

  • Hyndeman R D and Hyndeman D W 1968 Water saturation and high electrical conductivity in the lower continental crust;Earth Planet. Sci. Lett. 4 427–432

    Article  Google Scholar 

  • Jaeger J C 1970 Heat flow and radioactivity in Australia;Earth and Planet. Sci. Lett. 8 285–292

    Article  Google Scholar 

  • Jones A G 1982a Observations of the electrical asthenosphere beneath Scandinavia;Tectonophysics 90 37–55

    Article  Google Scholar 

  • Jones A G 1982b On the electrical crust-mantle structure in Fennoscandia: No Moho, and the asthenosphere revealed;Geophys. J.R. Astr. Soc. 68 371–388

    Google Scholar 

  • Jones A G and Hutton R 1979 A multistation magnetotelluric study in Southern Scotland-I. Fieldwork, data analysis and results;Geophy. Jour. Roy. Astr. Soc. 56 329–349

    Google Scholar 

  • Jiracek G R, Gustafson E P and Mitchell P S 1983 Magnetotelluric results opposing magma origin of crustal conductors in the Rio Granda rift;Tectonophysics 94 299–326

    Article  Google Scholar 

  • Kaufman A A and Keller G V 1981 The magnetotelluric sounding method, Elsevier, Amsterdam pp. 482

    Google Scholar 

  • Keller G V, Anderson L A and Pritchard J I 1966 Geological Survey Investigations of the electrical properties of the crust and uppermantle;Geophysics 31 1078–1087

    Article  Google Scholar 

  • Kurtz R D 1982 Magnetotelluric interpretation of crustal and mantle structure in the Grenville Province;Geophy. Jour. Roy. Astr. Soc. 70 373–397

    Google Scholar 

  • Kurtz R D and Garland G D 1976 Magnetotelluric measurements in Eastern Canada;Geophy. Jour. Roy. Astr. Soc. 45 321–347

    Google Scholar 

  • Lachenbruch A H 1970 Crustal temperature and heat production: Implication of the linear heat flow reaction;Jour. Geophy. Res. 75 3291–3300

    Article  Google Scholar 

  • Lachenbruch A H and Bunker C M 1971 Vertical gradients of heat flow production in the continental crust. Some estimates from borehole data;J. Geophys. Res. 76 3832–3860

    Article  Google Scholar 

  • Lee W H K and Uyeda S 1965 Review of heat flow data in terrestrial heat flow;American Geophysical Union Monograph No. 8 pp. 87–190

  • Mitchell K J and Landisman M 1971 Electrical and seismic properties of the earth’s crust in the southwestern great plains in the U.S.A.;Geophysics, No. 236 363–381

    Article  Google Scholar 

  • Negi J G, Saraf B, Agrawal P K and Panday O P 1987 Large variation of Curie depth and lithosphere thickness beneath the Indian Subcontinent and a case for magnetothermometry;Geophy. Jour. Roy. Astr. Soc. 88 763–775

    Google Scholar 

  • Olhoeft G R 1981 Electrical properties of granite with implications for the lower crust;Jour. Geophy. Res. 89 931–936

    Article  Google Scholar 

  • Olhoeft G R 1981b Electrical properties of rocks in physical of properties of rocks and minerals (ed.) Y S Touloukian, W R Judd and R F Roy (New York: McGraw Hill) pp. 257–329

    Google Scholar 

  • Pollack H N and Chapman D S 1977 On the regional variation of heat flow, geotherm and lithosphere thickness;Tectonophysics 38 279–296

    Article  Google Scholar 

  • Polyak B G and Sminrov Y B 1968 Relationship between terrestrial heat flow and the tectonics of continents;Geotectonics 4 205–213

    Google Scholar 

  • Rankin D and Pascal F 1985a The stability of results in the magnetotelluric method (Preprint, Unpublished)

  • Rankin D and Pascal F 1985b The North American crustal plains conductivity anomaly disappears at the Canada/U.S. border (unpublished preprint)

  • Rao R V M, Rao G V and Harinarayan 1976 Radioactive heat generation and heat flow in the Indian Shield;Earth Planet. Sci. Lett. 30 57–64

    Article  Google Scholar 

  • Ravi Shankar 1988 Heat flow map of India and discussions on its geological and economic significance;Indian Minerals No. 242 89–110

    Google Scholar 

  • Saha A K, Ghosh S, Dasgupta D, Mukhopadhayay A K and Roy S L 1984 Studies on crustal evolution of the Singhbhum-Orissa Iron ore craton. Monograph on crustal evolution;Ind. Soc. Earth Sciences PP. 1–74

  • Saha A K and Roy S L 1984a Early-middle Archaean Crustal evolution of the Singhbhum-Orissa craton;Ind. Jour. Earth Science, CEISM seminar volume pp. 1–18

  • Saha A K and Roy S L 1984b The structural and geochemical evolution of the singhbhum granite batholithic complex, India;Tectonophysics 105 163–176

    Article  Google Scholar 

  • Saha A K, Roy S L and Sarkar S N 1988 Early history of the earth; evidence from the eastern India shield. Precambrian of the Eastern Indian Shield, Mem. 8, (ed.) D. Mukhopadhaya;Geol. sec. of India, Bangalore

  • Saha A K, Sarkar S N and Roy S L 1986 Importance of multiple method dating in Precambrian geology: examples from Singhbhum-Orissa region, Eastern India.Indian Jour, of Earth Sci. No. 2-313 129–144

    Google Scholar 

  • Sarkar S N and Saha A K 1959 A revised correlation of the iron ore series north and south of the copper belt thrust in Singhbhum and adjacent areas;Quart. Jour. Geol. Min. Met. Soc. India 31 129–132

    Google Scholar 

  • Sass J H, Killen P C and Mustonan E D 1968 Heat flow and surface radioactivity in the Quirke Lake Syncline near Elliot Lake, Ontario, Canada;Can. Jour. Earth Sci. 5 1417–1425

    Google Scholar 

  • Shankland T J and Anders M E 1983 Electrical Conductivity, temperature and fluids in the lower crust;Jour. Geophy. Res. No. B.11 88 9475–9484

    Article  Google Scholar 

  • Shankland T J and Waff H S 1977 Partial melting and electrical conductivity anomalies in the upper mantle.Jour. Geophy. Res. N. 3382 5409–5417

    Article  Google Scholar 

  • Singh R N and Negi J G 1982 High Moho temperature in the Indian Shield;Tectonophysics 82 229–306

    Article  Google Scholar 

  • Stanley W D, Boehl J E, Bostick F X and Smith H W 1977 Geothermal significance of magnetotelluric sounding in the eastern snake river plain-yellowstone region;Jour. Geoph. Res. 82 2501–2514

    Article  Google Scholar 

  • Sternberg B K 1979 Electrical resistivity structure of the crust in the southern extension of the Canadian Shield-layered earth models;Jour. Geophy. Res. 84 212–228

    Article  Google Scholar 

  • Sternberg B K and Clay C S 1977 Flambean anomaly: A high conductivity anomaly in the southern extension of the Canadian shield, in the earth’s crust: Its nature and physical properties (ed.) J G Heacock,Geoony. Monograph Soc. Vol 20, pp. 501–530, AGU, Washington, D.C.

    Google Scholar 

  • Stesky R M and Brace W F 1973 Electrical Conductivity of serpentinised rocks to 6 kilobars;Jour. Geophy. Res. 78 7614–7621

    Article  Google Scholar 

  • Swift C M Jr 1969 A magnetotelluric investigation of an electrical conductivity anomaly in the south western United States, Ph.D. thesis, M.I.T.

  • Turner F J and Verhoogen J 1951 Igneous and Metamorphic Petrology, McGraw Hill, New York, Toranto, London

    Google Scholar 

  • Vanzijl J S N 1978 The relationship between the deep electrical resistivity structure and tectonic provinces in Southern Africa Part 1. Results obtained by Schlumberger Soundings;Trans. Geol. Soc. S. Afr. 81 129–142

    Google Scholar 

  • Verma R K, Rao R V M and Gupta M L 1966 Terrestrial heat flow in Mosabani Mine, Singhbhum Dist., Bihar, India;Jour. Geophy. Res. 71 4943

    Google Scholar 

  • Verma R K, Sarma A U S and Mukhopadhyay M 1984 Gravity field over Singhbhum, its relationship to geology and tectonic history;Tectonophysics 106 87–107

    Article  Google Scholar 

  • Vozoff K. 1972 The magnetotelluric method in the exploration of sedimentary basins;Geophysics No. 1 37 98–141

    Article  Google Scholar 

  • Windely B F 1977 The evoluing continents, Wiley, London

    Google Scholar 

  • Woermann E and Rosenhauer M Gottingen 1985 Fluid Phases and the redox state of the earth’s mantle. Extrapolations based on experimental, phase-theoretical and petrological data;Fort schritte der Mineralogie 63 263–349

    Google Scholar 

  • Wyllie P J 1971 Experimental limits for melting in the earth’s crust and upper mantle;Geophys. Monograph. Am. Geophy. Union 14 279–301

    Google Scholar 

  • Wyllie P J 1977 crustal Anatexis: An experimental review;Tectonophysics 43 41–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, K.K., Rao, C.K. & Chattopadhyay, A. Magnetotelluric survey across Singhbhum granite batholith. Proc. Indian Acad. Sci. (Earth Planet Sci.) 98, 147–165 (1989). https://doi.org/10.1007/BF02863240

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02863240

Keywords

Navigation