Abstract
The mechanism of wood development records in varying degree the effects of both external and internal factors that are operating at the time of development. As a result, fossil woods spanning the last 370 million years represent a unique palaeo-environmental data-store. Data concerning external factors that can be reclaimed consist of: presence or absence of growth rings; ring widths; relative proportions of earlywood and latewood and the nature of the transition between them; “false” and “frost” rings and evidence of damage by animals or fire; occurrence of reaction wood. These effects have to be seen against a background of the influences of the internal factors.
The development of wood involves the action of plant growth regulators. The production of an entire season’s growth of wood depends on a supply of photosynthate, partly stored from the previous year, and the remainder directly from photosynthesis during the current one. In any population of trees of the same species there will be genetic variation which will lead to differences in the wood formed by the individual trees even if they have all grown in a largely similar environment. However the external factors exert a much greater influence than the internal ones.
Our earliest fossil woods (Upper Devonian) show either seasonless growth patterns or, if weak rings are perceptible, then the increments are extensive. This is consistent with the palaeo-equatorial position of all recorded Devonian woods. In the Carboniferous a few sites (marginal in the tropical belt?) show subdued (weak) growth rings. By the time of the Gondwana glaciation strong rings are shown in high southern latitudes, but most surprisingly there are sizeable increments well inside the palaeoantarctic circle. This phenomenon persists into the Mesozoic where lack of growth rings shows consistency with positions within the palaeo-equatorial latitudes. However occurrence of Cretaceous high latitude wood growth demonstrates that given an adequate ambient temperature, forest growth was possible close to both poles. It is shown that this is consistent with the total energy flux known to occur now in high latitudes.
Resumé
Le mécanisme de développement du bois enregistre à des degrés variables les effets des facteurs, à la fois externes et internes, opérant au moment du développement. C’est pourquoi les bois fossiles des dernières 370 millions d’années représentent un fonds d’information unique en ce qui concerne le paléo-environnement. Les informations qui ont pu être recueillies au sujet des facteurs externes sont les suivantes: la présence ou l’absence des zones d’accroissement; le diamètre des cernes; les proportions relatives du bois initial et du bois final et la nature de la transition entre eux; les “faux cernes” et les “cernes de gelée” et les traces de dommage causé par les animaux ou le feu; l’existence de bois de réaction. On doit analyser ces effets à la lumière des influences des facteurs internes.
Le développement du bois nécessite l’action de régulateurs de croissance des plantes. La production totale de bois pendant une saison depend de l’alimentation en produits de photosynthèse dont une partie provient des stocks de l’année précédente, le reste ayant été synthétisé pendant l’année en cours. Dans toutes les populations d’arbres d’une même espèce il existe des variations génétiques qui conduisent à des différences dans le bois formé par chaque arbre individuel même s’ils ont tous poussé dans un environnement semblable. Néanmoins les facteurs externes exercent une influence beaucoup plus importante que les facteurs internes.
Nos bois fossiles les plus anciens (Dévonien Supérieur) montrent soit des modèles de croissance qui ne tiennent pas compte des saisons, soit, si les cernes faibles sont visibles, ils sont larges. Ceci est compatible avec la position paléo-équatoriale de tous les bois Dévoniens observés. Pendant le Carbonifère, quelques sites (marginaux dans la ceinture tropicale?) montrent de faibles zones d’accroissement. A l’époque de la glaciation Gondwana, des cernes remarquables apparaissent dans les hautes latitudes méridionales, mais on observe avec surprise des accroissements de taille dans le cercle paléo-antarctique. Ce phénomène persiste pendant le Mesozoïque où l’absence des zones d’accroissement est compatible avec les positions dans les latitudes paléo-équatoriales. Cependant l’existence de forêts dans les hautes latitudes pendant le Crétacé démontre que si la température ambiante était adéquate, la pousse de forêts était possible près des deux pôles. On démontre que ceci est compatible avec le flux total d’énergie que l’on sait exister aujourd’hui dans les hautes latitudes.
This is a preview of subscription content, access via your institution.
Literature Cited
Absalom, R. G. 1931.Calamopitys (Eristophyton) beinertiana (Goeppert) containing annual rings. Northw. Naturalist6: 70–74.
Antevs, E. 1917. Jahresringe der Holzgewächse und die Bedeutung derselben als klimatischer Indikator. Progr. Rei Bot.5: 285–386.
—. 1925. The climatologic significance of annual rings in fossil woods. Amer. J. Sci. 5th Ser.9: 296–302.
—. 1953. Tree rings and seasons in past geological eras. Tree-Ring Bull.20: 17–19.
Archer, R. R. andB. F. Wilson. 1970. Mechanics of the compression wood response. I. Preliminary analyses. Pl. Physiol.46: 550–556.
——. 1973. Mechanics of the compression wood response. II. On the location, action, and distribution of compression wood formation. Pl. Physiol.51: 777–782.
Arnold, C. A. 1930. The genusCallixylon from the Upper Devonian of central and western New York. Pap. Michigan Acad. Sci.11: 1–50.
—. 1931. OnCallixylon newberryi (Dawkins) Elkins et Wieland. Michigan Univ. Mus. Paleont. Contr.3: 207–232.
—. 1934.Callixylon whiteanum sp. nov., from the Woodford Chert of Oklahoma. Bot. Gaz.96: 180–185.
—. 1947. An introduction to paleobotany. McGraw-Hill Book Co., New York.
—. 1952. Silicified plant remains from the Mesozoic and Tertiary of Western North America II. Some fossil woods from Northern Alaska. Pap. Michigan Acad. Sci.38: 9–20.
Asama, K. 1982. Contributions to the geology and palaeontology of south-east Asia. CCXXII:Araucarioxylon from Khorat, Thailand. Geol. Palaeont. Southeast Asia23: 57–64.
Avery, G. S., P. R. Burkholder andH. B. Creighton. 1937. Production and distribution of growth hormone in shoots ofAesculus andMalus, and its probable role in stimulating cambial activity. Amer. J. Bot.24: 51–58.
Bailey, I. W. 1925. The spruce budworm biocoenose. 1. Frost rings as indicators of the chronology of specific biological events. Bot. Gaz.80: 93–101.
— andA. F. Faull. 1934. The cambium and its derivative tissues. No. IX. Structural variability in the redwood,Sequoia sempervirens, and its significance in the identification of fossil woods. J. Arnold Arbor.15: 233–252.
Baker, F. S. 1950. Principles of silviculture. McGraw-Hill Book Co., New York.
Balatinecz, J. J. andR. W. Kennedy. 1968. Mechanism of earlywood-latewood differentiation. Techn. Assoc. Pulp Paper Industr.51: 414–422.
Bamberg, S., W. Schwarz andW. Tranquillini. 1967. Influence of daylength on the photosynthetic capacity of stone pine (Pinus cembra L.). Ecology48: 264–269.
Bannan, M. W. 1962. The vascular cambium and tree-ring development. Pages 3–21in T. T. Kozlowski (ed.), Tree growth. Ronald Press, New York.
— andW. L. Fry. 1957. Three Cretaceous woods from the Canadian Arctic. Canad. J. Bot.35: 327–337.
Barber, C. A. 1898.Cupressinoxylon vectense, a fossil conifer from the Lower Greenland of Shanklin, in the Isle of Wight. Ann. Bot.12: 329–361.
Barger, R. L. andP. F. Ffolliott. 1976. Factors affecting occurrence of compression wood in individual ponderosa pine trees. Wood Sci.8: 201–208.
Barnes, R. D., J. J. Woodend, M. A. Schweppenhauser andL. J. Mullin. 1977. Variation in diameter growth and wood density in six-year-old provenance trials ofPinus caribaea Morelet on five sites in Rhodesia. Silvae Genet.26: 163–167.
Barron, E. J. 1983. A warm, equable Cretaceous: The nature of the problem. Earth-Science Rev.19: 305–338.
—,S. L. Thompson andS. H. Schneider. 1981. An ice-free Cretaceous? Results from climate model simulations. Science212: 501–508.
— andW. M. Washington. 1982. Cretaceous climate: A comparison of atmospheric simulations with the geologic record. Palaeogeogr. Palaeoclimatol. Palaeoecol.40: 103–133.
Beck, C.B. 1953. A new root species ofCallixylon. Amer. J. Bot.40: 226–233.
Berlyn, G. P. 1982. Morphogenetic factors in wood formation and differentiation. Pages 123–150in P. Baas (ed.), New perspectives in wood anatomy. Nijhoff-Junk, The Hague.
Beschel, R. E. andD. Webb. 1963. Growth ring studies on arctic willows. Pages 189–198in F. Müller (ed.), Axel Heiberg Island, Preliminary Report 1961–1962. McGill University, Montreal.
Blackman, G. E. andJ. N. Black. 1959. Physiological and ecological studies in the analysis of plant environment. XII. The role of the light factor in limiting growth. Ann. Bot.23: 137–145.
Blum, W. 1971. Experimental induction of reaction-wood formation in spruce and poplar. Ber. Schweiz. Bot. Ges.80: 225–251.
Boeshore, I. andW. D. Gray. 1936. An Upper Cretaceous wood;Torreya antiqua. Amer. J. Bot.23: 524–528.
Boureau, E. 1949.Dadoxylon (Araucarioxylon) teixeirae n. sp. Bois fossile du Jurassique superieur portugais. Comun. Serv. Geol. Portugal29: 187–194.
—. 1950. Contribution à l’étude paléoxylogique de l’Indochine. Bull. Serv. Géol. Indochine29: 1–13.
—. 1951. Étude paléoxylologie de l’Afrique du Nord (1): Présence deDadoxylon (Araucarioxylon)teixeirae Boureau dans le Haut Atlas de Maroc. Notes Mém. Serv. Mines Carte Géol. Maroc.4: 123–133.
—. 1952. Étude des fossiles du Territoire du Tchad: 1.Protopodocarpoxylon rochii n. sp. Bois fossile mésozoïque. Bull. Mus. Hist. Nat. Paris, 2∘ Série24: 223–232.
Boyce, S. G. andM. Kaeiser. 1961. Environment and genetic variability in the length of fibers of eastern cottonwood. Techn. Assoc. Pulp Paper Industr.44: 363–366.
Boyd, J. D. 1973. Compression wood force generation and functional mechanics. New Zealand J. Forest. Sci.3: 240–258.
—. 1977. Basic cause of differentiation of tension wood and compression wood. Austral. Forest Res.7: 121–143.
Brett, D. W. 1983. Records of temperature and drought in London’s park trees. Arbor. Journal7: 63–71.
British Columbia Forest Service. 1947. Yield Data. British Columbia Forest Service.
Brown, C. L. andJ. Klein. 1961. Observations on inheritance of wood specific gravity in seedling progeny of loblolly pine. J. Forest.59: 898–899.
Brown, H. P. 1912. Growth studies in forest trees. I.Pinus rigida. Bot. Gaz.54: 386–403.
—. 1915. Growth studies in forest trees. II.Pinus strobus. Bot. Gaz.59: 197–241.
van Buijtenen, J. P. 1958. Experimental control of environmental factors and their effect upon some aspects of wood anatomy in loblolly pine. Techn. Assoc. Pulp Paper Industr.41: 175–178.
—. 1962. Heritability estimates of wood density in loblolly pine. Techn. Assoc. Pulp Paper Industr.45: 602–605.
Burdon, R. D. 1975. Compression wood inPinus radiata clones on four different sites. New Zealand J. Forest Sci.5: 152–164.
Calder, M. G. 1953. A coniferous petrified forest in Patagonia. Bull. Brit. Mus. (Nat. Hist), Geology2: 99–138.
Carlquist, S. 1977. Ecological factors in wood evolution: A floristic approach. Amer. J. Bot.64: 887–896.
Cech, M. Y., R. W. Kennedy andJ. H. G. Smith. 1960. Variation in some quality attributes of one-year-old black cottonwood. Techn. Assoc. Pulp Paper Industr.43: 857–858.
Chalk, L. 1927. The growth of the wood of ash (Fraxinus excelsior L. andF. oxycarpa Willd.) and Douglas fir (Pseudotsuga douglasii Carr.). Quart. J. Forest.21: 102–122.
-. 1930. The formation of spring and summer wood in ash and Douglas fir. Oxford Forest. Mem. 10.
Chang, C. Y. 1929. A newXenoxylon from North China. Bull. Geol. Soc. China8: 243–251.
Christie, R. L. 1964. Geological reconnaissance of northeastern Ellesmere Island, District of Franklin. Bull. Geol. Surv. Canada Memoir331: 1–77.
Clark, J. 1961. Photosynthesis and respiration in white spruce and balsam fir. Techn. Publ. New York State Coll. Forest. No. 58. Syracuse, New York.
Cooper, W. S. 1931. A third expedition to Glacier Bay, Alaska. Ecology12: 61–95.
Coster, C. 1927–1928. Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Ann. Jard. Bot. Buitenzorg37: 49–160;38: 1–114.
Cown, D. J. andM. L. Parker. 1979. Densitometric analysis of wood from five Douglasfir provenances. Silvae Genet.28: 48–53.
Craighead, F. C. 1940. Some effects of artificial defoliation on pine and larch. J. Forest.38: 885–888.
Creber, G. T. 1972. Gymnospermous wood from the Kimmeridgian of East Sutherland and from the Sandringham sands of Norfolk. Palaeontology15: 655–661.
—. 1975. The effect of gravity and the earth’s rotation on the growth of wood. Pages 75–87in G. D. Rosenberg and S. K. Runcorn (eds.), Growth rhythms and history of the earth’s rotation. John Wiley, London.
—. 1977. Tree rings: A natural data-storage system. Biol. Rev. Cambridge Philos. Soc.52: 349–383.
Cronshaw, J. andP. R. Morey. 1965. Induction of tension wood by 2,3,5-tri-iodobenzoic acid. Nature205: 816–818.
Dadswell, H. E. andA. B. Wardrop. 1960. Some aspects of wood anatomy in relation to pulping quality and to tree breeding. J. Austral. Pulp Paper Industr. Tech. Assoc.13: 161–173.
Daubenmire, R. F. 1946. Radial growth of trees at different altitudes. Bot. Gaz.107: 462–467.
—. 1949. Relation of temperature and daylength to the inception of tree growth in spring. Bot. Gaz.110: 464–475.
Decker, J. P. 1944. Effect of temperature on photosynthesis and respiration in red and loblolly pines. PL Physiol.19: 679–688.
Denne, M. P. 1971. Temperature and tracheid development inPinus sylvestris seedlings. J. Exp. Bot.22: 362–370.
—. 1972. A comparison of root and shoot-wood development in conifer seedlings. Ann. Bot.36: 579–587.
—. 1974. Effects of light intensity on tracheid dimensions inPinus sitchensis. Ann. Bot.38: 337–345.
—. 1976a. Effects of environmental change on wood production and wood structure inPicea sitchensis seedlings. Ann. Bot.40: 1017–1028.
—. 1976b. Wood production and structure in relation to bud activity in some softwood and hardwood species. Pages 204–221in P. Baas, A. J. Bolton and D. M. Catling (eds.), Wood structure in biological and technological research. Leiden Botanical Series. Leiden University Press, Dordrecht.
— andR. S. Dodd. 1981. The environmental control of wood development. Pages 236–255in J. R. Barnett (ed.), Xylem cell development. Castle House Publications, Tunbridge Wells.
— andC. J. Smith. 1971. Daylength effects on growth, tracheid development and photosynthesis in seedlings ofPicea sitchensis andPinus sylvestris. J. Exp. Bot.22: 347–361.
— andJ. E. Wilson. 1977. Some quantitative effects of indoleacetic acid on the wood production and tracheid dimensions ofPicea. Planta134: 223–228.
Dickinson, R. E. 1983. Land surfaces and climate-Surface albedos and energy balance. Pages 305–353in B. Saltzman (ed.), Theory of climate. Advances Geophysics 25. Academic Press, New York.
Digby, J. andP. F. Wareing. 1966. The relationship between endogenous hormone levels in the plant and seasonal aspects of cambial activity. Ann. Bot.30: 607–622.
Dinwoodie, J. M. 1963. Variation in tracheid length inPicea sitchensis Carr. Forest Products Research, Special Report No. 16.
Doley, D. andL. Leyton. 1968. Effects of growth regulating substances and water potential on the development of secondary xylem inFraxinus. New Phytol.67: 579–594.
Doumani, G. A. andW. E. Long. 1962. The ancient life of the Antarctic. Sci. Amer.207(3): 168–184.
Downs, R. J. andH. A. Borthwick. 1956. Effects of photoperiod on growth of trees. Bot. Gaz.117: 310–326.
Duke, N. C., W. R. Birch andW. T. Williams. 1981. Growth rings and rainfall correlations in a mangrove tree of the genusDiospyros (Ebenaceae). Austral. J. Bot.29: 135–142.
Elkington, T. T. andB. M. G. Jones. 1974. Biomass and primary productivity of birch (Betula pubescens s. lat.) in south-west Greenland. J. Ecol.62: 821–830.
Elkins, M. G. andG. R. Wieland. 1914. Cordaitean wood from the Indiana black shale. Amer. J. Sci.38: 65–78.
Elliott, G. K. 1970. Wood density in conifers. Technical Communication No. 8, Commonwealth Forestry Bureau, Oxford, England.
Ermich, K. 1963. The inception and the end of the annual tree ring formation inFagus silvatica L.,Abies alba Mill. andPicea excelsa Link in the Tatra Mountains. Ekol. Polska, Ser. A11: 311–336.
Evert, R. F. andT. T. Kozlowski. 1967. Effect of isolation of bark on cambial activity and development of xylem and phloem in trembling aspen. Amer. J. Bot.54: 1045–1055.
—— andJ. D. Davis. 1972. Influence of phloem blockage on cambial growth ofAcer saccharum. Amer. J. Bot.59: 632–641.
Farman, J. C. and R. A. Hamilton. 1978. Measurements of radiation at the Argentine Islands and Halley Bay. 1963–1972. Brit. Antarct. Surv., Scient. Rep. No. 99.
Fletcher, J. M. 1975. Relation of abnormal earlywood in oaks to dendrochronology and climatology. Nature254: 506–507.
Fliehe, P. 1900. Note sur un bois fossile de Madagascar. Bull. Soc. Géol. France, 3∘ Série.28: 470–472.
Ford, E. D., A. W. Robards andM. D. Piney. 1978. Influence of environmental factors on cell production and differentiation in the early wood ofPicea sitchensis. Ann. Bot.42: 683–692.
Fowells, H. A. 1941. The period of seasonal growth of ponderosa pine and associated species. J. Forest.39: 601–608.
Frakes, L. A. 1979. Climates throughout geologic time. Elsevier, Amsterdam.
Francis, J. E. 1983. The dominant conifer of the Jurassic Purbeck Formation, England. Palaeontology26: 277–294.
Fraser, D. A. 1956. Ecological studies of forest trees at Chalk River, Ontario, Canada. II. Ecological conditions and radial increment. Ecology37: 777–789.
Freeland, R. O. 1952. Effect of age of leaves upon the rate of photosynthesis in some conifers. Pl. Physiol.27: 685–690.
Frentzen, K. 1931. Die palaeogeographische Bedeutung des Auftretens von Zuwachszonen (Jahresringen) bei Holzern der SammelgattungDadoxylon Endl. aus dem Carbon und dem Rotliegenden des Oberrheingebietes. Zentralbl. Mineral., Teil 3, Hist. Regionale Geol. Paläont.1931B: 617–624.
Fritts, H. C. 1962. The relation of growth ring widths in American beech and white oak to variations in climate. Tree-Ring Bull.25: 2–10.
—. 1976. Tree rings and climate. Academic Press, Inc., New York.
Fry, W. L. 1958. Petrified logs ofCupressinoxylon from the west shore of Chilko Lake, British Columbia. Bull. Geol. Surv. Canada48: 11–14.
— andL. Chalk. 1957. Variation of density in the wood ofPinus patula grown in Kenya. Forestry30: 29–45.
Fryer, J. H. andF. T. Ledig. 1972. Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient. Canad. J. Bot.50: 1231–1235.
Gassner, G. andF. Christiansen-Weniger. 1942. Dendroklimatologische Untersuchungen über die Jahresrigentwicklung der Kiefern in Anatolien. Nova Acta Leop.12: 1–137.
Glerum, C. andJ. L. Farrar. 1966. Frost rings in the stems of some coniferous species. Canad. J. Bot.44: 879–886.
Glock, W. S. 1937. Principles and methods of tree-ring analysis. Publ. Carnegie Inst. Wash. 486.
—. 1951. Cambial frost injuries and multiple growth layers at Lubbock, Texas. Ecology32: 28–36.
-,R. A. Studhalter and S. R. Agerter. 1960. Classification and multiplicity of growth layers in the branches of trees at the extreme lower forest border. Smithsonian Misc. Collect. 140.
Goggans, J. F. 1962. The correlation, variation, and inheritance of wood properties in loblolly pine (Pinus taeda L.). North Carolina State Coll. School of Forestry, Tech. Rep. 14.
Goldring, W. 1921. Annual rings of growth in Carboniferous wood. Bot. Gaz.72: 326–330.
Goldsmith, M. H. M. 1977. The polar transport of auxin. Ann. Rev. Pl. Physiol.28: 439–478.
Gordon, J. C. andP. R. Larson. 1968. The seasonal course of photosynthesis, respiration and distribution of14C in youngPinus resinosa trees as related to wood formation. Pl. Physiol.43: 1617–1624.
Gosz, J. R., R. T. Holmes, G. E. Likens andF. H. Bormann. 1978. The flow of energy in a forest ecosystem. Sci. Amer.238(3): 92–102.
Gothan, W. 1907. Die fossilen Hölzer von König Karls Land. K. Svenska Vetensk-Akad. Handl.42: 1–41.
—. 1911. Die Jahresringlosigkeit der paläozoischen Baume und die Bedeutung dieser Erscheinung für die Beurteilung des Klimas dieser Perioden. Naturwiss. Wochenschr.10: 1–13.
Green, H. V. and J. Worrall. 1963. Wood quality studies. Part 1. Scanning microphotometer for automatically measuring and recording certain wood characteristics. Pulp Paper Research Inst. Canada, Tech. Rep. No. 331.
Gustafson, F. G. 1938. Influence of the length of day on the dormancy of tree seedlings. Pl. Physiol.13: 655–658.
Häbjørg, A. 1978. Photoperiodic ecotypes in Scandinavian trees and shrubs. Norges Landbrukshogskole Meldinger57: 2–20.
Hall, D. O. 1978. Solar energy through biology: Could it be a practical energy source? Pages 9–38in H. Clijsters, M. Van Poncke and R. Marcelle (eds.), Biological solar energy conversion. Limburgs Universitair Centrum, Netherlands.
Harris, E. H. M. 1955. The effect of rainfall on the late wood of Scots pine and other conifers in East Anglia. Forestry28: 136–140.
Hartig, R. 1885. Holz der deutschen Nadelwaldbaume. Berlin.
Hatch, M. D. andK. T. Glasziou. 1963. Sugar accumulation cycle in sugar cane. II. Relationship of invertase activity to sugar content and growth rate in storage tissue of plants grown in controlled environments. Pl. Physiol.38: 344–348.
Helms, J. A. 1965. Diurnal and seasonal patterns of net assimilation in Douglas-fir,Pseudotsuga menziesii (Mirb.) Franco, as influenced by environment. Ecology46: 698–708.
—. 1970. Summer net photosynthesis of ponderosa pine in its natural environment. Photosynthetica4: 243–253.
Hueg, O. A. 1942. The Downtonian and Devonian Flora of Spitzbergen. Norges Svalb. Ishavs-Undersok.83: 1–128.
Holden, R. 1913. Some fossil plants from eastern Canada. Ann. Bot.27: 243–255.
—. 1917. On the anatomy of two palaeozoic stems from India. Ann. Bot.31: 315–326.
Hollis, C. A. andH. B. Tepper. 1971. Auxin transport within intact dormant and active white ash shoots. Pl. Physiol.48: 146–149.
Honda, S. 1896. Besitzen die Kiefernadeln ein mehrjähriges Wachstum? Bull. Imp. Univ. Coll. Agr.2: 391–392.
Hoskins, J. T. andA. T. Cross. 1951. The structure and classification of four plants from the New Albany shale. Amer. Midl. Naturalist46: 684–716.
Hylander, C. J. 1922. A Mid-DevonianCallixylon. Amer. J. Sci.4: 315–321.
Jahnke, L. S. andD. B. Lawrence. 1965. Influence of photosynthetic crown structure on potential productivity of vegetation, based primarily on mathematical models. Ecology46: 319–326.
Jefferson, T. H. 1982. Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica. Palaeontology25: 681–708.
Jensen, K. N. 1982. Growth rings in Pennsylvanian fossil wood found in Oklahoma. Oklahoma Geol. Notes42: 7–10.
Kennedy, R. W. andJ. L. Farrar. 1965. Tracheid development in tilted seedlings. Pages 419–453in W. A. Coté Jr. (ed.), Cellular ultra-structure of woody plants. Syracuse Univ. Press, New York.
Kennett, J. P. 1977. Cenozoic evolution of antarctic glaciation, the circum-antarctic ocean, and their impact on global paleoceanography. J. Geophys. Res.82: 3843–3860.
Khudayberdyev, R. 1962.Ginkgo wood from the Upper Cretaceous of south-west Kyzylkum. Dokl. Akad. Nauk SSSR145: 422–424.
Kienholz, R. 1934. Leader, needle, cambial and root growth of certain conifers and their interrelations. Bot. Gaz.96: 73–92.
Kittredge, J. 1944. Estimation of the amount of foliage of trees and stands. J. Forest.42: 905–912.
Klem, G. G. 1957. The quality of Norway spruce (Picea abies) of Norwegian and German origin. Meddeland. Norske Skogforsoksv.14: 285–315.
—,F. Løschbrandt andO. Bade. 1945. Undersokelser av granwirke i forbindelse med slipeog sulfitkokeforsok. Meddeland. Norske Skogforsøksv.9: 1–127.
Knigge, W. andC. Koltzenburg. 1964. Bestimmung der Früholz-Spätholzgrenze in Nadelholzjahrringen mit Hilfe eines Teilchengrössen-Analysators. Holz als Roh- und Werkstoff22: 249–254.
Koehler, A. 1938. Wood quality-A reflection of growth environment. J. Forest.36: 867–869.
Kossovich, N. L. 1935. On differences in the anatomical structure of the northern and southern sides in the wood of conifers. (English summary.) Bot. Zhurn. SSSR20: 471–472.
Kozlowski, T. T. 1962. Photosynthesis, climate and tree growth. Pages 149–164in T. T. Kozlowski (ed.), Tree growth. Ronald Press, New York.
—. 1982. Water supply and tree growth. Part I. Water deficits. Forest. Abstr.43: 57–95.
Kramer, P. J. 1936. Effect of variation in length of day on growth and dormancy of trees. PL Physiol.11: 127–137.
—. 1943. Amount and duration of growth of various species of tree seedlings. Pl. Physiol.18: 239–251.
—. 1957. Some effects of various combinations of day and night temperatures and photoperiod on the height growth of loblolly pine seedlings. Forest Sci.3: 45–55.
— andW. S. Clark. 1946. A comparison of photosynthesis in individual and entire seedlings at various light intensities. Pl. Physiol.22: 51–57.
— andJ. P. Decker. 1944. Relation between light intensity and rate of photosynthesis in loblolly pine and certain hardwoods. Pl. Physiol.19: 350–358.
Krames, K. 1952. Geologischer Kompass. Pure Appl. Geophys.22: 57–62.
—. 1956. Stubbenuntersuchungen im Braunkohlentagebau der Grube Berrenrath. Braunkohle8: 329–336.
Kraus, G. 1874. Einige Bemerkungen über Alter Wachstumverhaltnisse ostgronlandischer Holzgewachse, in Die Zweite deutsche Nordpolarfahrt in den Jahren 1869 und 1870. 2, 1. Leipzig.
—. 1883. Das mehrjahrige Wachsen der Kiefernadeln. Abh. Naturf. Ges. Halle 16: 361–372.
—. 1899. Nord und Sud im Jahrring. Pages 130–136in Festschrift zur Feier ihres funfzigjahrigen bestehens. Physikalisch-Medizinischen Gesellschaft, Wurzburg.
Kraus, J. F. andS. H. Spurr. 1961. Relationship of soil moisture to the springwoodsummerwood transition in southern Michigan red pine. J. Forest.59: 510–511.
Kräusel, R. andK. P. Jain. 1963. New fossil coniferous woods from the Rajmahal Hills, Bihar, India. Palaeobotanist12: 59–67.
— andP. Range. 1928. Beitrage zur Kenntniss der Karrooformation Deutsch-Sudwest Afrikas. Beitr. Geol. Erforsch. Dsch. Sch. Geb.20: 1–55.
Krystofovich, A. 1932. Les bois fossiles comme indicateurs des points cardinaux dans le passé géologique et la théorie de Wegener. Izv. Akad. Nauk SSSR Ser. 7, Otd. Nat. Nauk 3.
Kurssanow, A. L. 1933. Über den Einfluss der Kohlenhydrate auf den Tagesverlauf der Photosynthese. Planta20: 535–548.
Lacey, W. S. 1953. Scottish Lower Carboniferous plants:Eristophyton waltoni sp. nov. andEndoxylon zonatum (Kidston) Scott from Dunbartonshire. Ann. Bot.17: 579–596.
La Grange, J. J. 1963. Trans-Antarctic Expedition 1955–58 Scientific Report No. 13. Meteorology 1. Shackleton. Southice and the journey across Antarctica. Trans-Antarctic Expedition Committee.
Larson, P. R. 1957. Effect of environment on the percentage of summerwood and specific gravity of slash pine. Bull. Yale Univ. School Forest. 63.
—. 1960. A physiological consideration of the springwood-summerwood transition in red pine. Forest Sci.6: 110–122.
—. 1962. The indirect effect of photoperiod on tracheid diameter inPinus resinosa. Amer. J. Bot.49: 132–137.
—. 1963. The indirect effect of drought on tracheid diameter in red pine. Forest Sci.9: 52–62.
—. 1964a. Some indirect effects on wood formation. Pages 345–365in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, Inc., New York.
—. 1964b. Contribution of different aged needles to growth and wood formation of young red pines. Forest Sci.10: 224–238.
—. 1967. Effects of temperature on the growth and wood formation of tenPinus resinosa sources. Silvae Genet.16: 58–65.
-Larson, P. R. 1969. Wood formation and the concept of wood quality. Bull. Yale Univ. School Forest.74.
Leakey, R. R. B., V. R. Chapman andK. A. Longman. 1975. Studies on root initiation and bud growth in nine clones ofTriplochiton scleroxylon K. Schum. Pages 86–92in Proceedings Symposium on the variation and breeding systems ofTriplochiton scleroxylon K. Schum. Forest Research Insitute of Nigeria, Ibadan.
Ledig, F. T. andD. B. Botkin. 1974. Photosynthetic CO2-uptake and the distribution of photosynthate as related to growth of larch and sycamore progenies. Silvae Genet.23: 188–192.
Leikola, M. 1969. The influence of environmental factors on the diameter growth of young trees. Acta Forest. Fenn.92: 1–44.
Lemoigne, Y. andH. Tyroff. 1967. Caractères anatomiques d’un fragment de bois appartenant a l’espèceWalchia (Lebachia) piniformis du Permien d’Allemagne. Compt. Rend. Hebd. Séances Acad. Sci.265: 595–597.
Lepekhina, V. G. 1972. Woods of palaeozoic pycnoxylic gymnosperms with special reference to North Eurasia representatives. Palaeontographica B138: 44–106.
Liese, W. andH. E. Dadswell. 1959. Über den Einfluss der Himmelsrichtung auf die Länge von Holzfasern und Tracheiden. Holz als Roh- und Werkstoff17: 421–427.
Linzon, S. N. 1958. The effect of artificial defoliation of various ages of leaves upon white pine growth. Forest. Chron.34: 51–56.
Liphschitz, N., S. Lev-Yadun andY. Waisel. 1981. The annual rhythm of activity of the lateral meristems (cambium and phellogen) inCupressus sempervirens L. Ann. Bot.47: 485–496.
Little, C. H. A. 1981. Effect of cambial dormancy state on the transport of (l-14C)indol-3-ylacetic acid inAbies balsamea shoots. Canad. J. Bot.59: 342–348.
— andP. F. Wareing. 1981. Control of cambial activity and dormancy inPicea sitchensis by indol-3-ylacetic and abscisic acids. Canad. J. Bot.59: 1480–1493.
Lodewick, J. E. 1931. Some effects of irrigation and fertilisation on the size of longleaf pine needles. Forest Worker7: 12–13.
Long, A. G. 1979. Observations on the Lower Carboniferous genusPitus Witham. Trans. Roy. Soc. Edinburgh70: 111–127.
Longman, K. A. 1969. The dormancy and survival of plants in the humid tropics. Symp. Soc. Exp. Biol.23: 471–488.
—. 1978. Control of shoot extension and dormancy: External and internal factors. Pages 465–495in P. B. Tomlinson and M. H. Zimmermann (eds.), Tropical trees as living systems. Proc. 4th Cabot Symp., Harvard Forest. Cambridge University Press, New York.
—,R. R. B. Leakey andM. P. Denne. 1979. Genetic and environmental effects on shoot growth and xylem formation in a tropical tree. Ann. Bot.44: 377–380.
Lotan, J. E. andR. Zahner. 1963. Shoot and needle responses of 20-year-old red pine to current soil moisture regimes. Forest Sci.9: 497–506.
Mädel, E. 1960. Monimiaceen-Hölzer aus den oberkretazischen Umzamba-Schichten von Ost-Pondoland (S-Africa). Senckenberg. Leth.41: 331–391.
Maheshwari, H. K. 1972. Permian wood from Antarctica and revision of some Lower Gondwana wood taxa. Palaeontographica B138: 1–43.
Marchenko, I. S. 1974. Interaction of woody plants. Lesnoe Khozyaistvo11: 37–45. (In Russian. Forest. Abstr. 1977, 38, No. 3379.)
—. 1975. The mutual effect of woody plants. Lesnoe Khozyaistvo12: 44–48. (In Russian. Forest. Abstr. 1977. 38, No. 3380.)
Matten, L. C. andH. P. Banks. 1967. Relationship between the Devonian progymnosperm generaSphenoxylon andTetraxylopteris. Bull. Torrey Bot. Club94: 321–323.
Mayr, H. 1893. Das Harz der deutschen Nadelwaldbaume. Z. Forstund Jagd.25: 313–324, 389–417, 565–593, 654–670.
McKimmy, M. D. andD. D. Nicholas. 1971. Genetic differences in wood traits among half-century-old families of Douglas-fir. Wood & Fiber2: 347–355.
McKinnell, F. H. andK. R. Shepherd. 1971. The effect of moisture availability on density variation within the annual ring of radiata pine. J. Inst. Wood Sci.5: 25–29.
McMahon, T. A. 1975. The mechanical design of trees. Sci. Amer.233(1): 93–102.
Meissner, R. 1894. Studien über das mehrjährige Wachstem der Kiefernadeln. Bot. Z.52: 55–82.
Middendorff, A. T. V. 1867. Die Gewächse Sibiriens.In Reise in den aussersten Norden und Osten Sibiriens. 4. 1. St. Petersburg.
Mikola, P. 1962. Temperature and tree growth near the northern timber line. Pages 265–287in T. T. Kozlowsi (ed.), Tree growth. Ronald Press, New York.
Millar, A. 1980. Annual rings of birch [Betula pubescens ssp.tortuosa (Ledeb.) Nijman]. Climate and defoliation: An exploratory study. Merlewood Research and Development Paper No. 77, Merlewood Research Station, Grange-over-Sands, England.
Miller, D. H. 1955. Snow cover and climate in the Sierra Nevada, California. Univ. Calif. Publ.Geogr.11: 1–218.
Monteith, J. L. 1965. Light distribution and photosynthesis in field crops. Ann. Bot.29: 17–37.
—. 1973. Principles of environmental physics. Edward Arnold, London.
Mooney, H. A. andW. D. Billings. 1961. Comparative physiological ecology of arctic and alpine populations ofOxyria digyna. Ecol. Monogr.31: 1–29.
—— andR. Brayton. 1966. Field measurements of the metabolic responses of bristlecone pine and big sagebrush in the White Mountains. Bot. Gaz.127: 105–113.
— andM. West. 1964. Photosynthetic acclimation of plants of diverse origin. Amer. J. Bot.51: 825–827.
Mork, E. 1928. Der Qualität des Fichtenholzes unter besonderer Rucksichtnahme auf Shief- und Papierholz. Papierfabrikant26: 741–747.
Müller, D. 1928. Die Kohlensäureassimilation bei arktischen Pflanzen und die Abhangigkeit der Assimilation von der Temperatur. Planta6: 22–39.
Negri, G. 1914. Sopra alenni legni fossili del Gebel Tripolitano. Bull. Soc. Geol. Ital.33: 321–344.
Neilson, R. E., M. M. Ludlow andP. G. Jarvis. 1972. Photosynthesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]. II Response to temperature. J. Appl. Ecol.9: 721–745.
Newman, I. V. 1956. Pattern in meristems of vascular plants. 1. Cell partition in living apices and in the cambial zone in relation to the concepts of initial cells and apical cells. Phytomorphology6: 1–19.
Nicholls, J. W. P. 1971. The effect of environmental factors on wood characteristics. 1. The influence of irrigation onPinus radiata from South Australia. Silvae Genet.20: 26–33.
— andA. G. Brown. 1971. The ortet-ramet relationship in wood characteristics ofPinus radiata. J. Austral. Pulp Paper Industr. Tech. Assoc.25: 200–209.
—— andL. A. Pederick. 1974. Wood characteristics of sexually and vegetatively reproducedPinus radiata. Austral. J. Bot.22: 19–27.
—,C. K. Pawsey andA. G. Brown. 1976. Further studies on the ortet-ramet relationship in wood characteristics ofPinus radiata. Silvae Genet.25: 73–79.
— andH. D. Waring. 1977. The effect of environmental factors on wood characteristics. IV. Irrigation and partial draughtingof Pinus radiata. Silvae Genet.26: 107–111.
— andJ. P. Wright. 1976. The effect of environmental characters on wood characteristics. III. The influence of climate and site on youngPinus radiata material. Canad. J. For. Res.6: 113–121.
Nishida, M. 1973. On some petrified plants from the Cretaceous of Choshi, Chiba Prefecture VI. Bot. Mag.86: 189–202.
Njoku, E. 1963. Seasonal periodicity in the growth and development of some forest trees in Nigeria. I. Observations on mature trees. J. Ecol.51: 617–624.
—. 1964. Seasonal periodicity in the growth and development of some forest trees in Nigeria. II. Observations on seedlings. J. Ecol.52: 19–26.
O’Neil, L. C. 1962. Some effects of artificial defoliation on the growth of jack pine (Pinus banksiana Lamb.). Canad. J. Bot.40: 273–280.
Orman, H. R. 1958. The physical and mechanical properties of New Zealand grown Douglas-fir. Part II. The mechanical properties of New Zealand grown Douglas-fir. New Zealand Forest Serv. Tech. Paper No.24: 41–86.
Oswald, H. 1969. Conditions forestières et potentialité de l’épicéa en haute ardèche. Ann. Sci. Forest.26: 183–224.
Ovington, J. D. 1961. Some aspects of energy flow in plantations ofPinus sylvestris L. Ann. Bot.25: 12–20.
— andH. A. I. Madgwick. 1959. The growth and composition of natural stands of birch. 1. Dry-matter production. PL & Soil10: 271–283.
Paul, B. H. and R. O. Marts. 1954. Controlling the proportion of summerwood in longleaf pine. U.S.D.A. Forest Prod. Lab., Madison For. Serv., Rep. No. 1988.
Pharis, R. P., H. Hellmers andE. Schuurmans. 1970. Effects of subfreezing temperatures on photosynthesis of evergreen conifers under controlled environment conditions. Photosynthetica4: 273–279.
Phelps, J. E., M. Saniewski, M. Smolinski, J. Peniazek andE. A. McGinnes, Jr. 1974. A note on the structure of morphactin-induced wood in two coniferous species. Wood & Fiber6: 13–17.
Philipson, J. J. andM. P. Courts. 1980. Effects of growth hormone application on the secondary growth of roots and stems inPicea sitchensis (Bong.) Carr. Ann. Bot.46: 747–755.
Pisek, A., W. Larcher andR. Unterholzner. 1967. Kardinale Temperatur-bereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. I. Temperaturminimum der Nettoassimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora B.157: 239–264.
——,W. Moser andI. Pack. 1969. Kardinale Temperatur-bereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora B.158: 110–128.
Pole, M. 1982. The geology of Slope Point to Curio Bay. Unpublished Ms. Geology Department, Otago University, Otago, New Zealand.
Polge, H. 1966. Établissement des courbes de variations de la densité du bois par exploration densitométrique de radiographies prélevés à la tarière sur des arbres vivants. Applications dans les domaines technologique et physiologique. Thèse Docteur ès sciences appliquées. Ann. Sci. Forest.23: 1–206.
— andR. Keller. 1968. Influence de l’appraisionnement en eau sur la structure interne des accroissements annuels. Ann. Sci. Forest.25: 125–133.
Potonié, H. 1902. Fossile Hölzer aus der oberen Kreide Deutsch-Ostafrikas, in Die Reisen der Bergassessors Dr. Dantz in Deutsch-Ostafrika in den Jahren 1898–1900. Mitt. Deuts. Schutzgeb. Bd. 15 Heft4: 227–230.
Prasad, M. N. V. andS. Chandra. 1980.Palaeospiroxylon-A new gymnospermous wood from Raniganj coalfield, India. Palaeobotanist26: 230–236.
Priestley, J. H. 1930. Studies in the physiology of cambial activity. III. The seasonal activity of the cambium. New Phytol.29: 316–354.
— andL. I. Scott. 1936. A note upon summer wood production in the tree. Proc. Leeds Philos. Lit. Soc. Science Section3: 235–248.
Princes Risborough. 1972. Reaction wood (tension wood and compression wood). Technical Note No. 57, Princes Risborough Lab., Build. Res. Estab., Princes Risborough, Bucks., England. H.M.S.O. London.
Promnitz, L. C. 1975. A photosynthate allocation model for tree growth. Photosynthetica9: 1–15.
Rabinowitch, E. I. 1951. Photosynthesis and related processes. Vol. 2. Pt.1. Spectroscopy and fluorescence of photosynthetic pigments; kinetics of photosynthesis. John Wiley & Sons, Inc., New York.
Ramanujam, C. G. K. andW. N. Stewart. 1969. Fossil woods of Taxodiaceae from the Edmonton Formation (Upper Cretaceous) of Alberta. Canad. J. Bot.47: 115–124.
Read, C. G. 1932.Pinoxylon dakotense from the Cretaceous of the Black Hills. Bot. Gaz.93: 173–189.
Reinders-Gouwentak, C. A. 1941. Cambial activity as dependent on the presence of growth hormone and the non-resting condition of stems. Proc. Ned. Akad. Weteusch. Amst.44: 654–662.
Richardson, S. D. 1964. The external environment and tracheid size in conifers. Pages 367–388in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, Inc., New York.
— andJ. M. Dinwoodie. 1960. Studies on the physiology of xylem development. Part I. The effect of night temperature on tracheid size and wood density in conifers. J. Inst. Wood Sci.1: 3–13.
Robards, A. W. 1965. Tension wood and eccentric growth in crack willow (Salix fragilis L.). Ann. Bot.29: 419–431.
—. 1969. The effect of gravity on the formation of wood. Sci. Prog.57: 513–532.
—,E. Davidson andP. Kidwai. 1969. Short-term effects of some chemicals on cambial activity. J. Exp. Bot.20: 912–921.
Roberts, L. W. 1976. Cytodifferentiation in plants: Xylogenesis as a model system. Cambridge University Press, Cambridge and London.
Roggeveen, P. M. 1932. Mesozoisches Koniferenholz (Protocupressinoxylon malayense n. sp.) ven der Insel Soegi in Riouw-Archipel, Niederlandisch Ost-Indien. Proc. kon. Acad. Wetensch. Amsterdam35: 580–584.
Russell, R. S. 1940. Physiological and ecological studies on an arctic vegetation. III. Observations on carbon assimilation, carbohydrate storage and stomatal movement in relation to the growth of plants on Jan Mayen Island. J. Ecol.28: 289–309.
Salisbury, F. B. 1981. Responses to photoperiod. Pages 135–167in O. L. Lange, P. S. Nobel, C. B. Osmond and H. Zeigler (eds.), Physiological plant ecology I. Springer-Verlag, Berlin.
Sasaki, Y., T. Okyama andY. Kikata. 1978. The evolution process of the growth stress in the tree. The surface stresses on the tree. Wood Res.24: 149–157.
Savidge, R. A. andP. F. Wareing. 1981a. Plant-growth regulators and the differentiation of vascular elements. Pages 192–235in J. R. Barnett (ed.), Xylem cell development. Castle House Publications, Tunbridge Wells.
——. 1981b. A tracheid-differentiation factor from pine needles. Planta153: 395–404.
Schreiner, E. J. 1958. Possibilities for genetic improvement in the utilisation potentials of forest trees. Silvae Genet.7: 122–128.
Schulman, E. 1951. Tree-ring indices of rainfall, temperature and river flow. Pages 1024–1029in Meteorological Society (eds.), Compendium of meteorology, Meteorological Society Boston.
Schultze-Motel, J. 1966. Gymnospermen-Hölzer aus den oberkretazischen Umzamba-Schichtem von Ost-Pondoland (S-Afrika). Senckenberg. Leth.47: 279–337.
Schweitzer, H.-J. 1968. Die Flora des oberen Perms in Mitteleuropa. Naturwiss. Rundschau21: 93–102.
Seward, A. C. andJ. Walton. 1923. On fossil plants from the Falkland Islands. Quart. J. Geol. Soc. London79: 313–333.
Sheldrake, A. R. andD. H. Northcote. 1968. The production of auxin by tobacco internode tissues. New Phytol.67: 1–11.
Shepherd, K. R. andK. S. Rowan. 1967. Indoleacetic acid in cambial tissue of radiata pine. Austral. J. Biol. Sci.20: 637–646.
Shilkina, I. A. 1963. A new conifer genusYatsenkoxylon sibiricum gen. et sp. nov. Dokl. Akad. Nauk SSSR148: 163–165.
Shimakura, M. 1936. Studies on fossil woods from Japan and adjacent lands. Contribution I. Some Jurassic woods from Japan and Manchoukuo. Sci. Rep., Tôhoku Imp. Univ., 2nd Ser.18: 267–310.
—. 1937. Studies on fossil woods from Japan and adjacent lands. Contribution II. The Cretaceous woods from Japan, Saghalien and Manchoukuo. Sci. Rep., Tôhoku Imp. Univ., 2nd Ser.19: 1–73.
Shininger, T. L. 1979. The control of vascular development. Annual Rev. Pl. Physiol.30: 313–337.
Shroder, J. F. andM. Schwarzbach. 1981. Comments and reply on ‘Axes of elongation of petrified stumps in growth position as possible indicators of paleosouth, Alaska Peninsula.” Geology10: 436–437.
Sitholey, R. V. 1940. Jurassic plants from Afghan-Turkistan. Mem. Geol. Serv. India, Palaeont. Indica 29, Mem. No. 1.
Skene, D. S. 1969. The period of time taken by cambial derivatives to grow and differentiate into tracheids inPinus radiata D. Don. Ann. Bot.33: 253–262.
—. 1972. The kinetics of tracheid development inTsuga canadensis Carr. and its relation to tree vigour. Ann. Bot.36: 179–187.
Slatyer, R. O. andP. J. Ferrar. 1977. Altitudinal variation in the photosynthetic characteristics of snow gum,Eucalyptus pauciflora Sieb. ex Spreng. II. Effects of growth temperature under controlled conditions. Austral. J. Pl. Physiol.4: 289–299.
— andP. A. Morrow. 1977. Altitudinal variation in the photosynthetic characteristics of snow gum,Eucalyptus pauciflora Sieb. ex Spreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-eastern Australia. Austral. J. Bot.25: 1–20.
Smirnoff, L. andW. Connelly. 1980. Axes of elongation of petrified stumps in growth position as possible indicators of paleosouth, Alaska Peninsula. Geology8: 547–548.
Smith, A. G., A. M. Hurley andJ. C. Briden. 1981. Phanerozoic paleo-continental world maps. Cambridge University Press, Cambridge.
Smith, C. J., R. W. Wellwood andG. K. Elliott. 1977. Effects of nitrogen feriliser and current climate on wood properties of Corsican pine [Pinus nigra var.maritima (Ait.) Melv.]. Forestry50: 117–138.
Smith, D. M. 1955. A comparison of two methods for determining the specific gravity of small samples of second growth Douglas fir. U.S.D.A. Forest Serv. Dept. Publ. No. 2033.
Smolinski, M., M. Saniewski andJ. Pieniazek. 1974. The suppression of tension wood formation in bent shoots ofAesculus hippocastanum L. by morphactin 3456. Bull. Acad. Polon. Sci., Ser. Sci. Biol.22: 809–812.
Söding, H. 1936. Über den Einfluss von Wuchsstof auf das Dickenwachstum der Baume. Ber. Deutsch. Bot. Ges.54: 291–304.
Squillace, A. E. andR. T. Bingham. 1958. Localized ecotypic variation in western white pine. Forest Sci.4: 20–24.
Stopes, M. C. 1916. An early type of the Abietineae (?) from the Cretaceous of New Zealand. Ann. Bot.30: 111–125.
Timell, T. E. 1978. Ultrastructure of compression wood inGinkgo biloba. Wood Sci. and Techn.12: 89–103.
Tomlinson, P. B. andF. C. Craighead, Sr. 1972. Growth-ring studies on the native trees of sub-tropical Florida. Pages 39–51in A. K. M. Ghouse and M. Yunus (eds.). K. A. Chowdhury commemoration volume. Tata McGraw-Hill, New Delhi.
Torrey, J. G., D. E. Fosket andP. K. Hepler. 1971. Xylem formation: A paradigm of cytodifferentiation in higher plants. Amer. Sci.59: 338–352.
Townsend, A. M., J. W. Hanover andB. V. Barnes. 1972. Altitudinal variation in photosynthesis, growth and monoterpene composition of western white pine (Pinus monticola Dougl.) seedlings. Silvae Genet.21: 133–139.
Tranquillini, W. 1955. Die Bedeutung des Lichtes und der Temperatur für die Kohlensäureassimilation vonPinus cembra L. Jungwuchs an einem hochalpinem Standort. Planta46: 154–178.
—. 1979. Physiological ecology of the alpine timberline. Springer-Verlag, Berlin, Heidelberg, New York.
— andK. Holzer. 1958. Über des Gefrieren und Auftauen von Coniferennadeln. Ber. Deutsch. Bot. Ges.71: 143–156.
Trenard, Y. andP. Guéneau. 1975. Relation between longitudinal growth stresses and tension wood inFagus sylvatica. Holzforschung29: 217–223.
Tynan, E. J. 1959. Occurrence ofCordaites michiganensis in Oklahoma. Oklahoma Geol. Notes19: 43–46.
Unger, F. 1859. Der versteinerte Wald bei Cairo und einige andere Lager verkieselten Holzen in Ägypten. Akad. Wiss. Wien. Sitzungsber.33: 209–233.
Vaartaja, O. 1959. Evidence of photoperiodic ecotypes in trees. Ecol. Monogr.29: 91–111.
—. 1962. Ecotypic variation in photoperiodism of trees with special reference toPinus resinosa andThuja occidentalis. Canad. J. Bot.40: 849–856.
Vince-Prue, D. 1975. Photoperiodism in plants. McGraw-Hill Book Co., London.
Voegeli, H. andO. Reinhart. 1956. Ergebnisse von Jahrringmessungen aus gleichaltrigen Föhrebestanden. Schweiz. Z. Forstwesen107: 407–415.
Vowinckel, T., W. C. Oechel andW. G. Boll. 1975. The effect of climate on the photosynthesis ofPicea mariana at the subarctic tree-line. I. Field measurements. Canad. J. Bot.53: 604–620.
Wareing, P. F. 1951a. Growth studies in woody species. IV. The initiation of cambial activity in ring-porous species. Physiol. Pl.4: 546–562.
—. 1951b. Growth studies in woody species. III. Further photoperiodic effects inPinus silvestris. Physiol. Pl.4: 41–56.
—. 1953. Growth studies in woody species. V. Photoperiodism in dormant buds ofFagus sylvatica L. Physiol. Pl.6: 692–705.
—. 1958. The physiology of cambial activity. J. Inst. Wood Sci.1: 34–42.
—,C. E. A. Hanney andJ. Digby. 1964. The role of endogenous hormones in cambial activity and xylem differentiation. Pages 323–344in M. H. Zimmermann (ed.), The formation of wood in forest trees. Academic Press, Inc., New York.
— andD. L. Roberts. 1956. Photoperiodic control of cambial activity inRobinia pseudacacia L. New Phytol.55: 356–366.
Warren-Wilson, J. 1964. Annual growth ofSalix arctica in the high-arctic. Ann. Bot.28: 71–76.
—. 1966. An analysis of plant growth and its control in arctic environments. Ann. Bot.30: 383–402.
Westing, A. H. 1965. Formation and function of compression wood in gymnosperms. Bot. Rev.31: 381–480.
—. 1968. Formation and function of compression wood in gymnosperms. Bot. Rev.34: 51–78.
Whitmore, F. W. andR. Zahner. 1964. Indoleacetic acid synthesis by polyphenols in the extraction ofPinus phloem and cambial tissue. Science145: 166–167.
—— 1966. Development of the xylem ring in stems of young red pine trees. Forest Sci.12: 198–210.
Wight, W. 1933. Radial growth of the xylem and starch reservesof Pinus sylvestris. New Phytol.32: 77–96.
Williams, S. 1930. The geological collection from the South Central Sahara made by Mr. F. Rodd. III. Fossil wood. Quart. J. Geol. Soc. London86: 408–409.
Wilson, B. F., T. J. Wodzicki andR. Zahner. 1966. Differentiation of cambial derivatives: Proposed terminology. Forest Sci.12: 438–440.
Wilson, L. R. 1963. A new species ofDadoxylon from the Seminole Formation (Pennsylvanian) of Oklahoma. Oklahoma Geol. Notes23: 215–220.
Wodzicki, T. J. 1964. Photoperiodic control of natural growth substances and wood formation in larch (Larix decidua DC.). J. Exp. Bot.15: 584–599.
—. 1968. On the question of occurrence of indole-3-acetic acid inPinus silvestris. Amer. J. Bot.55: 564–571.
—. 1971. Mechanism of xylem differentiation inPinus silvestris L. J. Exp. Bot.22: 670–687.
— andA. B. Wodzicki. 1973. Auxin stimulation of cambial activity inPinus sylvestris. II. Dependence upon basipetal transport. Physiol. Pl.29: 288–297.
Zahner, R. 1963. Internal moisture stress and wood formation in conifers. Forest Prod. J.13: 240–247.
—. 1968. Water deficits and growth of trees. Pages 191–254in T. T. Kozlowski (ed.), Water deficits and plant growth. Academic Press, Inc., New York.
—,J. E. Lotan andW. D. Baughman. 1964. Earlywood-latewood features of red pine grown under simulated drought and irrigation. Forest Sci.10: 361–369.
— andW. W. Oliver. 1962. The influence of thinning and pruning on the date of summerwood initiation in red and jack pines. Forest Sci.8: 51–63.
Zajaczkowski, S. 1973. Auxin stimulation of cambial activity inPinus sylvestris. I. The differential cambial response. Physiol. Pl.29: 281–287.
Zalessky, M. 1909. Communication preliminaire sur un nouveauDadoxylon provenant du Dévonien supérieur du bassin du Donetz. Bull. Acad. Imp. Sci. Saint Pétersbourg26: 1175–1178.
—. 1911. Étude sur l’anatomie duDadoxylon tchihatcheffi Goeppert. Mém. Comité Géol. Russe, Saint Pétersbourg68: 18–29.
Zimmermann, W. A. 1936. Untersuchungen über die räumliche und zietliche Berteilung des Wuchsstoffen bei Bäumen. Z. Bot.30: 209–252.
Zobel, B. J. 1964. Breeding for wood properties in forest trees. Unasylva18: 89–103.
— andR. R. Rhodes. 1957. Specific gravity indices for use in breeding loblolly pine. Forest Sci.3: 281–285.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Creber, G.T., Chaloner, W.G. Influence of environmental factors on the wood structure of living and fossil trees. Bot. Rev 50, 357–448 (1984). https://doi.org/10.1007/BF02862630
Issue Date:
DOI: https://doi.org/10.1007/BF02862630