Economic Botany

, Volume 49, Issue 2, pp 172–182 | Cite as

A cross between two maize relatives:Tripsacum dactyloides andZea diploperennis (Poaceae)

  • Mary Eubanks


Crosses betweenTripsacum dactyloides and teosinte (Zea diploperennis) using standard pollination technique have been successfully attempted and six highly fertile hybrid plants obtained. Previous research had shown other teosintes to be cross-incompatible with Tripsacum and maize to be crossable but highly intersterile withTripsacum. Some investigators believe thatTripsacum played a prominent role in the origin of maize; theTripsacum-diploperennis hybrid provides evidence to support that idea. Ears produced by the hybrid have paired kernel rows, a distinctive characteristic of the oldest archaeological maize that none of the wild relatives have. This unique hybrid is described and discussed in terms of its possible role in the origin and evolution of maize.

Key Words

teosinte Zea diploperennis Tripsacum maize Zea mays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, E. 1944. Cytological observations onTripsacum dactyloides. Annals of the Missouri Botanical Garden 31:317–324.CrossRefGoogle Scholar
  2. Beadle, G.W. 1939. Teosinte and the origin of maize. Journal of Heredity 30:245–247.Google Scholar
  3. —. 1980. The ancestry of corn. Scientific American 242:112–119.Google Scholar
  4. Benz, B. F., and H. H. Iltis. 1990. Studies in archaeological maize I: the “wild” maize from San Marcos Cave reexamined. American Antiquity 55: 500–511.CrossRefGoogle Scholar
  5. —,and —. 1992. Evolution of female sexuality in the maize ear (Zea mays L. subsp.mays-Gramineae). Economic Botany 46:212–222.Google Scholar
  6. Chaganti, R. S. K. 1965. Cytogenetic studies of maize-Tripsacum hybrids and their derivatives. Bussey Institution, Harvard University, Cambridge, MA.Google Scholar
  7. Chandravadana, P., W. C. Galinat, and B. G. S. Rao. 1971. A cytological study ofTripsacum dactyloides. Journal of Heredity 62:280–284.Google Scholar
  8. Collins, G. N. 1912. The origin of maize. Journal of the Washington Academy and Sciences 2:42–43.Google Scholar
  9. —,and J. H. Kempton. 1914. A hybrid betweenTripsacum andEuchlaena. Journal of the Washington Academy of Sciences 4:114–117.Google Scholar
  10. de Wet, J. M. J. 1987. Hybridization and polyploidy in the Poaceae. Pages 188–194in T. R. Soderstrom, K. W. Hilu, C. S. Campbell, and M. E. Barkwork, eds., Grass systematics and evolution. Smithsonian Institution Press, Washington, DC.Google Scholar
  11. —,L. M. Engle, C. A. Grant, andS. T. Tanaka. 1972. Cytology of maize-Tripsacum introgression. American Journal of Botany 59:1026–1029.CrossRefGoogle Scholar
  12. —,C. A. Newell, andD. E. Brink. 1984. Counterfeit hybrids betweenTripsacum andZea. American Journal of Botany 71:245–251.CrossRefGoogle Scholar
  13. Doebley, J. F. 1983. Taxonomy and evolution ofTripsacum and teosinte, the closest relatives of maize. Pages 15–28in D. Gordon, J. Knoke, L. Nault, and R. Ritter, eds., Proceedings of the International Maize Virus Disease Colloquium, Ohio State University, Columbus.Google Scholar
  14. —,A. Stec, J. Wendel, and M. Edwards. 1990. Genetic and morphological analysis of a maize-te- osinte F2 population: implications for the origin of maize. Proceedings of the National Academy of Sciences 87:9888–9892.CrossRefGoogle Scholar
  15. Eubanks, M. 1993. A cross betweenTripsacum dactyloides andZea diploperennis. Maize Genetics Co-operation Newsletter 67:39.Google Scholar
  16. —. 1994. Molecular evidence for the origin of maize. American Journal of Botany, Supplement 81:79.Google Scholar
  17. Farquharson, L. I. 1957. Hybridization ofTripsacum andZea. Journal of Heredity 48:295–299.Google Scholar
  18. Galinat, Walton C. 1970. The cupule and its role in the origin and evolution of maize. University of Massachusetts at Amherst, Agricultural Experiment Station Bulletin #585.Google Scholar
  19. —. 1973. Intergenomic mapping of maize, teosinte andTripsacum. Evolution 27:644–655.CrossRefGoogle Scholar
  20. —. 1977. The origin of corn. Pages 1–47in G. F. Sprague, ed., Corn and corn improvement. American Society of Agronomy, Inc., Madison, WI.Google Scholar
  21. —,R. S. K. Chaganti, andF. D. Hager. 1964.Tripsacum as a possible amphidiploid of wild maize andManisuris. Botanical Museum Leaflets, Harvard University 20:289–316.Google Scholar
  22. Gilmore, M. R. 1931. Vegetal remains of the Ozark bluff-dweller culture. Michigan Academy of Sciences, Arts, Letters, Papers 14:83–102.Google Scholar
  23. Harshberger, J. W. 1893. Maize: a botanical and economic study. Contributions from the Botanical Laboratory of the University of Pennsylvania 1:75–202.Google Scholar
  24. Iltis, H. H. 1983. From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–893.PubMedCrossRefGoogle Scholar
  25. —,J. F. Doebley, R. Guzman M., and B. Pazy. 1979.Zea diploperennis (Gramineae): a new teosinte from Mexico. Science 203:186–188.PubMedCrossRefGoogle Scholar
  26. James, J. 1979. New maize ×Tripsacum hybrids for maize improvement. Euphytica 28:239–247.CrossRefGoogle Scholar
  27. Jones, V. 1936. The vegetal remains of Newt Cash Hollow shelter. University of Kentucky Reports in Anthropology and Archaeology 3:147–67.Google Scholar
  28. Kato, T. A., andA. Lopez. 1990. Chromosome knobs of the perennial teosintes. Maydica 35:125–141.Google Scholar
  29. Lima-de-Faria, A. 1976. The chromosome field.II. The location of ’knobs’ in relation to telomeres. Hereditas 83:23–34.Google Scholar
  30. Long, A., B. F. Benz, D. J. Donahue, A. J. T. Jull, and L.J. Toolin. 1989. First direct AMS dates on early maize from Tehuacán Mexico. Radiocarbon 31: 1030–1035.Google Scholar
  31. Longley, A. E. 1937. Morphological characters of teosinte chromosomes. Journal of Agricultural Research 54:835–862.Google Scholar
  32. —. 1941a. Knob positions of teosinte chromosomes. Journal of Agricultural Research 62:401–413.Google Scholar
  33. —. 1941b. Chromosome morphology in maize and its relatives. Botanical Review 7:263–289.Google Scholar
  34. Maguire, M. P. 1961. Divergence inTripsacum andZea chromosomes. Evolution 15:394–400.CrossRefGoogle Scholar
  35. Mangelsdorf, P. C. 1974. Corn:its origin, evolution and improvement. Harvard University Press, Cambridge, MA.Google Scholar
  36. —. 1983. The mystery of corn: new perspectives. Proceedings of the American Philosophical Society 127:215–247.Google Scholar
  37. —. 1986. The origin of corn. Scientific American 255:80–86.CrossRefGoogle Scholar
  38. —,and M. E. Dunn. 1984a. Various expressions and dominance relations of perennialism. Maize Genetics Cooperation Newsletter 58:53.Google Scholar
  39. —,and — 1984b. Robust root systems may impart drought resistance. Maize Genetics Cooperation Newsletter 58:54–55.Google Scholar
  40. —,R. S. MacNeish, andW. C. Galinat. 1967a. Prehistoric wild and cultivated maize. Pages 178–200in D. S. Byers, ed., The prehistory of the Tehuacan Valley I: environment and subsistence. University of Texas Press, Austin.Google Scholar
  41. —,and —. 1967b. Prehistoric maize, teosinte andTripsacum from Tamaulipas, Mexico. Harvard University Botanical Museum Leaflets 22: 33–63.Google Scholar
  42. -,and R. G. Reeves. 1939. The origin of Indian corn and its relatives. Texas Agricultural Experiment Station Bulletin #574.Google Scholar
  43. McClung de Tapia, E. 1992. The origins of agriculture in Mesoamerica and Central America. Pages 143–171in C. W. Cowan and P. J. Watson, eds., The origins of agriculture: an international perspective. Smithsonian Institution Press, Washington, DC.Google Scholar
  44. Nault, L. R. 1980. Maize bushy stunt and corn stunt: a comparison of disease symptoms, pathogen host ranges, and vectors. Phytopathology 70:659–662.Google Scholar
  45. —,R. E. Gingery, andD. T. Gordon. 1980. Leaf hopper transmission and host range of maize rayado fino virus. Phytopathology 70:709–712.CrossRefGoogle Scholar
  46. —,D. T. Gordon, V. D. Damsteegt, andH. H. Iltis. 1982. Response of annual and perennial teosintes (Zea) to six maize viruses. Plant Disease Report 66:61–62.CrossRefGoogle Scholar
  47. Neuffer, M. G. 1982. Growing maize for genetic purposes. Pages 19–30in W. F. Sheridan, ed., Maize for biological research. University Press, Grand Forks, ND.Google Scholar
  48. Pasupuleti, C. V., andW. C. Galinat. 1982.Zea diploperennis. I. Its chromosomes and comparative morphology. Journal of Heredity 73:168–170.Google Scholar
  49. Randolph, L. F. 1976. Contributions of wild relatives of maize to the evolutionary history of domesticated maize: a synthesis of divergent hypotheses I. Economic Botany 30:321–345.Google Scholar
  50. Rhoades, M. M. 1950. Meiosis in maize. Journal of Heredity 41:58–67.Google Scholar
  51. Smith, B. D. 1992. Prehistoric plant husbandry in Eastern North America. Pages 101–119in C. W. Cowan and P. J. Watson, eds., The origins of agriculture. Smithsonian Institution Press, Washington, DC.Google Scholar
  52. Stebbins, G. L. 1950. Variation and evolution in plants. Columbia University Press, NY.Google Scholar
  53. Talbert, L. E., J. F. Doebley, S. Larson, andV. L. Chandler. 1990.Tripsacum andersonii is a nat- ural hybrid involving Zea and Tripsacum: molecular evidence. American Journal of Botany 77:722–726.CrossRefGoogle Scholar
  54. Tantravahi, R. V. 1968. Cytology and crossability relationships ofTripsacum. Bussey Institute Harvard University, Cambridge, MA.Google Scholar
  55. Weatherwax, Paul. 1935. The phylogeny ofZea mays..American Midland Naturalist 16:1–71.CrossRefGoogle Scholar

Copyright information

© New York Botanical Garden, Bronx, NY 10458 U.S.A 1995

Authors and Affiliations

  • Mary Eubanks
    • 1
  1. 1.Department of BotanyDuke UniversityDurham

Personalised recommendations