Skip to main content

The aerodynamics of wind pollination

Abstract

A number of morphologic features have evolved in evolutionarily divergent plant groups that appear to increase the efficiency of wind pollination. Among these features are the appearance of low density pollen grains, female ovulate organs that direct air currents carrying pollen toward stigmas or micropyles, and population structures with a high density of con-specifics. This paper reviews the aerodynamic theory, and the experimental and field data that are relevant to an understanding of the adaptive significance of these and other features of anemophily. Emphasis is placed on the mathematical description of the behavior of airflow patterns around ovulate organs. The efficiency of wind pollination is shown to be dictated principally by the vectoral properties of air currents created by and around ovulate organs and the physical properties of pollen that dictate their behavior as airborne particles.

Abstrakt

Eine Anzahl von morphologischen Kennzeichen, die Effizienz der Windpollination zu steigern scheinen, haben sich in evolutionär ausenandergehonden Pflanzengruppen entwickelt. Zu diesen Kennzeichen gehören die Erscheinung von Pollenkörnen von geringer Dichte, weiblichen Organen die pollentragende Luftströmungen zu den Stigmas oder Micropylen dirigieren, und Bevölkerungsstrukturen mit grosser Dichte von Con-specifics. Diese Abhandlung gibt einen überblick der aerodynamischen Theorie und der experimentelle Werte, die für das Verständnis der adaptiven Signifikanz dieser und anderer Kennzeichen der Windpollination von Bedeutung sind. Betont wird die mathematische Beschreibung des Verhaltens der Luftströmungen um die weiblichen Organe. Es wird gezeigt, dass die Effizienz der Windpollination hauptsächlich durch die vectoralen Eigenschaften der Luftströmungen die durch und um die weiblichen Organe entstehen, bestimmt wird, und durch die physischen Eigenschaften des Pollens, die sein Verhalten als luftgetragene Partikel diktieren.

This is a preview of subscription content, access via your institution.

Literature Cited

  1. Andrews, H. N. 1963. Early seed plants. Science142: 925–931.

    PubMed  Article  Google Scholar 

  2. Baba, S. 1961. Isoelectric zones of vegetative and generative nuclei in pollen grains ofTradescantia. Kyoto U. Col. Sci. Mem. Ser. B28: 359–363.

    Google Scholar 

  3. Baker, H. G. 1963. Evolutionary mechanisms and pollination biology. Science139: 877–883.

    PubMed  Article  Google Scholar 

  4. Batchelor, G. K. 1973. An introduction to fluid dynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  5. Bawa, K. S. andJ. E. Crisp. 1980. Wind-pollination in the understory of a rain forest in Costa Rica. J. Ecol.68: 871–876.

    Article  Google Scholar 

  6. Bianchi, D. E., J. Schwemmin andW. H. Wagner. 1959. Pollen release in common ragweed (Ambrosia artemisiifolia). Bot. Gaz.4: 235–243.

    Article  Google Scholar 

  7. Bold, H. C. 1967. Morphology of plants, ed 2. Harper and Row, New York.

    Google Scholar 

  8. Brodie, H. J. 1955. Spring board dispersal operated by rain. Canad. J. Biol.33: 156–167.

    Google Scholar 

  9. Buchmann, S. L., M. K. O’Rourke andC. W. Shipman. 1983. Aerobiology of pollen abundance and dispersal in a native stand of jojoba (Simmondsia chinensis) in Arizona. Pages 79–92in Jojoba and its uses through 1982. Proc. 5th. Internatl. Conf., Tucson, Arizona.

    Google Scholar 

  10. Buller, A. H. R. 1934. Researches on fungi, vol. 6. Longmans Press, London.

    Google Scholar 

  11. Carlquist, S. 1966. The biota of long-distance dispersal. IV. Genetic systems in the floras of oceanic islands. Evolution20: 433–455.

    Article  Google Scholar 

  12. Chalmers, J. A. 1967. Atmospheric electricity. Pergamon Press, New York.

    Google Scholar 

  13. Chang, D. P. Y. 1973. Particle collection from aqueous suspensions by solid and hollow single fibers. Ph.D. Dissertation, California Institute of Technology.

  14. Colwell, R. N. 1951. The use of radioactive isotopes in determining spore distribution patterns. Amer. J. Bot.38: 511–523.

    Article  Google Scholar 

  15. Corner, E. J. H. 1952. Wayside trees of Malaysia, vol. I. Government Printing Office, Singapore.

    Google Scholar 

  16. Cowan, I. R. 1968. Mass, heat and momentum exchange between stands of plants and their atmospheric environment. Quart. J. Roy. Meteorol. Soc.94: 523–544.

    Article  Google Scholar 

  17. Delevoryas, T. andR. C. Hope. 1973. Fertile coniferophyte remains from the Late Triassic Deep River Basin, North Carolina. Amer. J. Bot.60: 810–818.

    Article  Google Scholar 

  18. Doyle, J. 1945. Developmental lines in pollination mechanisms in the coniferales. Sci. Proc. Roy. Dublin Soc, Ser. A.24: 43–62.

    Google Scholar 

  19. Dyakowska, J. andJ. Zurzycki. 1959. Gravimetric studies on pollen. Bull. Acad. Polon. Sci. Cl. II, Sér. Sci. Biol.7: 11–16.

    Google Scholar 

  20. Erickson, E. H. andS. L. Buchmann. 1983. Electrostatics and pollination. Pages 171–184in C. E. Jones and R. J. Little (eds.), Handbook of experimental pollination biology. Van Nostrand Reinhold Inc., New York.

    Google Scholar 

  21. Faegri, K. andL. van der Pijl. 1979. The principles of pollination ecology, ed. 3. Pergamon Press, Oxford.

    Google Scholar 

  22. Florin, R. 1951. Evolution in cordaites and conifers. Acta Horti Berg.15: 285–388.

    Google Scholar 

  23. Fowells, H. A. 1965. Silvics of forest trees of the United States. Agriculture Handbook, No. 271. U.S. Dept. of Agric, Washington, D.C.

    Google Scholar 

  24. Geiger, R. 1966. The climate near the ground. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  25. Gould, S. J. andE. S. Vrba. 1982. Exaptation—A missing term in the science of form. Paleobiology8: 4–15.

    Google Scholar 

  26. Gregory, P. H. 1961. The microbiology of the atmosphere. Leonard Hill Books Limited; Interscience Publishers Inc., New York.

    Google Scholar 

  27. Halle, T. G. 1935. The position and arrangement of the spore-bearing organs believed to belong to the Paleozoic pteridosperms. Compte Rendu, Congrès pour l’Avancement des Avancés Études Stratigraphiques et du Géologie du Carbonifère, Heerlen1: 227–235.

    Google Scholar 

  28. Harrington, J. B. 1979. Principles of deposition of microbiological particles. Pages 111–137in R. L. Edmonds (ed.), Aerobiology: The ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  29. — andK. Metzger. 1963. Ragweed pollen density. Amer. J. Bot.50: 532–539.

    Article  Google Scholar 

  30. Kapyla, M. andA. Penttinen. 1981. An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana20: 131–141.

    Article  Google Scholar 

  31. Khvedehidze, M. A. 1958. In regard to bio-electric potentials of plants. Uspehi Sovrem. Biol.46: 33–47.

    Google Scholar 

  32. Hirst, J. M. andO. J. Stedman. 1971. Patterns of spore dispersal in crops. Pages 229–237in T. F. Preece and C. H. Dickenson (eds.), Ecology of leaf surface micro-organisms. Academic Press, London.

    Google Scholar 

  33. Jones, C. E., Jr. 1967. Some evolutionary aspects of a water stress on flowering in the tropics. Turrialba17: 188–190.

    Google Scholar 

  34. LaBarbera, M. 1984. Feeding currents and particle capture mechanisms in suspension feeding animals. Amer. Zool.24: 71–84.

    Google Scholar 

  35. Leyton, L. 1975. Fluid behavior in biological systems. Clarendon Press, Oxford, U.K.

    Google Scholar 

  36. Linacre, E. T. 1972. Leaf temperatures, diffusion resistances, and transpiration. Agric. Meteorol.10: 365–382.

    Article  Google Scholar 

  37. Long, A. G. 1959. On the structure of“Calymmatothecakidstoni” Calder (emended) and“Genomosperma latens” gen. et sp. nov. from the calciferous sandstone series of Berwickshire. Trans. Roy. Soc. Edinburgh64: 29–44.

    Google Scholar 

  38. —. 1960. “Stamnostomahuttonense” gen. et sp. nov.—Pteridosperm seed and cupule from the calciferous sandstone series of Berwickshire. Trans. Roy. Soc. Edinburgh64: 201–215.

    Google Scholar 

  39. —. 1966. Some Lower Carboniferous fructifications from Berwickshire, together with a theoretical account of the evolution of ovules, cupules, and carpels. Trans. Roy. Soc. Edinburgh66: 345–375.

    Google Scholar 

  40. Lowry, W. P. 1967. Weather and life: An introduction to biometeorology. Academic Press, New York.

    Google Scholar 

  41. Mason, C. J. 1979. Principles of atmospheric transport. Pages 85–95in R. L. Edmonds (ed.), Aerobiology: The ecological systems approach. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  42. Maw, M. G. 1962a. Behavior of insects in electrostatic fields. Proc. Entomol. Soc. Manitoba18: 1–7.

    Google Scholar 

  43. —. 1962b. Some biological effects of atmospheric electricity. Proc. Entomol. Soc. Ontario92: 33–37.

    Google Scholar 

  44. —. 1963. Physics is entomology: Sound and electricity in insect behavior. Proc. North Carolina Branch Entomol. Soc. Amer.18: 6–10.

    Google Scholar 

  45. McDonald, J.E. 1962. Collection and washout of airborne pollens and spores by raindrops. Science135: 435–437.

    PubMed  Article  Google Scholar 

  46. Metronics Associates. 1976. Operating instructions for the Rotorod sampler. Technical manual No. 6, Metronics Associates Inc. Palo Alto, California.

    Google Scholar 

  47. Miller, C. N., Jr. 1977. Mesozoic conifers. Bot. Rev.43: 217–280.

    Article  Google Scholar 

  48. —. 1982. Current status of Paleozoic and Mesozoic conifers. Rev. Palaeobot. Palynol.37:99–114.

    Article  Google Scholar 

  49. Niklas, K. J. 1981a. Simulated wind pollination and airflow around ovules of some early seed plants. Science211: 275–277.

    PubMed  Article  Google Scholar 

  50. —. 1981b. Airflow patterns around some early seed plant ovules and cupules: Implications concerning efficiency in wind pollination. Amer. J. Bot.68: 635–650.

    Article  Google Scholar 

  51. —. 1982. Simulated and empiric wind pollination patterns of conifer ovulate cones. Proc. Natl. Acad. U.S.A.79: 510–514.

    Article  Google Scholar 

  52. —. 1983a. The influence of Paleozoic ovule and cupule morphologies on wind pollination. Evolution37: 968–986.

    Article  Google Scholar 

  53. —. 1983b. Early seed plant wind pollination studies: A reply. Taxon32: 99–100.

    Article  Google Scholar 

  54. —. 1984. The motion of windborne pollen grains around conifer ovulate cones: Implications on wind pollination. Amer. J. Bot.71: 356–374.

    Article  Google Scholar 

  55. — andK. T. Paw U. 1983. Conifer ovulate cone morphology: Implications on pollen impaction patterns. Amer. J. Bot.70: 568–577.

    Article  Google Scholar 

  56. —,B. H. Tiffney andA. H. Knoll. 1980. Apparent changes in the diversity of fossil plants: A preliminary assessment. Pages 1–89in M. Hecht, W. Steere and B. Wallace (eds.), Evolutionary biology, vol. 12. Plenum Press, New York.

    Google Scholar 

  57. Nobel, P. S. 1974. Boundary layers of air adjacent to cylinders: Estimation of effective thickness and measurement on plant material. P1. Physiol.54: 177–181.

    Article  Google Scholar 

  58. —. 1975. Effective thickness and resistance of the air boundary layer adjacent to spherical plant parts. J. Exp. Bot.26: 120–130.

    Article  Google Scholar 

  59. Ogden, E. C. et al. 1974. Manual for sampling airborne pollen. Hafner Press, New York.

    Google Scholar 

  60. Oliver, H. R. andG. J. Mayhead. 1974. Wind measurements in a pine forest during a destructive gale. Forestry47: 185–194.

    Article  Google Scholar 

  61. Owens, J. N., S. J. Simpson andM. Molder. 1981. The pollination mechanism and optimal time of pollination in Douglas-fir (Pseudotsuga menziesii). Canad. J. Bot.11: 36–50.

    Google Scholar 

  62. Pande, G. K., R. Pakrash andM. A. Hassam. 1972. Floral biology of barley (Hordeum vulgare L.). Ind. J. Agric. Sci.48: 697–703.

    Google Scholar 

  63. Paterson, A. R. 1983. A first course in fluid dynamics. Cambridge University Press, Cambridge.

    Google Scholar 

  64. Payne, W. W. 1963. The morphology of the inflorescence of ragweeds (Ambrosia-Fran-seria: Compositae). Amer. J. Bot.50: 872–880.

    Article  Google Scholar 

  65. Percival, M. S. 1965. Floral biology. Pergamon Press, London.

    Google Scholar 

  66. Pettitt, J. andC. B. Beck. 1968.Archaeosperma arnoldii—A cupulate seed from the Upper Devonian of North America. Contr. Mus. Paleontol. Univ. Michigan10: 139–154.

    Google Scholar 

  67. Phillips, T. L., H. N. Andrews andP. G. Gensel. 1972. Two heterosporous species ofArchaeopteris from the Upper Devonian of West Virginia. Palaeontographica, Abt. B, Paläophytol.139:47–71.

    Google Scholar 

  68. Player, G. 1979. Pollination and wind dispersal of pollen inArceuthobium. Ecol. Monogr.49: 73–87.

    Article  Google Scholar 

  69. Pohl, F. 1937. Die Pollenkorngewichte einiger windblutiger Pflanzen und ihre ökologische Bedeutung. Beih. Bot. Centralbl., Abt. A57: 112–172.

    Google Scholar 

  70. Potamina, N. D. andV. N. Schmigel. 1960. The effect of a high potential electrostatic field on the pollen of some fruit trees. Bot. Zhur. (Moskva)45: 266–272.

    Google Scholar 

  71. Rack, K. 1959. Untersuchungen über der electrostatische Ladung derLophodermiwn- sporen. Phytopathol. Z.35: 439–444.

    Google Scholar 

  72. Raynor, G. S. 1971. Wind and temperature structure in a coniferous forest and a contiguous field. Forest Sci.17: 351–363.

    Google Scholar 

  73. —,J. V. Hayes andE. C. Ogden. 1970. Experimental data on ragweed pollen dispersion and distribution from point and area sources. Report BNL 50224 (T-564), Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  74. ———. 1974. Mesoscale transport and dispersion of airborne pollens. J. Appl. Meteorol.13: 87–95.

    Article  Google Scholar 

  75. Regal, P. J. 1982. Pollination by wind and animals: Ecology and geographic patterns. Annual Rev. Ecol. Syst.13: 497–524.

    Article  Google Scholar 

  76. Richardson, C. J., R. Evans andD. Carr. 1981. Pocosins: An ecosystem in transition. Pages 3–19in C. J. Richardson (ed.), Pocosin wetlands. Hutchinson Ross Publ., Stroudsburg, Pennsylvania.

    Google Scholar 

  77. Richardson, L. F. 1920. Some measurements of atmospheric turbulence. Philos. Trans., Ser.A 221: 1–28.

    Google Scholar 

  78. Rothwell, G. W. 1971. Ontogeny of the Paleozoic ovule,Callospermarion pusillum. Amer. J. Bot.58:706–715.

    Article  Google Scholar 

  79. —. 1980. The Callistophytaceae (Pteridospermopsida). II. Reproductive features. Palaeontographica, Abt. B, Paläophytol.173: 85–106.

    Google Scholar 

  80. — andT. N. Taylor. 1982. Early seed plant wind pollination studies: A commentary. Taxon31: 308–309.

    Article  Google Scholar 

  81. Sartoris, G. B. 1942. Longevity of sugar cane and corn pollen; a method for long-distance shipment of sugarcane pollen by airplane. Amer. J. Bot.29: 395–400.

    Article  Google Scholar 

  82. Soepadmo, E. 1972. Fagaceae. Flora Malesiana7: 265–434.

    Google Scholar 

  83. Stepanov, K. M. 1935. Dissemination of infective diseases of plants by air currents. (In Russian.) Trudy Zasc. Rast., Ser. 2, Fitopatol., No.8: 1–68.

  84. Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge.

    Google Scholar 

  85. Sutton, O. G. 1932. A theory of eddy diffusion in the atmosphere. Proc. Roy. Soc. London, Ser. A,135: 143–165.

    Article  Google Scholar 

  86. Swinbank, P., J. Taggert andS. A. Hutchinson. 1964. The measurement of electrostatic charges on spores ofMerulina lacrymans (Wulf.) Fr. Ann. Bot.28: 239–249.

    Google Scholar 

  87. Taylor, T. N. 1981. Palaeobotany: An introduction to fossil plant biology. McGraw-Hill, New York.

    Google Scholar 

  88. Tauber, H. 1965. Differential pollen dispersion and the interpretation of pollen diagrams. Dansk. Geol. Unders. (Ahf.), Racke 2 No.89: 1–70.

    Google Scholar 

  89. —. 1967. Differential pollen dispersing and filtration. Pages 131–141in E. J. Cushing and H. E. Wright (eds.), Quaternary paleoecology. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  90. —. 1977. Investigations of aerial pollen transport in a forested area. Dansk. Bot. Ark.32: 1–121.

    Google Scholar 

  91. Tritton, D. J. 1977. Physical fluid dynamics. Van Nostrand Reinhold Press, New York.

    Google Scholar 

  92. Van der Pijl, L. 1972. Principles of dispersal in higher plants, ed. 2. Springer-Verlag, New York.

    Google Scholar 

  93. Vogel, S. 1962. A possible role of the boundary layer in insect flight. Nature193: 1201–1202.

    Article  Google Scholar 

  94. —. 1981. Life in moving fluids. Willard Grant Press, Boston, Massachusetts.

    Google Scholar 

  95. Walton, J. 1953. The evolution of the ovule in pteridosperms. Advancem. Sci. (British Assn. Adv. Sci., No. 38)10: 223–230.

    Google Scholar 

  96. Wells, B. W. 1928. Plant communities of the coastal plain of North Carolina and their successional relations. Ecology9: 230–242.

    Article  Google Scholar 

  97. Whitehead, D. R. 1969. Wind pollination in the angiosperms: Evolutionary and environmental considerations. Evolution23: 28–35.

    Article  Google Scholar 

  98. —. 1983. Wind pollination: Some ecological and evolutionary perspectives. Pages 97–108in L. Real (ed.), Pollination biology. Academic Press, Inc., Orlando, Florida.

    Google Scholar 

  99. Zapata, T. R. andM. T. K. Arroyo. 1978. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica10: 221–230.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karl J. Niklas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niklas, K.J. The aerodynamics of wind pollination. Bot. Rev 51, 328 (1985). https://doi.org/10.1007/BF02861079

Download citation

Keywords

  • Botanical Review
  • Airborne Pollen
  • Wind Pollination
  • Pollen Release
  • Airflow Pattern