Skip to main content

Light-dependent anthocyanin synthesis: A model system for the study of plant photomorphogenesis

Abstract

The biosynthesis of anthocyanins in plant tissues either requires light or is enhanced by it. Light-dependent anthocyanin synthesis has been extensively used as a model system for studies of the mechanism of photoregulation of plant development. Two components can be distinguished in the action of light on anthocyanin production. The first component is the red-far red reversible, phytochrome-mediated response induced by short irradiations; the amount of anthocyanin formed in response to a single, short irradiation is small. The second component is the response to prolonged exposures; the formation of large amounts of anthocyanin requires prolonged exposures to high fluence rates of visible and near-visible radiation (290 to 750 nm) and shows the typical properties of the “High Irradiance Reaction” (HIR) of plant photomorphogenesis. Phytochrome is involved in the photoregulation of the HIR response and is the only photoreceptor mediating the action of prolonged red and far red irradiations. The response to prolonged ultraviolet and blue radiation is probably mediated, at least in some systems, by two photoreceptors: phytochrome and cryptochrome, the latter being a specific ultraviolet-blue-light photoreceptor. The nature of the interaction between phytochrome and cryptochrome in the regulation of plant photomorphogenic responses is still unclear.

Riassunto

La biosintesi delle antociane nei tessuti vegetali è un processo metabolico regolato dalla luce. Alcune specie formano antociane solo quando sono esposte alla luce. Altre specie possono formare antociane al buio, ma velocità di sintesi e concentrazione finale del pigmento aumentano notevolmente quando l’organismo è esposto alla luce. Lo studio degli effetti della luce sulla biosintesi delle antociane è stato usato estensivamente come un sistema modello per lo studio della photoregolazione dello sviluppo dei vegetali. Nella azione della luce sulla biosintesi delle antociane si possono distinguere due tipi di risposta allo stimolo luminoso. Il primo tipo è la risposta a illuminazioni brevi (pochi minuti), caratterizata dalla fotoreversibilita degli effetti indotti dalla radiazione rossa (R, 600–670 nm) e rosso-estrema (FR, 710–750 nm) ed è mediato dal fitocromo; la quantità di antociane formate in risposta an una breve illuminazione è scarsa. Il secondo tipo è la risposta a illuminazioni prolungate (ore or giorni); la risposta massima per la formazione di antociane richiede esposizioni prolungate ad alte intensité di radiazione nella regione spettrale compresa tra l’ultravioletto vicino e l’estremo rosso (290–750 nm) ed ha le caratteristiche tipiche dei processi fotomorfogenici HIR. Il fitocromo è il fotorecettore responsabile per la fotoregolazione dei processi HIR ed è probabilmente l’unico fotorecettore responsabile per la fotoregolazione della risposta a irradiazioni prolungate con R e FR. La risposta a irradiazioni prolungate con UV e BL è probablimente regolata, in alcune specie, attraverso la cooperazione tra due fotorecettori, fitocromo e criptocromo; quest’ultimo è un fotorecettore specifico per la radiazione UV e BL. L’identità del criptocromo e le caratteristiche dell’interazione tra fitocromo e criptocromo nella fotoregolazione dei processi di sviluppo dei vegetali sono ancora poco conosciute.

This is a preview of subscription content, access via your institution.

Abbreviations

L:

light

D:

dark

UV:

ultraviolet

UV-A:

320-400 nm

UV-B:

290-320 nm

BL:

blue, 400–480 nm

R:

red, 600–690 nm

FR:

far red, 700–760 nm

HIR:

high irradiance reaction

Pr:

red absorbing form of phytochrome

Pfr:

far red absorbing form of phytochrome

P:

total phytochrome = Pr + Pfr

CMU:

monuron; 3-(p-chlorophenyl)-1,1-dimethylurea

DCMU:

diuron; 3-(3,4-dichlorophenyl)-1,1-dimethylurea

FMN:

flavinmononucleotide

NF:

Norflurazon (SAN-9789); 4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3-(2H)-pyridazinone

Literature Cited

  • Acton, G. J., W. Fischer andP. Schopfer. 1980. Lag phase and rate of synthesis in phytochrome mediated induction of phenylalanine ammonia lyase in mustard cotyledons. Planta150: 53–57.

    Article  CAS  Google Scholar 

  • Alfermann, W. 1972. Induction of anthocyanin synthesis by light and auxin in tissue cultures ofDaucus carota. Proc. 6th Int. Congr. Photobiol., Bochum: abstract No. 187.

  • Bartels, P. G. andA. Hyde. 1970. Chloroplast development in SANDOZ-6708-treated wheat seedlings. Pl. Physiol.45: 807–810.

    CAS  Google Scholar 

  • Beggs, C. J., W. Geile, M. G. Holmes, M. Jabben, A. M. Jose andE. Schäfer. 1981. High irradiance response promotion of a subsequent light induction response inSinapis alba L. Planta151: 135–140.

    Article  Google Scholar 

  • —,M. G. Holmes, M. Jabben andE. Schäfer. 1980. Action spectra for the inhibition of hypocotyl growth by continuous irradiation in light and dark-grownSinapis alba L. seedlings. Pl. Physiol.66: 615–618.

    CAS  Google Scholar 

  • Bellini, E. andM. Martelli. 1973. Anthocyanin synthesis in radish seedlings: Effects of continuous far red irradiation and phytochrome transformation. Z. Pflanzenphysiol.70: 12–21.

    CAS  Google Scholar 

  • Black, M. andJ. E. Shuttleworth. 1974. The role of cotyledons in the photocontrol of hypocotyl extension inCucumis sativus. Planta117: 57–66.

    Article  Google Scholar 

  • Boisard, J., D. Marmé andW. R. Briggs. 1974. In vivo properties of membrane bound phytochrome. Pl. Physiol.54: 272–276.

    CAS  Google Scholar 

  • Borthwick, H. A. 1972a. History of phytochrome. Pages 3–23in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • —. 1972b. The biological significance of phytochrome. Pages 27–44in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • —,S. B. Hendricks, M. J. Schneider, R. B. Taylorson andV. K. Toole. 1969. The high energy light action controlling plant responses and development. Proc. Natl. Acad. U.S.A.64: 479–486.

    Article  CAS  Google Scholar 

  • Bregeaut, J. andP. Rollin. 1965. Influence de la lumière sur la synthèse des anthocyanes chezPhacelia tanacetifolia (Hydrophyllacées). Isr. J. Bot.14: 59–68.

    CAS  Google Scholar 

  • Briggs, W. R. 1983. Blue light photoreceptors in higher plants and fungi. Photochem. & Photobiol.37: S61.

    Google Scholar 

  • — andH. P. Chon. 1966. The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Pl. Physiol.41: 1159–1166.

    CAS  Google Scholar 

  • — andH. W. Siegelman. 1965. Distribution of phytochrome in etiolated seedlings. Pl. Physiol.40:934–941.

    CAS  Google Scholar 

  • Brockmann, J. andE. Schäfer. 1982. Analysis of Pfr destruction inAmaranthus caudatus L.: Evidence for two pools of phytochrome. Photochem. & Photobiol.35: 555–558.

    Article  CAS  Google Scholar 

  • Butler, W. L. 1972. Photochemical properties of phytochrome in vitro. Pages 27–44in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • —,S. B. Hendricks andH. W. Siegelman. 1964. Action spectra of phytochrome in vitro. Photochem. & Photobiol.3: 521–528.

    Article  CAS  Google Scholar 

  • — andH. C. Lane. 1965. Dark transformations of phytochrome in vivo. Pl. Physiol.40: 13–17.

    Article  CAS  Google Scholar 

  • —— andH. W. Siegelman. 1963. Nonphotochemical transformations of phytochrome in vivo. Pl. Physiol.38: 514–519.

    CAS  Google Scholar 

  • Chon, H. P. andW. R. Briggs. 1966. Effect of red light on the phototropic sensitivity of corn coleoptiles. Pl. Physiol.66: 1715–1724.

    Google Scholar 

  • Chorney, W. andS. A. Gordon. 1966. Action spectrum and characteristics of the light activated disappearance of phytochrome in oat seedlings. Pl. Physiol.41: 891–896.

    CAS  Google Scholar 

  • Colbert, J. T., H. P. Hershey andP. H. Quail. 1983. Autoregulatory control of translatable phytochrome mRNA levels. Proc. Natl. Acad. U.S.A.80: 2248–2252.

    Article  CAS  Google Scholar 

  • Correll, D. L. andW. Shropshire, Jr. 1968. Phytochrome in etiolated annual rye. I. Changes during growth in the amount of photoreversible phytochrome in the coleoptile and primary leaf. Planta79: 275–283.

    Article  Google Scholar 

  • Creasy, L. 1968. The significance of carbohydrate metabolism in flavonoid synthesis in strawberry leaf disks. Phytochemistry7: 1743–1749.

    Article  CAS  Google Scholar 

  • Dooskin, R. H. andA. L. Mancinelli. 1968. Phytochrome decay and coleoptile elongation inAvena following various light treatments. Bull. Torrey Bot. Club95: 474–487.

    Article  Google Scholar 

  • Downs, R. J. 1964. Photocontrol of anthocyanin synthesis. J. Wash. Acad. Sci.54: 112–120.

    CAS  Google Scholar 

  • —,S. B. Hendricks andH. A. Borthwick. 1957. Photoreversible control of elongation of pinto beans and other plants under normal conditions of growth. Bot. Gaz.118: 199–208.

    Article  Google Scholar 

  • — andH. W. Siegelman. 1963. Photocontrol of anthocyanin synthesis in milo seedlings. Pl. Physiol.38: 25–30.

    CAS  Google Scholar 

  • ——,W. L. Butler andS. B. Hendricks. 1965. Photoreceptive pigments for anthocyanin synthesis in apple skin. Nature205: 909–910.

    Article  CAS  Google Scholar 

  • Drumm, H. andH. Mohr. 1974. The dose response curve in phytochrome mediated anthocyanin synthesis in the mustard seedling. Photochem. & Photobiol.20: 151–157.

    Article  CAS  Google Scholar 

  • —. 1978. The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of theSorghum seedling. Photochem. & Photobiol.27: 241–248.

    Article  CAS  Google Scholar 

  • —,A. Wildermann andH. Mohr. 1975. The high irradiance response in anthocyanin formation as related to the phytochrome level. Photochem. & Photobiol.21: 269–273.

    Article  CAS  Google Scholar 

  • Drumm-Herrel, H. andH. Mohr. 1981. A novel effect of UV-B in a higher plant (Sorghum vulgare). Photochem. & Photobiol.33: 391–398.

    Article  CAS  Google Scholar 

  • ——. 1982a. Effect of prolonged light exposures on the effectiveness of phytochrome in anthocyanin synthesis in tomato seedlings. Photochem. & Photobiol.35: 233–236.

    Article  CAS  Google Scholar 

  • ——. 1982b. Effect of blue/UV light on anthocyanin synthesis in tomato seedlings in the absence of bulk carotenoids. Photochem. & Photobiol.36: 229–233.

    Article  CAS  Google Scholar 

  • Duke, S. O., S. B. Fox andA. W. Naylor. 1976. Photosynthetic independence of light induced anthocyanin formation inZea seedlings. Pl. Physiol.57: 192–196.

    CAS  Google Scholar 

  • — andA. W. Naylor. 1976. Light control of anthocyanin biosynthesis inZea seedlings. Physiol. Pl.37: 62–68.

    Article  CAS  Google Scholar 

  • Evans, L. T., S. B. Hendricks andH. A. Borthwick. 1965. The role of light in suppressing hypocotyl elongation in lettuce andPetunia. Planta64: 201–218.

    Article  CAS  Google Scholar 

  • Frankland, B. 1972. Biosynthesis and dark transformations of phytochrome. Pages 193–225in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • Fuad, N. andR. Yu. 1977. Action spectrum of phytochrome binding to a subcellular fraction of maize coleoptiles. Photochem. & Photobiol.25: 491–496.

    Article  CAS  Google Scholar 

  • Fukshansky, L. 1978. On the theory of light absorption in non-homogeneous objects. J. Math. Biol.6: 177–196.

    Article  Google Scholar 

  • — andN. Kazarinova. 1980. Extension of the Kubelka-Munk theory of light propagation in intensely scattering materials to the fluorescent media. J. Opt. Soc. Am.70: 1101–1111.

    CAS  Google Scholar 

  • — andE. Schäfer. 1983. Models in photomorphogenesis. Pages 69–95in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology). Springer-Verlag, Berlin.

    Google Scholar 

  • Furuya, M., W. G. Hopkins andW. S. Hillman. 1965. Effects of metal complexing and sulfhydryl compounds on nonphotochemical changes of phytochrome in vivo. Arch. Biochem. Biophys.112: 180–186.

    Article  PubMed  CAS  Google Scholar 

  • Gammermann, A. Y. andL. Y. Fukshansky. 1974. A mathematical model of phytochrome, the receptor of photomorphogenic processes in plants. Ontogenez5: 122–129.

    Google Scholar 

  • Gorton, H. L. andW. R. Briggs. 1980. Phytochrome responses to end-of-day irradiations in light-grown corn grown in the presence and absence of SANDOZ-9789. Pl. Physiol.66: 1024–1026.

    CAS  Google Scholar 

  • Gottmann, K. andE. Schäfer. 1982. In vitro synthesis of phytochrome apoprotein directed by mRNA from light and dark grownAvena seedlings. Photochem. & Photobiol.35: 521–525.

    Article  CAS  Google Scholar 

  • Gressel, J. 1979. Blue light photoreception. Photochem. & Photobiol.30: 749–754.

    Article  CAS  Google Scholar 

  • Grill, R. 1965. Photocontrol of anthocyanin formation in turnip seedlings. I. Demonstration of phytochrome action. Planta66: 293–300.

    Article  CAS  Google Scholar 

  • —. 1967. Photocontrol of anthocyanin formation in turnip seedlings. IV. The effect of feeding precursors. Planta76: 11–24.

    Article  CAS  Google Scholar 

  • — andD. Vince. 1965. Photocontrol of anthocyanin formation in turnip seedlings. II. The possible role of phytochrome in the response to prolonged irradiation with far red or blue light. Planta67: 122–135.

    Article  CAS  Google Scholar 

  • ——. 1966. Photocontrol of anthocyanin formation in turnip seedlings. III. The photoreceptors involved in the response to prolonged irradiation. Planta70: 1–12.

    Article  CAS  Google Scholar 

  • ——. 1969a. Photocontrol of anthocyanin synthesis in turnip seedlings. VI. Lag phases. Planta86: 116–123.

    Article  CAS  Google Scholar 

  • ——. 1970. Photocontrol of anthocyanin formation in turnip seedlings. VIII. Wavelength dependence. Planta95: 264–271.

    Article  Google Scholar 

  • Hahlbrock, K. andH. Grisebach. 1979. Enzymic control in the biosynthesis of lignin and flavonoids. Annual Rev. Pl. Physiol.30: 105–130.

    Article  CAS  Google Scholar 

  • Harborne, J. B. 1976. Functions of flavonoids in plants. Pages 736–778in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, London.

    Google Scholar 

  • Harraschain, H. andH. Mohr. 1963. Der Einfluss sichtbarer Strahlung auf die Flavonoid-Synthese und Morphogenese der Buchweizenkeimlange (Fagopyrum esculentum Moench.). II. Flavonol-Synthese und Hypocotylwachstum. Z. Bot.51: 277–299.

    CAS  Google Scholar 

  • Hartmann, K. M. 1966. A general hypothesis to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. & Photobiol.5: 349–366.

    Article  CAS  Google Scholar 

  • — andI. Cohnen-Unser. 1972. Analytical action spectroscopy with living systems: Photochemical aspects and attenuance. Ber. Deutsch. Bot. Ges.85: 481–551.

    CAS  Google Scholar 

  • ——. 1973. Carotenoids and flavins versus phytochrome as the controlling pigment for the blue-UV-mediated photoresponses. Z. Pflanzenphysiol.69: 109–124.

    CAS  Google Scholar 

  • Heim, B., M. Jabben andE. Schäfer. 1981. Phytochrome destruction in dark and light grownAmaranthus caudatus seedlings. Photochem. & Photobiol.34: 89–93.

    CAS  Google Scholar 

  • — andE. Schäfer. 1982. Light controlled inhibition of hypocotyl growth inSinapis alba L. seedlings: Fluence rate dependence of hourly light pulses and continuous irradiation. Planta154: 150–155.

    Article  Google Scholar 

  • Hendricks, S. B. andH. A. Borthwick. 1959a. Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. Proc. Natl. Acad. U.S.A.45: 344–349.

    Article  CAS  Google Scholar 

  • ——. 1959b. Photocontrol of plant development by the simultaneous excitation of two interconvertible plant pigments. II. Theory and control of anthocyanin synthesis. Bot. Gaz.120: 187–193.

    Article  CAS  Google Scholar 

  • ——. 1967. The function ofphytochrome in the regulation of plant growth. Proc. Natl. Acad. U.S.A.58: 2125–2130.

    Article  CAS  Google Scholar 

  • Hillman, W. S. 1967. The physiology of phytochrome. Annual Rev. Pl. Physiol.18: 301–324.

    Article  CAS  Google Scholar 

  • —. 1972. On the physiological significance of in vivo phytochrome assays. Pages 573–584in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • Holmes, M. G. andL. Fukshansky. 1979. Phytochrome photoequilibria in green leaves under polychromatic radiation: A theoretical approach. Pl. Cell Environ.2: 59–65.

    Article  Google Scholar 

  • — andE. Schäfer. 1981. Action spectra for changes in the high irradiance reaction in hypocotyls ofSinapis alba L. Planta153: 267–272.

    Article  Google Scholar 

  • — andE. Wagner. 1982. The influence of chlorophyll on the spectral control of elongation growth inChenopodium rubrum L. hypocotyls. Pl. Cell Physiol.23: 745–750.

    CAS  Google Scholar 

  • Hrazdina, G. andL. L. Creasy. 1979. Light induced changes in anthocyanin concentration, activity of phenylalanine ammonia lyase and flavanone synthase and some of their properties inBrassica oleracea. Phytochemistry18: 581–584.

    Article  CAS  Google Scholar 

  • Huang-Yang, C. P. 1976. Photosynthetic independence of the high irradiance response anthocyanin synthesis in young seedlings. Ph.D. thesis, Columbia University, New York.

    Google Scholar 

  • Hunt, R. E. andL. H. Pratt. 1979. Phytochrome radioimmunoassay. Pl. Physiol.64: 327–331.

    Article  CAS  Google Scholar 

  • —. 1980. Radioimmunoassay of phytochrome content in green, light-grown oats. Pl. Cell Environ.3: 91–95.

    CAS  Google Scholar 

  • Jabben, M. 1980. The phytochrome system in light-grownZea mays L. Planta149: 91–96.

    Article  CAS  Google Scholar 

  • —,C. Beggs andE. Schäfer. 1982. Dependence of Pfr/Ptot ratios on light quality and light quantity. Photochem. & Photobiol.35: 709–712.

    Article  CAS  Google Scholar 

  • — andG. F. Deitzer. 1978a. A method for measuring phytochrome in plants grown in white light. Photochem. & Photobiol.27: 799–802.

    Article  CAS  Google Scholar 

  • ——. 1978b. Spectrophotometric phytochrome measurements in light grownAvena sauva L. Planta143: 309–313.

    Article  CAS  Google Scholar 

  • ——. 1979. Effects of the herbicide SAN 9789 on photomorphogenic responses. Pl. Physiol.63: 481–485.

    CAS  Google Scholar 

  • -,B. Heim and E. Schäfer. 1980. The phytochrome system in light and dark grown dicotyledonous seedlings. Pages 145–158in J. De Greef (ed.), Photoreceptors and plant development. Antwerpen Univ. Press.

  • — andM. G. Holmes. 1983. Phytochrome in light grown plants. Pages 704–722in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology). Springer-Verlag, Berlin.

    Google Scholar 

  • Johnson, C. B. 1980. The effect of red light in the high irradiance reaction of phytochrome: Evidence for interaction between Pfr and a phytochrome cycling driven process. Pl. Cell Environ.3:45–51.

    CAS  Google Scholar 

  • — andR. Tasker. 1979. A scheme to account quantitatively for the action of phytochrome in etiolated and light-grown plants. Pl. Cell Environ.2: 259–265.

    Article  Google Scholar 

  • Jose, A. M. andE. Schäfer. 1978. Distorted phytochrome action spectra in green plants. Planta138: 25–28.

    Article  CAS  Google Scholar 

  • — andD. Vince-Prue. 1977a. Light-induced changes in the photoresponses of plant stems: The loss of a high irradiance response to far red light. Planta135: 95–100.

    Article  CAS  Google Scholar 

  • ——. 1977b. Action spectra for the inhibition of growth in radish hypocotyls. Planta136: 131–134.

    Article  Google Scholar 

  • Kandeler, R. 1958. Die Wirkung von farbigem und weissem Licht auf die Anthocyanbildung bei Cruciferen-Keimlingen. Ber. Dtsch. Bot. Ges.71: 34–44.

    CAS  Google Scholar 

  • Kendrick, R. E. andB. Frankland. 1968. Kinetics of phytochrome decay inAmamnthus seedlings. Planta86: 21–32.

    Article  Google Scholar 

  • Kidd, G. H. andL. H. Pratt. 1973. Phytochrome destruction: An apparent requirement for protein synthesis in the induction of the destruction mechanism. Pl. Physiol.52: 309–311.

    CAS  Google Scholar 

  • Kilsby, C. A. H. andC. B. Johnson. 1982. The in vivo spectrophotometric assay of phytochrome in two mature dicotyledonous plants. Photochem. & Photobiol.35: 255–260.

    Article  CAS  Google Scholar 

  • Klein, W. H. 1959. Interaction of growth factors with photoprocesses in seedling growth. Pages 207–215in R. B. Withrow (ed.), Photoperiodism and related phenomena in plants and animals. A.A.A.S., Washington, D.C.

    Google Scholar 

  • —,R. B. Withrow, V. Elstad andL. Price. 1957. Photocontrol of growth and pigment synthesis in the bean seedling as related to irradiance and wavelength. Amer. J. Bot.44: 15–19.

    Article  CAS  Google Scholar 

  • Koornneef, M., E. Rolff andC. J. P. Spruit. 1980. Genetic control of light inhibited hypocotyl elongation inArabidopsis thaliana. Z. Pflanzenphysiol.100: 147–160.

    Google Scholar 

  • Ku, P. K. andA. L. Mancinelli. 1972. Photocontrol of anthocyanin synthesis. Pl. Physiol.49:212–217.

    CAS  Google Scholar 

  • Lackmann, I. 1971. Action spectra of anthocyanin synthesis in tissue cultures and seedlings ofHaplopappus gracilis. Planta98: 258–269.

    Article  CAS  Google Scholar 

  • Lamb, C. J. andM. A. Lawton. 1983. Photocontrol of gene expression. Pages 213–257in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N. S.). Springer-Verlag, Berlin.

    Google Scholar 

  • Lange, H., W. Shropshire, Jr. andH. Mohr. 1971. An analysis of phytochrome-mediated anthocyanin synthesis. Pl. Physiol.47: 649–655.

    Google Scholar 

  • Mackenzie, J. M., Jr.,W. R. Briggs andL. H. Pratt. 1978. Intracellular phytochrome distribution as a function of its molecular form and of its destruction. Amer. J. Bot.65:671–676.

    Article  CAS  Google Scholar 

  • —,R. A. Coleman, W. R. Briggs andL. H. Pratt. 1975. Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form. Proc. Natl. Acad. U.S.A.72(3): 799–803.

    Article  Google Scholar 

  • Mancinelli, A. L. 1977. Photocontrol of anthocyanin synthesis inSpirodela polyrrhiza. Pl. Physiol.59: S49.

    Google Scholar 

  • —. 1980a. Anthocyanin synthesis in leaf disks of red cabbage. Pl. Physiol.65: S6.

    Google Scholar 

  • —. 1980b. The photoreceptors of the high irradiance responses of plant photomorphogenesis. Photochem. & Photobiol.32: 853–857.

    Article  CAS  Google Scholar 

  • —. 1984. Photoregulation of anthocyanin synthesis. VIII. Effect of light pretreatments. Pl. Physiol.75: 447–453.

    CAS  Google Scholar 

  • —,P. K. Ku-Tai andR. Susinno. 1974. Photocontrol of anthocyanin synthesis: Phytochrome, chlorophyll and anthocyanin synthesis. Photochem. & Photobiol.20: 71–79.

    Article  CAS  Google Scholar 

  • — andI. Rabino. 1975. Photocontrol of anthocyanin synthesis. IV. Dose dependence and reciprocity relationships. Pl. Physiol.56: 351–355.

    Article  CAS  Google Scholar 

  • ——. 1978. The high irradiance responses of plant photomorphogenesis. Bot. Rev.44: 129–180.

    CAS  Google Scholar 

  • — andO. M. Schwartz. 1984. Photoregulation of anthocyanin synthesis. IX. Photosensitivity of the response in dark and light-grown tomato seedlings. Pl. Cell Physiol.25: 93–105.

    CAS  Google Scholar 

  • — andA. Tolkowsky. 1968. Phytochrome and seed germination. V. Changes in phytochrome content during germination of cucumber seeds. Pl. Physiol.43: 489–494.

    Google Scholar 

  • — andL. Walsh. 1979. Photocontrol of anthocyanin synthesis. VII. Factors affecting the spectral sensitivity of anthocyanin synthesis in young seedlings. Pl. Physiol.63: 841–846.

    CAS  Google Scholar 

  • —,C. P. H. Yang, P. Lindquist, O. R. Anderson andI. Rabino. 1975. Photocontrol of anthocyanin synthesis. III. The action of streptomycin on chlorophyll and anthocyanin synthesis. Pl. Physiol.55: 251–257.

    CAS  Google Scholar 

  • ——,I. Rabino andK. M. Kuzmanoff. 1976. Photocontrol of anthocyanin synthesis. V. Further evidence against the involvement of photosynthesis in HIR anthocyanin synthesis of young seedlings. Pl. Physiol.58: 214–217.

    Article  CAS  Google Scholar 

  • Mitrakos, K. andW. Shropshire, Jr. (eds.). 1972. Phytochrome. Academic Press, London.

    Google Scholar 

  • Mohr, H. 1957. Der Einfluss monochromatischer Strahlung auf das Längenwachstum des Hypokotyls und auf die Anthocyanbildung bei Keimlingen vonSinapis alba L. Planta49: 389–405.

    Article  Google Scholar 

  • —. 1972. Lectures on photomorphogenesis. Springer-Verlag, Berlin.

    Google Scholar 

  • —,H. Drumm, R. Schmidt andB. Steinitz. 1979. Effect of light pretreatments on phytochrome mediated induction of anthocyanin and phenylalanine ammonia lyase. Planta146: 369–376.

    Article  CAS  Google Scholar 

  • — andH. Drumm-Herrel. 1981. Interaction between blue/UV light and light operating through phytochrome in higher plants. Pages 423–441in H. Smith (ed.), Plants and the daylight spectrum. Academic Press, London.

    Google Scholar 

  • —. 1983. Coaction between phytochrome and blue/UV light in anthocyanin synthesis in seedlings. Physiol. Pl.58: 408–414.

    Article  CAS  Google Scholar 

  • —— andW. Shropshire, Jr. 1983. An introduction to photomorphogenesis for the general reader. Pages 24–38in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of Plant Physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • — andE. Van Ness. 1963. Der Einfluss sichtbarer Strahlung auf die Flavonoid-Synthese und Morphogenese der Buchweizenkeimlinge (Fagopyrum esculentum Moench.). Z. Bot.51: 1–16.

    CAS  Google Scholar 

  • Munoz, V. andW. L. Butler. 1975. Photoreceptor pigment for blue light inNeurospora crassa. Pl. Physiol.55: 421–426.

    CAS  Google Scholar 

  • Ng, Y. L., K. V. Thimann andS. A. Gordon. 1964. The biogenesis of anthocyanin. X. The action spectrum for anthocyanin formation inSpirodela oligorrhiza. Arch. Biochem. Biophys.107: 550–558.

    Article  PubMed  CAS  Google Scholar 

  • Ninnemann, H. 1980. Blue light photoreceptors. Bioscience30: 166–170.

    Article  CAS  Google Scholar 

  • Pardo, A. D. andJ. A. Schiff. 1980. Plastid and seedling development in SAN-9789-treated etiolated bean seedlings. Canad. J. Bot.58: 25–35.

    CAS  Google Scholar 

  • Piattelli, M. 1976. The betalains. Pages 560–596in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, London.

    Google Scholar 

  • Pratt, L. H. 1978. Molecular properties of phytochrome. Photochem. & Photobiol.27: 81–105.

    Article  CAS  Google Scholar 

  • —. 1979. Phytochrome: Function and properties. Photochem. & Photobiol. Rev.4: 59–124.

    CAS  Google Scholar 

  • —. 1982. Phytochrome: The protein moiety. Annual Rev. Pl. Physiol.33: 557–582.

    Article  CAS  Google Scholar 

  • —. 1983. Assay of photomorphogenic photoreceptors. Pages 152–177in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • — andW. L. Butler. 1970. Phytochrome photoconversion by ultraviolet light. Photochem. & Photobiol.11: 503–509.

    Article  CAS  Google Scholar 

  • Quail, P. H. 1975. Interaction of phytochrome with other cellular components. Photochem. & Photobiol.22: 299–301.

    Article  CAS  Google Scholar 

  • —. 1983. Rapid action of phytochrome in photomorphogenesis. Pages 178–212in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • —,E. Schäfer andD. Marmé. 1973a. De novo synthesis of phytochrome in pumpkin hooks. Pl. Physiol.52: 124–127.

    CAS  Google Scholar 

  • ———. 1973b. Turnover of phytochrome in pumpkin cotyledons. Pl. Physiol.52: 128–131.

    Article  CAS  Google Scholar 

  • Rabino, I. andA. L. Mancinelli. 1980. Phytochrome pelletability in vitro. Pl. Physiol.65: S5.

    Google Scholar 

  • —— andK. M. Kuzmanoff. 1977. Photocontrol of anthocyanin synthesis. VI. Spectral sensitivity, irradiance dependence, and reciprocity relationships. Pl. Physiol.59: 569–573.

    CAS  Google Scholar 

  • Rau, W. andE. L. Schrott. 1979. Light mediated biosynthesis in plants. Photochem. & Photobiol.30: 755–765.

    Article  CAS  Google Scholar 

  • Rollin, P. 1972. Phytochrome control of seed germination. Pages 229–254in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • Roux, S. J. 1984. Ca2+ and phytochrome action in plants. Bioscience34: 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, H. K. andP. S. Song. 1982. Blue light induced phototransformation of phytochrome in the presence of flavin. Photochem. & Photobiol.35: 243–246.

    Article  CAS  Google Scholar 

  • Satter, R. L. andA. W. Galston. 1976. The physiological functions of phytochrome. Pages 680–735in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, New York.

    Google Scholar 

  • Schäfer, E. 1975. A new approach to explain the high irradiance responses of photomorphogenesis on the basis of phytochrome. J. Math. Biol.2: 41–56.

    Article  Google Scholar 

  • —. 1978. Variation in the rates of synthesis and degradation of phytochrome in cotyledons ofCucurbita pepo L. during seedling development. Photochem. & Photobiol.27: 775–780.

    Article  Google Scholar 

  • —. 1981. Phytochrome and daylight. Pages 461–480in H. Smith (ed.), Plants and the daylight spectrum. Academic Press, London.

    Google Scholar 

  • —. 1982. Advances in photomorphogenesis. Photochem. & Photobiol.35: 905–910.

    Article  Google Scholar 

  • —,C. J. Beggs, L. Fukshanksy, M. G. Holmes andM. Jabben. 1981. A comparative study of the responsivity ofSinapis alba L. seedlings to pulsed and continuous irradiation. Planta153: 258–261.

    Article  Google Scholar 

  • —,L. Fukshansky andW. Shropshire, Jr. 1983. Action spectroscopy of photorev-ersible pigment systems. Pages 39–68in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • — andW. Haupt. 1983. Blue light effects in phytochrome mediated responses. Pages 723–744in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • —,T. U. Lassig andP. Schopfer. 1975. Photocontrol of phytochrome destruction in grass seedlings: The influence of wavelength and irradiance. Photochem. & Photobiol.22: 193–202.

    Article  Google Scholar 

  • ———. 1976. Photocontrol of phytochrome destruction and binding in dicotyledonous vs monocotyledonous seedlings: The influence of wavelength and irradiance. Photochem. & Photobiol.24: 567–572.

    Article  Google Scholar 

  • —,B. Marchal andD. Mariné. 1972. In vivo measurements of the phytochrome photostationary state in far red light. Photochem. & Photobiol.15: 457–464.

    Article  Google Scholar 

  • — andH. Mohr. 1980. Changes in the rates of photoconversion of phytochrome during etiolation in mustard seedlings. Photochem. & Photobiol.31: 495–500.

    Article  Google Scholar 

  • Schmidt, R. andH. Mohr. 1981a. Lag phase and rate of synthesis in light mediated anthocyanin synthesis. Planta151: 541–543.

    Article  CAS  Google Scholar 

  • ——. 1981b. Time dependent changes in the responsiveness to light of phytochrome mediated anthocyanin synthesis. Pl. Cell Environ.4: 433–437.

    CAS  Google Scholar 

  • ——. 1982. Evidence that a mustard seedling responds to the amount of Pfr and not to the Pfr/Ptot ratio. Pl. Cell Environ.5: 495–499.

    CAS  Google Scholar 

  • Schmidt, W. 1980. Physiological blue light reception. Struct. Bonding41: 1–44.

    CAS  Google Scholar 

  • Schneider, M. andW. Stimson. 1972. Phytochrome and photosystem I interaction in a high energy photoresponse. Proc. Natl. Acad. U.S.A.69: 2150–2154.

    Article  CAS  Google Scholar 

  • Schopfer, P. 1977. Phytochrome control of enzymes. Annual Rev. Pl. Physiol.28: 223–252.

    Article  CAS  Google Scholar 

  • — andK. Apel. 1983. Intracellular photomorphogenesis. Pages 258–288in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • Senger, H. (ed.). 1980. The blue light syndrome. Springer-Verlag, Berlin.

    Google Scholar 

  • —. 1982. The effect of blue light on plants and microorganisms. Photochem. & Photobiol.35: 911–920.

    Article  CAS  Google Scholar 

  • Shimazaki, Y., M. M. Cordonnier andL. H. Pratt. 1983. Phytochrome quantitation in crude extracts ofAvena by enzyme-linked immunosorbent assay with monoclonal antibodies. Planta159: 534–544.

    Article  CAS  Google Scholar 

  • —,Y. Moriyasu, L. H. Pratt andM. Furuya. 1981. Isolation of the red light absorbing form of phytochrome from light grown pea shoots. Pl. Cell Physiol.22: 1165–1173.

    CAS  Google Scholar 

  • Shropshire, W., Jr. 1972a. Phytochrome, a photochromic sensor. Pages 33–72in A. A. Giese (ed.), Photophysiology. Vol. 7. Academic Press, London.

    Google Scholar 

  • —. 1972b. Action spectroscopy. Pages 161–181in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • — andH. Mohr (eds.). 1983. Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • Siegelman, H. W. andS. B. Hendricks. 1957. Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Pl. Physiol.32: 393–398.

    CAS  Google Scholar 

  • ——. 1958. Photocontrol of anthocyanin synthesis in apple skin. Pl. Physiol.33: 185–190.

    Article  CAS  Google Scholar 

  • Slabecka-Szweykowska, A. 1955. On the influence of the wavelength of light on the biogenesis of anthocyanin pigment in theVitis vinifera tissue in vitro. Acad. Soc. Bot. Polon.24: 3–11.

    Google Scholar 

  • Smith, H. 1972. The photocontrol of flavonoid biosynthesis. Pages 433–481in K. Mitrakos and W. Shropshire, Jr. (eds.), Phytochrome. Academic Press, London.

    Google Scholar 

  • —. 1975. Phytochrome and photomorphogenesis. McGraw-Hill, London.

    Google Scholar 

  • — (ed.). 1981. Plants and the daylight spectrum. Academic Press, London.

    Google Scholar 

  • — andR. E. Kendrick. 1976. The structure and properties of phytochrome. Pages 377–424in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, London.

    Google Scholar 

  • Smith, W. O. 1983. Phytochrome as a molecule. Pages 96–118in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • Spruit, C. J. P. andA. L. Mancinelli. 1969. Phytochrome in cucumber seeds. Planta88: 303–310.

    Article  CAS  Google Scholar 

  • Steinitz, B., H. Drumm andH. Mohr. 1976. The appearance of competence for phytochrome mediated anthocyanin synthesis in the cotyledons ofSinapis alba L. Planta130:23–31.

    Article  CAS  Google Scholar 

  • —,E. Schäfer andH. Mohr. 1979. Correlation between far red absorbing phytochrome and response in phytochrome mediated anthocyanin synthesis. Pl. Cell Environ.2: 159–163.

    Article  Google Scholar 

  • Stone, H. J. andL. H. Pratt. 1978. Phytochrome destruction: Apparent inhibition by ethylene. Pl. Physiol.62: 922–923.

    CAS  Google Scholar 

  • ——. 1979. Characterization of the destruction of phytochrome in the red absorbing form. Pl. Physiol.63: 680–682.

    CAS  Google Scholar 

  • Swain, T. 1976. Nature properties of flavonoids. Pages 425–463in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, New York.

    Google Scholar 

  • Thimann, K. V., Y. H. Edmondson andB. S. Radner. 1951. The biogenesis of anthocyanins. III. The role of sugars in anthocyanin formation. Arch. Biochem. Biophys.34: 305–323.

    Article  CAS  Google Scholar 

  • — andB. S. Radner. 1958. The biogenesis of anthocyanin. VI. The role of riboflavin. Arch. Biochem. Biophys.74: 209–223.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, B., S. E. Penn, G. W. Butcher andG. Galfre. 1984. Discrimination between the red and far red absorbing forms of phytochrome fromAvena sativa L. by monoclonal antibodies. Planta160: 382–384.

    Article  CAS  Google Scholar 

  • Tokhever, A. K. andN. P. Voskresenskaya. 1971. Light curves for anthocyanin accumulation in buckwheat seedlings under light of différent quality. Fiziol. Rast.18: 904–910.

    Google Scholar 

  • Tokuhisa, J. G. and P. H. Quail. 1983. Spectral and immunochemical characterization of phytochrome isolated from light grownAvena sativa. Pl. Physiol.72: Suppl. 85.

  • Vince, D. andR. Grill. 1966. The photoreceptors involved in anthocyanin synthesis. Photochem. & Photobiol.5: 407–411.

    Article  CAS  Google Scholar 

  • Wagner, E., I. Bienger andH. Mohr. 1967. The increase of phytochrome mediated anthocyanin synthesis in the mustard seedling by chloramphenicol. Planta75: 1–9.

    Article  CAS  Google Scholar 

  • — andH. Mohr. 1966. Kinetic studies to interpret high energy phenomena of photomorphogenesis on the basis of phytochrome. Photochem. & Photobiol.5: 397–406.

    Article  CAS  Google Scholar 

  • Wall, J. K. andC. B. Johnson. 1983. An analysis of phytochrome action in the high irradiance response. Planta159: 387–397.

    Article  CAS  Google Scholar 

  • Wellmann, E. 1983. UV radiation in photomorphogenesis. Pages 745–756in W. Shropshire, Jr. and H. Mohr (eds.), Photomorphogenesis (Vol. 16, Encyclopedia of plant physiology, N.S.). Springer-Verlag, Berlin.

    Google Scholar 

  • —,G. Hrazdina andH. Grisebach. 1976. Induction of anthocyanin formation and of enzymes related to its biosynthesis by UV light in cell cultures ofHaplopappus gracilis. Phytochemistry15: 913–915.

    Article  CAS  Google Scholar 

  • Widell, K. O. 1983. Effect of SAN 9789 and light on the germination of seeds fromTaraxacum vulgare. Physiol. Pl.59: 223–227.

    Article  CAS  Google Scholar 

  • —,C. Sundquist andH. I. Virgin. 1981. Effect of SAN 9789 and light on phytochrome and the germination of lettuce seeds. Physiol. Pl.52: 325–329.

    Article  CAS  Google Scholar 

  • Wildermann, A., H. Drumm, E. Schäfer andH. Mohr. 1978. Control by light of hypocotyl growth in de-etiolated mustard seedlings. II. Sensitivity for newly formed phytochrome after a light to dark transition. Planta141: 217–223.

    Article  CAS  Google Scholar 

  • Wong, E. 1976. Biosynthesis of flavonoids. Pages 464–526in T. W. Goodwin (ed.), Chemistry and biochemistry of plant pigments. Vol. 1. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mancinelli, A.L. Light-dependent anthocyanin synthesis: A model system for the study of plant photomorphogenesis. Bot. Rev 51, 107–157 (1985). https://doi.org/10.1007/BF02861059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02861059

Keywords