Skip to main content
Log in

Movement of assimilates, viruses, growth regulators, and chemical indicators in plants

  • Interpreting Botanical Review
  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. Abbe, L. B. andCrafts, A. S. Phloem of white pine and other coniferous species. Bot. Gaz.100: 695–722. 1939.

    Article  Google Scholar 

  2. Arens, Karl. The “active membrane”. An hypothesis to explain the transfer of water and solutes in plants as depending upon respiration. Revue Canadienne de Biologie8: 157–172. 1948.

    Google Scholar 

  3. Bauer, L. Über den Wanderungsweg fluoreszierender Farbstoffe in den Siebröhren. Planta37: 221–243. 1949.

    Article  CAS  Google Scholar 

  4. Beal, J. M. Some telemorphic effects induced in sweet pea by application of 4-chlorophenoxyacetic acid. Bot. Gaz.105: 471–474. 1944.

    Article  Google Scholar 

  5. Bennett, C. W. Plant tissue relations of sugar-beet curly-top virus. Jour. Agr. Res.48: 665–701. 1934.

    Google Scholar 

  6. —. Studies on properties of the curly top virus. Tour. Agr. Res.50: 211–241. 1935.

    CAS  Google Scholar 

  7. —. Correlation between movement of the curly top virus and translocation of food in tobacco and sugar beet. Jour. Agr. Res.54: 479–502. 1937.

    Google Scholar 

  8. —. The relation of viruses to plant tissues. Bot. Rev.6: 427–473. 1940a.

    CAS  Google Scholar 

  9. —. Relation of food translocation to movement of virus of tobacco mosaic. Jour. Agr. Res.60: 361–390. 1940b.

    Google Scholar 

  10. —. Influence of contact period on the passage of viruses from scion to stock in Turkish tobacco. Phytopath.33: 818–822. 1943.

    Google Scholar 

  11. —. Studies on dodder transmission of plant viruses. Phytopath.34: 905–932. 1944.

    Google Scholar 

  12. Bennett, C. W.,et al. The Argentine curly top of sugar beet. Jour. Agr. Res.72: 19–48. 1946.

    Google Scholar 

  13. — andCosta, A. S. The Brazilian curly top of tomato and tobacco resembling North American and Argentine curly top of sugar beet. Jour. Agr. Res.78: 675–693. 1949.

    Google Scholar 

  14. — andEsau, K. Further studies on the relation of the curly top virus to plant tissues. Jour. Agr. Res.53: 595–620. 1936.

    Google Scholar 

  15. Biddulph, O. Absorption and movement of radio phosphorus in bean seedlings. Plant Physiol.15: 131–136. 1940.

    PubMed  CAS  Google Scholar 

  16. —. Diurnal migration of injected radio phosphorus from bean leaves. Am. Jour. Bot.28: 348–352. 1941.

    Article  CAS  Google Scholar 

  17. — andMarkle, J. Translocation of radio phosphorus in the phloem of the cotton plant. Am. Jour. Bot.31: 65–70. 1944.

    Article  CAS  Google Scholar 

  18. Bonner, J. Transport of thiamin in the tomato plant. Am. Jour. Bot.29: 136–142. 1942.

    Article  CAS  Google Scholar 

  19. —. Accumulation of various substances in girdled stems of tomato plants. Am. Jour. Bot.31: 551–555. 1944.

    Article  CAS  Google Scholar 

  20. — andBonner, D. Notes on induction of flowering inXanthium. Bot. Gaz.110: 154–156. 1948.

    Article  CAS  Google Scholar 

  21. — andDorland, R. Some observations concerning riboflavin and pantothenic acid in tomato plants. Am. Jour. Bot.30: 414–418. 1943.

    Article  CAS  Google Scholar 

  22. Borthwick, H. A.,et al. Influence of localized low temperature on Biloxi soybean during photoperiodic induction. Bot. Gaz.102: 792–800. 1941.

    Article  Google Scholar 

  23. Buller, A. H. R. The translocation of protoplasm through the septate mycelium of certain pyrenomycetes, discomycetes, and hymenomycetes.In Buller, A. H. R. Researches on fungi. Vol.5: 75–167. 1933.

    Google Scholar 

  24. Du Buy, H. G. andOlson, R. A. The relation between respiration, protoplasmic streaming, and auxin transport in theAvena coleoptile, using a polarographic microrespirometer. Am. Jour. Bot.27: 410–413. 1940.

    Google Scholar 

  25. Clements, H. F. Translocation of solutes in plants. Northwest Sci.8: 9–21. 1934.

    Google Scholar 

  26. —. Movement of organic solutes in the sausage tree,Kigelia africana. Plant Physiol.15: 689–900. 1940.

    Article  PubMed  CAS  Google Scholar 

  27. Colwell, R. N. Translocation in plants with special reference to the mechanism of phloem transport as indicated by studies on phloem exudation and on the movement of radioactive phosphorus. Ph.D. Thesis. Univ. Cal. 1942a.

  28. —. The use of radio-active phosphorus in translocation studies. Am. Jour. Bot.29: 798–807. 1942b.

    Article  CAS  Google Scholar 

  29. Cooil, B. J. Significance of phloem exudate ofCucurbita pepo with reference to translocation of organic materials. Plant Physiol.16: 61–84. 1941.

    PubMed  CAS  Google Scholar 

  30. Crafts, A. S. Movement of organic materials in plants. Plant Physiol.6: 1–41. 1931.

    PubMed  CAS  Google Scholar 

  31. —. Phloem anatomy, exudation, and transport of organic nutrients in cucurbits. Plant Physiol.7: 183–225. 1932.

    Google Scholar 

  32. —. Sieve-tube structure and translocation in the potato. Plant Physiol.8: 81–104. 1933.

    PubMed  CAS  Google Scholar 

  33. — Phloem anatomy in two species ofNicotiana, with notes on the interspecific graft union. Bot. Gaz.95: 592–608. 1934.

    Article  Google Scholar 

  34. —. Further studies on exudation in cucurbits. Plant Physiol.11: 63–79. 1936.

    PubMed  CAS  Google Scholar 

  35. —. Translocation in plants. Plant Physiol.13: 791–814. 1938.

    PubMed  CAS  Google Scholar 

  36. —. The relation between structure and function of the phloem. Amer. Jour. Bot.26: 172–177. 1939a.

    Article  Google Scholar 

  37. — Movement of viruses, auxins, and chemical indicators in plants. Bot. Rev.5: 471–504. 1939b.

    CAS  Google Scholar 

  38. —. The protoplasmic properties of sieve tubes. Protoplasma33: 389–398. 1939c.

    Article  Google Scholar 

  39. —. Vascular differentiation in the shoot apex ofSequoia sempervirens. Am. Jour. Bot.30: 110–121. 1943a.

    Article  Google Scholar 

  40. —. Vascular differentiation in the shoot apices of ten coniferous species. Am. Jour. Bot.30: 382–393. 1943b.

    Article  Google Scholar 

  41. —. Movement of materials in phloem as influenced by the porous nature of the tissues.In Interaction of water and porous materials. Faraday Soc. Disc. No.3: 153–159. 1948.

    Google Scholar 

  42. — andBroyer, T. C. Migration of salts and water into xylem of the roots of higher plants. Am. Jour. Bot.25: 529–535. 1938.

    Article  CAS  Google Scholar 

  43. —,et al. Response of several crop plants and weeds to maleic hydrazide. Hilgardia20: 57–80. 1950.

    Google Scholar 

  44. — andHarvey, W. A. Weed Control. I. Advances in Agronomy, Vol.I: 289–320. 1949.

    Google Scholar 

  45. — andLorenz, O. A.. Composition of fruits and phloem exudate of cucurbits. Plant Physiol.19: 326–337. 1944a.

    PubMed  CAS  Google Scholar 

  46. ——. Fruit growth and food transport in cucurbits. Plant Physiol.19: 131–138. 1944b.

    Article  PubMed  CAS  Google Scholar 

  47. — andReiber, H. G. Herbicidal properties of oils. Hilgardia18: 77–156. 1948.

    Google Scholar 

  48. Currier, H. B. andCrafts, A. S. Maleic/hydrazide, a selective herbicide. Science111: 152–153. 1950.

    Article  PubMed  CAS  Google Scholar 

  49. Curtis, O. F. The translocation of solutes in plants. 1935.

  50. — andAsai, G. N. Evidence relative to the supposed permeability of sieve-tube protoplasm. Am. Jour. Bot.26: 165–175. 1939.

    Article  Google Scholar 

  51. - andClark, D. G. Introduction to plant physiology. 1950.

  52. Davis, Glen E. andSmith, Ora. Physiological studies on the toxficity of 2,4-D. N. E. Weed Control Conf. 4th Ann. Proc. 92–101. 1950.

  53. Day, B. E. Absorption and translocation of 2,4-dichIorophenoxyacetic acid by bean plants. Ph.D. Diss., Univ. Cal., Davis, Cal. 1950.

  54. Döpp, W. Beiträge zur Frage der Stoffwanderung in den Siebröhren. Jahrb. Wiss. Bot.87: 679–705. 1939.

    Google Scholar 

  55. Engard, C. J. Translocation of carbohydrates in the Cuthbert raspberry. Bot. Gaz.100: 439–464. 1939a.

    Article  CAS  Google Scholar 

  56. —. Translocation of nitrogenous substances in the Cuthbert raspberry. Bot. Gaz.101: 1–34. 1939b.

    Article  CAS  Google Scholar 

  57. -. Organogenesis inRubus. Univ. Hawaii Res. Publ. 21, 234 p. 1944.

  58. Esau, K. Ontogeny of phloem in the sugar beet (Beta vulgaris L.). Am. Jour. Bot.21: 632–644. 1934.

    Article  Google Scholar 

  59. —. Ontogeny and structure of the phloem of tobacco. Hilgardia11: 343–424. 1938.

    Google Scholar 

  60. —. Development and structure of the phloem tissue. Bot. Rev.5: 373–432. 1939.

    Google Scholar 

  61. —. Phloem anatomy of tobacco affected with curly top and mosaic. Hilgardia13: 437–490. 1941.

    Google Scholar 

  62. —. Origin and development of primary vascular tissues in seed plants. Bot. Rev.9: 125–206. 1943.

    Google Scholar 

  63. —. Anatomical and cytological studies on beet mosaic. Jour. Agr. Res.69: 95–117. 1944.

    Google Scholar 

  64. —. A study of some sieve-tube inclusions. Am. Jour. Bot.34: 224–233. 1947.

    Article  Google Scholar 

  65. —. Phloem structure in the grape vine and its seasonal changes. Hilgardia18: 217–296. 1948a.

    Google Scholar 

  66. —. Anatomic effects of the viruses of Pierce’s disease and phony peach. Hilgardia18: 423–482. 1948b.

    Google Scholar 

  67. —. Some anatomical aspects of plant virus disease problems. II. Bot. Rev.14: 413–449. 1948c.

    Article  CAS  Google Scholar 

  68. —. Development and structure of the phloem tissue. II. Bot. Rev.16: 67–114. 1950.

    Article  Google Scholar 

  69. Ferri, M. G. Preliminary observations on the translocation of synthetic growth substances. Contr. Boyce Thomp. Inst.14: 51–68. 1945.

    CAS  Google Scholar 

  70. Fischer, A. Das Siebröhrensystem vonCucurbita. Ber. Deut. Bot. Ges.1: 276–279. 1883.

    Google Scholar 

  71. -. Untersuchungen über das Siebröhren-System der Cucurbitaceen. 1884.

  72. Frey-Wyssling, A. Der Milchsafterguss vonHevea brasiliensis als Blütungserscheinung. Ein Beitrag zur Druckstromtheorie. Jahrb. Wiss. Bot.77: 560–626. 1932.

    Google Scholar 

  73. -. Submicroscopic morphology of protoplasm and its derivatives. 255 p. 1948.

  74. -. [Private communication during a recent visit to Davis, Calif. 1949].

  75. Galston, A. W. Transmission of the floral stimulus in soybean. Bot. Gaz.110: 495–501. 1949.

    Article  Google Scholar 

  76. Goodall, D. W. The distribution of weight change in the young tomato plant. II. Changes in dry weight of separated organs, and translocation rates. Ann. Bot. (London)10: 305–338. 1946.

    Google Scholar 

  77. Haberlandt, G. Physiological plant anatomy. 1914.

  78. Hamner, C. L. andTukey, H. B. The herbicidal action of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid on bindweed. Science100: 154–155. 1944.

    Article  PubMed  CAS  Google Scholar 

  79. Hamner, K. C. andBonner, J. Photoperiodism in relation to hormones as factors in floral initiation and development. Bot. Gaz.100: 388–431. 1938.

    Article  CAS  Google Scholar 

  80. Heinze, P. H. et al. Floral initiation in Biloxi soybean as influenced by grafting. Bot. Gaz.103: 518–530. 1942.

    Article  Google Scholar 

  81. Hewitt, S. P. andCurtis, O. F. The effect of temperature on loss of dry matter and carbohydrate from leaves by respiration and translocation. Am. Jour. Bot.35: 746–755. 1948.

    Article  CAS  Google Scholar 

  82. Hildebrand, E. M. Rapid transmission techniques for stone-fruit viruses. Science95: 52. 1942.

    Article  PubMed  Google Scholar 

  83. — andCurtis, O. F. A darkening technique for inducing virus symptoms in mature as well as in growing leaves. Science95: 390. 1942.

    Article  PubMed  Google Scholar 

  84. Hill, A. W. The histology of the sieve tubes of Angiosperms. Ann. Bot.22: 245–290. 1908.

    Google Scholar 

  85. van den Honert, J. H. On the mechanism of transport of organic materials in plants. K. Akad. Wet. Amsterdam. Proc.35: 1104–1112. 1932.

    Google Scholar 

  86. Houston, B. R.,et al. The mode of vector feeding and the tissues involved in the transmission of Pierce’s disease virus in grape and alfalfa. Phytopath.37: 247–253. 1947.

    Google Scholar 

  87. Huber, B. Methoden, Ergebnisse und Probleme der neuen Baumphysiologie. Ber. Deut. Bot. Ges.55: 46–62. 1937.

    Google Scholar 

  88. —. Das Siebröhrensystem unserer Bäume und seine jahreszeitlichen Veränderungen. Jahrb. Wiss. Bot.88: 176–242. 1939.

    Google Scholar 

  89. —. Gesichertes und Problematisches in der Wanderung der Assimilate. Ber. Deut. Bot. Ges.59: 181–194. 1941.

    Google Scholar 

  90. —. Die Siebröhren der Pflanzen als Nahrungsquelle fremder Organismen und als Transportbahnen von Krankheits-Keimen. Biol. Gen.16: 310–343. 1942.

    Google Scholar 

  91. — andKolbe, R. W. Elektronenmikroscopische Untersuchungen an Siebröhren. Svensk. Bot. Tidskr.42: 364–371. 1948.

    Google Scholar 

  92. — andRouschal, Ernst. Anatomische und zellphysiologische Beobachtungen am Siebröhrensystem der Bäume. Ber. Deut. Bot. Ges.56: 380–391. 1938.

    Google Scholar 

  93. et al. Untersuchungen über den Assimilatström. I. Tharandter Forstl. Jahrb.88: 1017–1050. 1937.

    Google Scholar 

  94. Jacobs, W. P. Auxin transport in the hypocotyl ofPhaseolus vulgaris L. Amer. Jour. Bot.37: 248–254. 1950.

    Article  CAS  Google Scholar 

  95. Kraus, G. Ueber die Zusammensetzung des Siebröhrensaftes der Kürbise und alkalisch reagirende Zellsäfte. Abh. Nat. Ges. Halle16: 376–387. 1886.

    Google Scholar 

  96. Lackey, C. F. Attraction of vascular bundles for dodder haustoria in healthy and curly-top infected beet petioles. Phytopath.38: 916. 1948.

    Google Scholar 

  97. Lecomte, H. Contribution à l’étude du liber des Angiospermes. Ann. Sci. Nat.10: Bot. 193–324. 1889.

    Google Scholar 

  98. Leonard, O. A. Transformation of sugars in sugar beet and corn leaves and invertase activity. Am. Jour. Bot.25: 78–83. 1938.

    Article  CAS  Google Scholar 

  99. —. Translocation of carbohydrates in the sugar beet. Plant Physiol.14: 55–74. 1939.

    Article  PubMed  CAS  Google Scholar 

  100. Linder, P. J. et al. Movement of externally applied phenoxy compounds in bean plants in relation to conditions favoring carbohydrate translocation. Bot. Gaz.110: 628–632. 1949.

    Article  CAS  Google Scholar 

  101. Loehwing, W. F. Locus and physiology of photoperiodic perception in plants. Proc. Soc. Exp. Biol. & Med.37: 631–634. 1938.

    Google Scholar 

  102. —. The developmental physiology of seed plants. Science107: 529–533. 1948.

    Article  PubMed  Google Scholar 

  103. Loomis, W. E. Translocation of carbohydrates in maize. Science101: 398–400. 1945.

    Article  PubMed  CAS  Google Scholar 

  104. Mangham, S. On the mechanism of translocation in plant tissues. An hypothesis, with special reference to sugar conduction in sieve tubes. Ann. Bot.31: 293–311. 1917.

    CAS  Google Scholar 

  105. Mason, T. G. andMaskell, E. J. Studies on the transport of carbohydrates in the cotton plant. I. A study of diurnal variation in the carbohydrate of leaf, bark, and wood, and of the effects of ringfing. Ann. Bot.42: 189–253. 1928.

    Google Scholar 

  106. ——. Further studies on transport in the cotton plant. I. Preliminary observations on the transport of phosphorus, potassium and calcium. Ann. Bot.45: 125–173. 1931.

    CAS  Google Scholar 

  107. et al. Concerning the independence of solute movement in the phloem. Ann. Bot.50: 23–58. 1936.

    CAS  Google Scholar 

  108. — andPhillis, E. The migration of solutes. Bot. Rev.3: 47–71. 1937.

    Google Scholar 

  109. ——. Some comments on the mechanism of phloem transport. Plant Physiol.16: 399–404. 1941.

    PubMed  CAS  Google Scholar 

  110. Mitchell, J. W. andBrown, J. W. Movement of 2,4-dichlorophenoxyacetic acid stimulus and its relation to the translocation of organic food materials in plants. Bot. Gaz.107: 393–407. 1946.

    Article  CAS  Google Scholar 

  111. et al. Relative growth rates of bean and oat plants containing known amounts of a labeled plant-growth regulator (2-Iodo131-3-Nitro-benzoic acid). Science106: 395–397. 1947.

    Article  PubMed  CAS  Google Scholar 

  112. Mitchell, J. W. andLinder, P. J. Absorption of radioactive 2,4-DI as affected by wetting agents. N. E. Weed Control Conf. 4th annual Proc. 21–25. 1950.

  113. Mitchell, J. W. andLinder, P. J. Absorption and translocation of radioactive 2,4-DI by bean plants as affected by cosolvents and surface agents. Science112: 54–55. 1950.

    Article  PubMed  CAS  Google Scholar 

  114. Moose, C. A. Chemical and spectroscopic analysis of phloem exudate and parenchyma sap from several species of plants. Plant Physiol.13: 365–380. 1938.

    PubMed  CAS  Google Scholar 

  115. Moshkov, B. S. Transfer of photoperiodic reaction from leaves to growing points. Compt. Rend. (Dok) Acad. Sci. URSS24: 489–491. 1939.

    Google Scholar 

  116. Münch, E. Die Stoffbewegungen in der Pflanze. 1930.

  117. —. Durchlässigkeit der Siebröhren für Druckströmungen. Flora36: 223–262. 1943.

    Google Scholar 

  118. Nägeli, C. W. Ueber die Siebröhren von Cucurbita. Sitzb. Bayerisch. Akad. Wiss.1: 212–238. 1861.

    Google Scholar 

  119. Palmquist, E. M. The path of fluorescein movement in the kidney bean,Phaseolus vulgaris. Am. Jour. Bot.26: 665–667. 1939.

    Article  Google Scholar 

  120. Parker, M. W. andBorthwick, H. A. Influence of temperature on photoperiodic reactions in leaf blades of Biloxi soybean. Bot. Gaz.104: 612–619. 1943.

    Article  Google Scholar 

  121. Penfound, W. T. andMinyard, V. Relation of light intensity to effect of 2,4-dichlorophenoxyacetic acid on water hyacinth and kidney bean plants. Bot. Gaz.109: 231–234. 1947.

    Article  CAS  Google Scholar 

  122. Pfeiffer, M. Die Verteilung der osmotischen Werte im Baum im Hinblick auf die Münchsche Druckstromtheorie. Flora132: 1–47. 1937.

    Google Scholar 

  123. Phillis, E. and Mason, T. G. The polar distribution of sugar in the foliage leaf. Ann. Bot.47: 585–634. 1933.

    CAS  Google Scholar 

  124. Rabideau, G. S. andBurr, G. O. The use of the C13 isotope as a tracer for transport studies in plants. Am. Jour. Bot.32: 349–356. 1945.

    Article  CAS  Google Scholar 

  125. Rice, E. L. Absorption and translocation of ammonium 2,4-dichlorophenoxyacetate by bean plants. Bot. Gaz.109: 301–314. 1948.

    Article  CAS  Google Scholar 

  126. Ripper, W. E. et al. A new systemic insecticide, bis (bis dimethylamino phosphorus) anhydride. Bul. Ent. Res.40: 481–501. 1950.

    CAS  Google Scholar 

  127. Roeckl, Brunhild. Nachweis eines Koncentrationshubs zwischen Palisadenzellen und Siebröhren. Planta36: 530–550. 1949.

    Article  Google Scholar 

  128. Rohrbaugh, L. M. andRice, E. L. Effect of application of sugar on the translocation of sodium 2,4-dichlorophenoxyacetate by bean plants in the dark. Bot. Gaz.110: 85–89. 1949.

    Article  Google Scholar 

  129. Rouschal, Ernst. The protoplasmic mechanics and function of sieve tubes. Flora35: 135–220. (Chem. Zentr. II. 2217.) 1941.

    CAS  Google Scholar 

  130. Salmon, Janine. Differentiation des tubes criblés chez les Angiospermes. Recherches cytologiques. 235 p. 1946.

  131. Schmidt, E. W. Bau und Funktion der Siebröhre der Angiospermen. 108 p. 1917.

  132. Schneider, H. The anatomy of peach and cherry phloem. Bull. Torrey Bot. Club72: 137–156. 1945a.

    Article  Google Scholar 

  133. —. Anatomy of buckskin-diseased peach and cherry. Phytopath.35: 610–635. 1945b.

    Google Scholar 

  134. Schoene, D. L. andHoffman, O. L. Maleic hydrazide, a unique growth regulant. Science109: 588–590. 1949.

    Article  PubMed  CAS  Google Scholar 

  135. Schumacher, Anneliese. Betrag zur Kenntnis des Stofftransportes in dem Siebröhrensystem höherer Pflanzen. Planta35: 642–700. 1948.

    Article  CAS  Google Scholar 

  136. Schumacher, W. Untersuchungen über die Lokalisation der Stoffwanderung in den Leitbündeln höherer Pflanzen. Jahrb. Wiss. Bot.73: 770–823. 1930.

    CAS  Google Scholar 

  137. —. Untersuchungen über die Wanderung des Fluoreszeins in den Siebröhren. Jahrb. Wiss. Bot.77: 685–732. 1933.

    Google Scholar 

  138. —. Weitere Untersuchungen über die Wanderung von Farbstoffen in den Siebröhren. Jahrb. Wiss. Bot.85: 422–449. 1937.

    CAS  Google Scholar 

  139. —. Über die Plasmolysierbarkeit der Siebröhren. Jahrb. Wiss. Bot.88: 545–553. 1939.

    Google Scholar 

  140. —. Zur Frage nach den Stoffbewegungen im Pflanzenkörper. Die Naturwiss.6: 176–179. 1947.

    Article  Google Scholar 

  141. Sinnott, E. W. andTrombetta, V. V. The cytonuclear ratio in plant cells. Am. Jour. Bot.23: 602–606. 1936.

    Article  Google Scholar 

  142. Small, J. Technique for the observation of protoplasmic streaming in sieve tubes. New Phytol.38: 176–177. 1939.

    Article  Google Scholar 

  143. Stocking, C. R. The calculation of tensions ofCucurbita pepo. Am. Jour. Bot.32: 126–134. 1945.

    Article  Google Scholar 

  144. Stout, M. Translocation of the reproductive stimulus in sugar beets. Bot. Gaz.107: 86–95. 1945.

    Article  Google Scholar 

  145. Stout, P. R. andHoagland, D. R. Upward and lateral movement of salt in certain plants as indicated by radio-active isotopes of potassium, sodium, and phosphorus by roots. Am. Jour. Bot.26: 320–324. 1939.

    Article  CAS  Google Scholar 

  146. Strugger, S. Fluorescensemikroscopische Untersuchungen über die Speicherung und Wanderung des Fluorescein-Kaliums in pflanzlichen Geweben. Flora132: 253–304. 1938.

    Google Scholar 

  147. Swanson, C. P. Histological responses of the kidney bean to aqueous sprays of 2,4-dichlorophenoxyacetic acid. Bot. Gaz.107: 522–531. 1946.

    Article  CAS  Google Scholar 

  148. Tingley, M. A. Concentration gradients in plant exudates with reference to the mechanism of translocation. Am. Jour. Bot.31: 30–38. 1944.

    Article  CAS  Google Scholar 

  149. Watson, D. P. An anatomical study of the modification of bean leaves as a result of treatment with 2,4-D. Am. Jour. Bot.35: 543–555. 1948.

    Article  CAS  Google Scholar 

  150. Weaver, R. J. andDe Rose, H. R. Absorption and translocation of 2,4-dichlorophenoxyacetic acid. Bot. Gaz.107: 509–521. 1946.

    Article  CAS  Google Scholar 

  151. Weintraub, R. L. andBrown, J. W. Translocation of exogenous growth-regulators in the bean seedling. Plant Physiol.25: 140–149. 1950.

    Article  PubMed  CAS  Google Scholar 

  152. —,et al. Recovery of growth regulator from plants treated with 2,4-Dichlorophenoxyacetic acid. Science111: 493–494. 1950.

    Article  PubMed  CAS  Google Scholar 

  153. Went, F. W. Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Am. Jour. Bot.31: 597–618. 1944.

    Article  CAS  Google Scholar 

  154. —. Plant growth under controlled conditions. V. The relation between age, light, variety, and thermoperiodicity of tomatoes. Am. Jour. Bot.32: 469–479. 1945.

    Article  Google Scholar 

  155. — andCarter, M. Wounding and sugar translocation. Plant Physiol.20: 457–460. 1945.

    PubMed  CAS  Google Scholar 

  156. — andEngelsberg, R. Plant growth under controlled conditions. VIII. Sucrose content of the tomato plant. Arch. Biochem.9: 187–200. 1946.

    CAS  Google Scholar 

  157. — andHull, H. M.. The effect of temperature upon translocation of carbohydrates in the tomato plant. Plant Physiol.24: 505–526. 1949.

    PubMed  CAS  Google Scholar 

  158. Willam, A. Translocation des glucides et origine du saccharose dans la betterave. Inst. Belge pour l’Ameloir. de la Betterave. P.13: 256–356. Sept./Oct. 1945.

    Google Scholar 

  159. Wislicenus, H. andHempel, H. Zur Kenntnis des stofflichen Aufbaues de Holzsubstanz aus den holzbilden den Säften der Baumpflanze. Zellulosechemie14: 149–168. 1933.

    Google Scholar 

  160. Withner, C. L. Movement of P32 in maturing corn plants. Plant Physiol.24: 527–529. 1949.

    Article  PubMed  CAS  Google Scholar 

  161. Withrow, A. P. andWithrow, R. B. Translocation of the floral stimulus inXanthium. Bot. Gaz.104: 409–416. 1943.

    Article  Google Scholar 

  162. Wood, J. W.,et al. Translocation of a radio-active plant-growth regulator in bean and barley plants. Science105: 337–339. 1947.

    Article  PubMed  CAS  Google Scholar 

  163. Zacharias, E. Ueber das Inhalt der Sierbröhren vonCucurbita pepo. Bot. Zeit.42: 65–73. 1884.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crafts, A.S. Movement of assimilates, viruses, growth regulators, and chemical indicators in plants. Bot. Rev 17, 203–284 (1951). https://doi.org/10.1007/BF02861790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861790

Keywords

Navigation