The Botanical Review

, Volume 52, Issue 2, pp 157–194 | Cite as

Sex allocation in functionally hermaphroditic plants: A review and critique

  • Doris Armstrong Goldman
  • Mary F. Willson
Article

Abstract

A number of theoretical and methodological problems plague studies of sex allocation in hermaphroditic plants. Most models assume that consumable resources limit reproduction, yet one or both sexes may be mate-limited. Most models also assume that resource limitation causes trade-offs between the allocations to male and female functions, but the sexes may be limited by different critical resources, or their resource needs may not overlap in time. Problems arise in deciding which plant parts are reproductive, when to harvest them, how to apportion them to male and female roles, and what are the appropriate measures of their cost. When energy directly limits reproduction, or other needs can be translated into energetic costs, the great variation in composition of reproductive parts makes construction costs or respiration a more potentially accurate measure of investment than energy content or especially biomass.

Some simple predictions from theoretical models include a 1:1 allocation ratio to male and female function in outcrossing hermaphrodites, a female-biassed ratio in proportion to the level of selfing, and lower average allocations to male function in animal-pollinated than in windpollinated plants. These predictions have not received much support from existing studies, thus emphasizing the need for better measures of allocation as well as better accounting of the many other possible factors that may determine individual (and population) allocation ratios.

Key words

biomass construction costs cosexual energy content gender allocation hermaphroditism or hermaphroditic plants reproductive cost or cost of reproduction reproductive effort resource allocation respiration sex allocation sex ratio 

Key phrases

testing sex allocation models: problems with assumptions and data measuring sex allocation in hermaphroditic plants critique of biomass energy content estimates of construction and maintenance costs or measurement of photosynthesis and respiration as measures of male/female resource allocation 

Abstrait

Un bon nombre de problèmes de théorie et de méthodologie tourmentent les études d’allocation de sexe dans les plantes hermaphrodites. La plupart des modèles assument que les resources consommables limitent la reproduction, mais un des deux ou les deux sexes peuvent être limités par l’availabilité de l’autre sexe. La plupart des modèles assument aussi que la limite de resource peut causer des échanges entre les allocations fonctions mâle et femelle, mais les sexes peuvent être limités par différentes resources critiques ou leurs besoins de resource ne se chevauc heront pas à temps. Les problèmes surgissent lorsqu’il faut décider quelles parties de plantes sont reproductives, quand il faut les récolter, comment les diviser proportionnellement en rôles de male et de femelle et quels sont les mesures appropriées de leur coût. Quand l’énergie limite directement la reproduction ou que l’on peut traduire en coût énergetique d’autres besoins, la grande variété dans la composition des parties reproductives rend le coût de construction ou respiration une mesure plus facilement adéquate d’investement que le contenu d’énergie ou spécialement de biomasse.

Quelques simples prédictions de modèles théoriques incluent une allocation de ratio de 1:1 pour la fonction mâle:femelle dans les hermaphrodites fecond croissé, un ratio biaise en faveur de la femelle en proportion au niveau d’autogamie, et les allocations de moyenne plus basse aux fonctions mâles dans les plantes pollinisé par animaux que dans les plantes pollinisé par le vent. Ces prédictions n’ont pas reçu beaucoup d’appui des études courantes dès lors accentuant le besoin de meilleures mesures d’allocation que d’une meilleure comptabilité de plusiers facteurs possible qui pourraient déterminer les ratios d’allocation individuelle (et population).

Resúmen

Existe una série de problemas teóricos y methodológicos que afectan los estudios sobre el repartimiento sexual en plantas hermafroditas. La mayoría de los modelos suponen que los recursos disponibles limitan la reproducción, sin embargo tanto uno como el otro sexo puede estar mas bien limitado por la disponibilidad del otro sexo. La mayoria de los modelos también suponen que la limitación de recursos crea compromisos entre las adjudicaciones a la función masculina y a la femenina, sin embargo es posible que los sexos esten limitados por diferentes recursos critícos, o que tal vez no exista solapamiento entre estos recursos a travez del tiempo. Surgen problemas al decidir qué partes de la planta tienen funciones reproductivas, cuando se deben cosechar estas, cómo asignarles papeles masculinos o femeninos y cómo medir apropiadamente sus costos. Cuando la energía es lo que directamente limita la reproducción, o cuando otras necesidades se pueden expresar en costos energéticos, la gran variation en la composición de los órganos reproductivos hace que los costos de constructión o de respiración sean medidas potencialmente mas precisas de inversión que las medidas del contenido de energía o particularmente de biomasa.

Algunas predicciones simples basadas en modelos teóricos incluyen una proporción de 1:1 para las funciones masculinas y femeninas en plantas hermafroditas con cruzamiento, un sesgo hacia las funciones femeninas en proporción al nivel de autogamía, y una baja adjudicación para las funciones masculinas en plantas polinizadas por animales en contraste con plantas polinizadas por el viento. Estas predicciones no han recibido mucho apoyo por los estudios existentes, por consiguiente, esto acentúa la necesidad de obtener mejores medidas de adjudicación y también de que se tenga en cuenta los muchos otros factores que puedan determinar las proporciones de repartimiento individuals (y de poblaciones).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abrahamson, W. G. &M. Caswell. 1982. On the comparative allocation of biomass, energy, and nutrients in plants. Ecology63: 982–991.Google Scholar
  2. Abul Fatih, H. A. 1977. Population biology ofAmbrosia trifida, an annual community organizer. Ph.D. Thesis. University of Illinois, Urbana-Champaign.Google Scholar
  3. —,F. A. Bazzaz &R. Hunt. 1979. The biology ofAmbrosia trifida L. III. Growth and biomass allocation. New Phytol.83: 829–838.Google Scholar
  4. Anonymous. 1972. Atlas of nutritional data on United States and Canadian feeds. National Academy of Sciences, Washington.Google Scholar
  5. Baker, H. G. &I. Baker. 1979. Starch in angiosperm pollen grains and its evolutionary significance. Amer. J. Bot.66: 591–600.Google Scholar
  6. Barclay, A. S. &F. R. Earle. 1974. Chemical analyses of seeds. III. Oil and protein content of 1253 species. Econ. Bot.28: 178–236.Google Scholar
  7. Barker, P. A., D. C. Freeman &K. T. Harper. 1982. Variation in the breeding system ofAcer grandidentatum. Forest Sci.28: 563–572.Google Scholar
  8. Barnes, B. V. 1969. Effects of thinning and fertilizing on production of western white pine seed. U.S. For. Serv. Intermountain Forest. and Range Exp. Sta. Res. Paper INT-58, 14 pp.Google Scholar
  9. Bawa, K. S. 1982. Seed dispersal and the evolution of dioecism in flowering plants—A response to Herrera. Evolution36: 1322–1325.Google Scholar
  10. Baylis, J. R. 1981. The evolution of parental care in fishes with reference to Darwin’s rule of male sexual selection. Env. Biol. Fish.6: 223–251.Google Scholar
  11. Bazzaz, F. A. &R. W. Carlson. 1979. Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. New Phytol.82: 223–232.Google Scholar
  12. —— &J. L. Harper. 1979. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature279: 554–555.Google Scholar
  13. Beare, M. H. &W. E. Perkins. 1982. Effects of variations in floral morphology on pollination mechanisms inAsclepias tuberosa L., butterflyweed (Asclepiadaceae). Amer. J. Bot.69: 579–584.Google Scholar
  14. Bell, C. R. 1959. Mineral nutrition and flower to flower pollen size variation. Amer. J. Bot.46: 621–624.Google Scholar
  15. Bemis, W. P., L. D. Curtis, C. W. Weber &J. Berry. 1978. The feral buffalo gourd,Cucurbita foetidissima. Econ. Bot.32: 87–95.Google Scholar
  16. Bertin, R. I. 1982a. The ecology of sex expression in red buckeye. Ecology63: 445–456.Google Scholar
  17. —. 1982b. The evolution and maintenance of andromonoecy. Evol. Theory6: 25–32.Google Scholar
  18. Bierzychudek, P. 1981. Pollinator limitation of plant reproductive effort. Amer. Naturalist117: 838–840.Google Scholar
  19. Bonner, F. T. 1972. Maturation of sweetgum and American sycamore seeds. Forest Sci.18: 223–231.Google Scholar
  20. —. 1974. Maturation of acorns of cherrybark, water, and willow oaks. Forest Sci.20: 238–242.Google Scholar
  21. -. 1975. Maturation of black cherry fruits in Central Mississippi. U.S. For. Serv. So. For. Exp. Sta. Res. Note SO-205, 4 pp.Google Scholar
  22. Bookman, S. S. 1983. Costs and benefits of flower abscission and fruit abortion inAsclepias speciosa. Ecology64: 264–273.Google Scholar
  23. Borgia, G. 1982. Female-biased sex ratios. Nature298: 494–495.Google Scholar
  24. Bramlett, D. L. &R. P. Belanger. 1976. Fertilizer and phenotypic selection increase growth and flowering of young Virginia pine. Forest Sci.22: 461–467.Google Scholar
  25. Bullock, S. H. &K. S. Bawa. 1981. Sexual dimorphism and the annual flowering pattern inJacaratia dolichaula (D. Smith) Woodson (Caricaceae) in a Costa Rican rain forest. Ecology62: 1494–1504.Google Scholar
  26. Burdon, R. D. &C. B. Low. 1973. Seed production in radiata pine clones on four different sites. New Zealand J. Forest Sci.3: 211–219.Google Scholar
  27. Chailakhyan, M. Kh. 1979. Genetic and hormonal regulation of growth, flowering, and sex expression in plants. Amer. J. Bot.66: 717–736.Google Scholar
  28. Chapin, F. S. III. 1980. The mineral nutrition of wild plants. Annual Rev. Ecol. Syst.11: 233–260.Google Scholar
  29. —. &R. A. Kedrowski. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology64: 376–391.Google Scholar
  30. Charlesworth, B. &M. A. Toro. 1982. Female-biased sex ratios. Nature298: 494.Google Scholar
  31. Charlesworth, D. &B. Charlesworth. 1981. Allocation of resources to male and female functions in hermaphrodites. J. Linn. Soc, Biol.15: 57–74.Google Scholar
  32. Charnov, E. L. 1979a. The genetical evolution of patterns of sexuality: Darwinian fitness. Amer. Naturalist113: 465–480.Google Scholar
  33. —. 1979b. Simultaneous hermaphroditism and sexual selection. Proc. Natl. Acad. U.S.A.76: 2480–2484.Google Scholar
  34. —. 1982. The theory of sex allocation. Princeton University Press, Princeton, New Jersey.Google Scholar
  35. & J. J. Bull. 1977. When is sex environmentally determined? Nature266: 828–830.PubMedGoogle Scholar
  36. —,J. Maynard Smith &J. J Bull. 1976. Why be an hermaphrodite? Nature263: 125–126.Google Scholar
  37. Clifford, P. E. 1977. Tiller bud suppression in reproductive plants ofLolium multiflorum Lam. cv. Westerwoldicum. Ann. Bot.41: 605–615.Google Scholar
  38. Colin, L. J. &C. E. Jones. 1980. Pollen energetics and pollination modes. Amer. J. Bot.67: 210–215.Google Scholar
  39. Colwell, R. K. 1982. Female-biased sex ratios-Colwell replies. Nature298: 495–496.Google Scholar
  40. Cox, P. A. 1981. Niche partitioning between sexes of dioecious plants. Amer. Naturalist117: 295–307.Google Scholar
  41. Cruden, R. W. 1976. Intraspecific variation in pollen-ovule ratios and nectar secretion-Preliminary evidence of ecotypic adaptation. Ann. Missouri Bot. Gard.63: 277–289.Google Scholar
  42. — &S. M. Hermann-Parker. 1977. Temporal dioecism: An alternative to dioecism? Evolution31: 863–866.Google Scholar
  43. Damptey, H. B. &D. Aspinall. 1976. Water deficit and inflorescence development inZea mays L. Ann. Bot.40: 23–35.Google Scholar
  44. deVries, A. P. 1971. Flowering biology of wheat, particularly in view of hybrid seed production—A review. Euphytica20: 152–170.Google Scholar
  45. Dewsbury, D. A. 1982. Ejaculate cost and male choice. Amer. Naturalist119: 601–610.Google Scholar
  46. Elliott, W. A. 1978. Wild rice-breeding research-1977. Progress Rep. 1977 Wild Rice Research, pages 53–63. Minn. Agr. Exp. Sta., University of Minnesota.Google Scholar
  47. Ernst, W. H. O. 1983. Element nutrition of two contrasted dune annuals. J. Ecol.71:197–209.Google Scholar
  48. Fahey, T. J. 1983. Nutrient dynamics of aboveground detritus in lodgepole pine (Pinus contorta ssp.latifolia) ecosystems, southeastern Wyoming. Ecol. Monogr.53: 51–72.Google Scholar
  49. Fielding, J. M. 1947. The seeding and natural regeneration of Monterey pine in South Australia. Forestry and Timber Bureau, Austral., Bull. 29.Google Scholar
  50. -. 1960. Branching and flowering characteristics of Monterey pine. Forestry and Timber Bureau, Austral., Bull. 47.Google Scholar
  51. Fischer, E. A. 1984. Local mate competition and sex allocation in simultaneous hermaphrodites. Amer. Naturalist124: 590–596.Google Scholar
  52. Fisher, R. A. 1930. The genetical theory of natural selection. (Dover reprint, 1958.)Google Scholar
  53. Florence, R. G. &J. R. McWilliam. 1956. The influence of spacing on seed production. Z. Forstgenet. Forstpflanzenzücht.5: 97–102.Google Scholar
  54. Fowells,H. A. (ed.). 1965. Silvics of forest trees of the United States. USDA Agric. Handbk. 271.Google Scholar
  55. Freeman, D. C., K. T. Harper &E. L. Charnov. 1980. Sex change in plants: Old and new observations and new hypotheses. Oecologia47: 222–232.Google Scholar
  56. —,E. D. McArthur, K. T. Harper &A. C. Blauer. 1981. Influence of environment on the floral sex ratio of monoecious plants. Evolution35: 194–197.Google Scholar
  57. Gerloff, G. C. &P. H. Krombholz. 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol. & Oceanogr.11: 529–537.Google Scholar
  58. Goss, J. A. 1971. Effect of light intensity on pollen production inOrnithogalum caudatum. Amer. J. Bot.58: 476.Google Scholar
  59. Grava, J. 1976. Investigations relating to wild rice fertilization and paddy soils. Pages 42–57in Progress report of 1975 wild rice research. Minnesota Agric. Exp. Sta., University of Minnesota.Google Scholar
  60. Gregg, K. B. 1975. The effect of light intensity on sex expression in species ofCycnoches andCatasetum (Orchidaceae). Selbyana1: 101–113.Google Scholar
  61. Gross, K. L. &J. D. Soule. 1981. Differences in biomass allocation to reproductive and vegetative structures in male and female plants of a dioecious, perennial herb,Silene alba (Miller) Krause. Amer. J. Bot.68: 801–807.Google Scholar
  62. Hadders, G. 1972. Pollination in Scots pine seed orchard. Pages 111–139 (Eng. summ.)in Arsbok, Institutet för Skogsförbattring, Föreningen, Skogstradsforadling 1971. Uppsala 1972.Google Scholar
  63. Hainsworth, F. R., L. L. Wolf &T. Mercier. 1985. Pollen limitation in a monocarpic species,Ipomopsis aggregata. J. Ecol.73: 263–270.Google Scholar
  64. Hanway, J. J. 1962a. Corn growth and composition in relation to soil fertility. I. Growth of different parts and relation between leaf weight and grain yield. Agron. J.54: 145–148.Google Scholar
  65. —. 1962b. Corn growth and composition in relation to soil fertility. II. Uptake of N, P, and K and their distribution in different parts during the growing season. Agron. J54: 217–222.Google Scholar
  66. —. 1962c. Corn growth and composition in relation to soil fertility. III. Percentages of N, P, and K in different plant parts in relation to stage of growth. Agron. J.54: 222–229.Google Scholar
  67. Hare, R. C., E. B. Snyder & R. C. Schmidtling. 1979. Longleaf pine (Pinus palustris) flowering in response to nitrogen fertilization, branch girdling, growth substances, and cultivation. U.S. For. Serv. N. Cen. For. Exp. Sta. Gen. Tech. Report NC-50. Pages 11–16in Proc. 13th Lake States For. Tree Improv. Conf., 171 pp.Google Scholar
  68. Harper, J. L. 1977. Population biology of plants. Academic Press, New York.Google Scholar
  69. Hartley, C. W. S. 1970. Some environmental factors affecting flowering and fruiting in the oil palm. Pages 269–285in L. C. Luckwill & C. V. Cutting (eds.), Physiology of tree crops. Academic Press, New York.Google Scholar
  70. Herrera, C. M. 1982. Breeding systems and dispersal-related maternal reproductive effort of southern Spanish bird-dispersed plants. Evolution36: 1299–1314.Google Scholar
  71. Heslop-Harrison, J. 1957. The experimental modification of sex expression in flowering plants. Biol. Rev.32: 38–90.Google Scholar
  72. Hickman, J. C. &L. F. Pitelka. 1975. Dry weight indicates energy allocation in ecological strategy analysis of plants. Oecologia21: 117–121.Google Scholar
  73. Hill, R. J. 1977. Variability of soluble seed proteins in populations ofMentzelia L. (Loasaceae) from Wyoming and adjacent states. Bull. Torrey Bot. Club104: 93–101.Google Scholar
  74. Horovitz, A. 1978. Is the hermaphrodite flowering plant equisexual? Amer. J. Bot.65: 485–486.Google Scholar
  75. Howell, D. J. &B. S. Roth. 1981. Sexual reproduction in agaves: The benefits of bats; the costs of semelparous advertising. Ecology62: 1–7.Google Scholar
  76. Jones, D. B. 1931. Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. USDA Circ.183: 1–21.Google Scholar
  77. Kho, Y. O. &J. Baer. 1973. The effect of temperature on pollen production in carnation. Euphytica22: 467–470.Google Scholar
  78. Knight, A. H., W. M. Crooke &H. Shepherd. 1972. Chemical composition of pollen with particular reference to cation exchange capacity and uronic acid content. J. Sci. Food Agric.23: 263–274.PubMedGoogle Scholar
  79. Koessler, J. H. 1918. Studies on pollen and pollen diseases. I. The chemical composition of ragweed pollen. J. Biol. Chem.35: 415–424.Google Scholar
  80. Kozlowski, T. T. 1971. Growth and development of trees. Vol. II. Academic Press, New York.Google Scholar
  81. Krohne, D. T., I. Baker &H. G. Baker. 1980. The maintenance of the gynodioecious breeding system inPlantago lanceolata L. Amer. Midl. Naturalist103: 269–279.Google Scholar
  82. Lambers, H. 1979. Efficiency of root respiration in relation to growth rate, morphology and soil composition. Physiol. Pl.46: 194–202.Google Scholar
  83. Lernen, C. 1980. Allocation of reproductive effort to the male and female strategies in wind-pollinated plants. Oecologia45: 156–159.Google Scholar
  84. Levin, D. A. 1974. The oil content of seeds: An ecological perspective. Amer. Naturalist108: 193–206.Google Scholar
  85. —. 1981. Dispersal versus gene flow in plants. Ann. Missouri Bot. Gard.68: 233–253.Google Scholar
  86. — &H. W. Kerster. 1974. Gene flow in seed plants. Evol. Biol.7: 139–220.Google Scholar
  87. Lindsey, A. H. 1982. Floral phenology patterns and breeding systems inThaspium andZizia (Apiaceae). Syst. Bot.7: 1–12.Google Scholar
  88. Lloyd, D. G. 1972. Breeding systems inCotula L. (Compositae, Anthemideae). II. Monoecious populations. New Phytol.71: 1195–1202.Google Scholar
  89. —. 1979. Parental strategies of angiosperms. New Zealand J. Bot.17: 595–606.Google Scholar
  90. —. 1980. The distributions of gender in four angiopserm species illustrating two evolutionary pathways to dioecy. Evolution34: 123–134.Google Scholar
  91. —. 1981. The distribution of sex inMyrica gale. Pl. Syst. Evol.138: 29–45.Google Scholar
  92. —. 1982. Selection of combined and separate sexes in seed plants. Amer. Naturalist120: 571–585.Google Scholar
  93. —. 1983. Evolutionarily stable sex ratios and sex allocations. J. Theor. Biol.105: 525–539.Google Scholar
  94. —. 1984. Gender allocations in outcrossing cosexual plants. Pages 277–300in R. Dirzo & J. Sarukhan (eds.), Plant population biology. Sinauer Assoc, Sunderland, Massachusetts.Google Scholar
  95. — &K. S. Bawa. 1984. Modification of the gender of seed plants in varying conditions. Evol. Biol.17: 255–338.Google Scholar
  96. — &C. J. Webb. 1977. Secondary sex characters in plants. Bot. Rev.43: 177–218.Google Scholar
  97. — &J. M. A. Yates. 1982. Intrasexual selection and the segregation of pollen and stigmas in hermaphrodite plants, exemplified byWahlenbergia albomarginata (Campanulaceae). Evolution36: 903–913.Google Scholar
  98. Lovett Doust, J. 1980a. Experimental manipulation of patterns of resource allocation in the growth cycle and reproduction ofSmyrnium olusatrum L. J. Linn. Soc., Biol.13: 155–166.Google Scholar
  99. —. 1980b. Floral sex ratios in andromonoecious Umbelliferae. New Phytol.85: 265–273.Google Scholar
  100. — &P. B. Cavers. 1982a. Biomass allocation in hermaphroditic flowers. Canad. J. Bot.60: 2530–2534.Google Scholar
  101. —. 1982b. Resource allocation and gender in the green dragonArisaema dracontium (Araceae). Amer. Midl. Naturalist108: 144–148.Google Scholar
  102. — &G. W. Eaton. 1982. Demographic aspects of flower and fruit production in bean plants,Phaseolus vulgaris L. Amer. J. Bot.69: 1156–1164.Google Scholar
  103. — &J. L. Harper. 1980. The resource costs of gender and maternal support in an andromonoecious umbellifer,Smyrnium olusatrum L. New Phytol.85: 251–264.Google Scholar
  104. — &L. Lovett Doust. 1983. Parental strategy: Gender and maternity in higher plants. BioScience33: 180–186.Google Scholar
  105. MacArthur, R. H. 1965. Ecological consequences of natural selection. Pages 388–397in T. Waterman & H. Morowitz (eds.), Theoretical and mathematical biology. Blaisdell, Lexington, Massachusetts.Google Scholar
  106. Marlow, R. W. &K. Tollestrup. 1982. Mining and exploitation of natural mineral deposits by the desert tortoise,Gopherus agassizii. Anim. Behav.30: 475–478.Google Scholar
  107. Matthews, J. D. 1963. Factors affecting the production of seed by forest trees. Forestry Abstracts24: i-xiii.Google Scholar
  108. Mattingly, D. K. &P. A. McClure. 1982. Energetics of reproduction in large-littered cotton rats (Sigmodon hispidus). Ecology63: 183–195.Google Scholar
  109. Mayak, S. &A. H. Halevy. 1980. Rower senescence. Pages 131–156in K. V. Thimann (ed.), Senescence in plants. CRC Press, Boca Raton, Florida.Google Scholar
  110. Maynard Smith, J. 1978. The evolution of sex. Cambridge University Press, Cambridge.Google Scholar
  111. McDowell, L. R., J. H. Conrad, J. E. Thomas &L. E. Harris. 1974. Latin American tables of feed composition. University of Florida, Gainesville.Google Scholar
  112. McLellan, A. R. 1977. Minerals, carbohydrates and amino acids of pollens from some woody and herbaceous plants. Ann. Bot.41: 1225–1232.Google Scholar
  113. Meagher, T. R. &J. J. Antonovics. 1982. Life history variation in dioecious plant populations: A case study ofChamaelirium luteum. Pages 139–154in H. Dingle & J. P. Hegmann (eds.), Evolution and genetics of life histories. Springer-Verlag, New York.Google Scholar
  114. Mergen, F. &G. K. Voigt. 1960. Effects of fertilizer applications on two generations of slash pine. Proc. Soil Sci. Soc. Amer.24: 407–409.Google Scholar
  115. Meyer, V. G. 1966. Flower abnormalities. Bot. Rev.32: 165–218.Google Scholar
  116. Milton, K. &F. R. Dintzis. 1981. Nitrogen-to-protein conversion factors for tropical plant samples. Biotropica13: 177–181.Google Scholar
  117. Minina, E. G. 1971. Biological bases of flowering and fruit-bearing in oak. Eng. transi. from Russian by Indian National Scientific Documentation Centre, New Delhi. Originally published by Trudy Inst. Lesa17: 5–97 (1954).Google Scholar
  118. Mooney, H. A. 1972. The carbon balance of plants. Annual Rev. Ecol. Syst.3: 315–345.Google Scholar
  119. Morris, R. F. 1951. The effects of flowering on the foliage production of balsam fir. Forest. Chron.27: 40–57.Google Scholar
  120. Murneek, E. A. 1926. Effects of correlation between vegetative and reproductive functions in the tomato (Lycopersicon esculentum Mill.). PL Physiol.1: 3–56.Google Scholar
  121. -. 1927. Physiology of reproduction in horticultural plants. II. The physiological basis of intermittent sterility with special reference to the spider flower. Missouri Agric. Exp. Sta. Res. Bull. 106.Google Scholar
  122. Mutsaers, H. J. W. 1976. Growth and assimilate conversion of cotton bolls (Gossypium hirsutum L.). I. Growth of fruits and substrate demand. Ann. Bot.40: 301–315.Google Scholar
  123. Nakatsura, K. &D. L. Kramer. 1982. Is sperm cheap? Limited male fertility and female choice in the lemon tetra (Pisces, Characidae). Science216: 753–755.Google Scholar
  124. Nobel, P. S. 1977. Water relation of flowering ofAgave deserti. Bot. Gaz.138: 1–6.Google Scholar
  125. Onyekweln, S. S. &J. L. Harper. 1979. Sex ratio and niche differentiation in spinach (Spinacia oleracea L.). Nature282: 609–611.Google Scholar
  126. Paterniani, E. &A. C. Stort. 1974. Effective maize pollen dispersal in the field. Euphytica23: 129–134.Google Scholar
  127. Penning deVries, F. W. T. 1975a. The cost of maintenance processes in plant cells. Ann. Bot.39: 77–92.Google Scholar
  128. —. 1975b. Use of assimilates in higher plants. Chapter 20, pages 459–480in J. P. Cooper (ed.), Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, England.Google Scholar
  129. —,A. H. M. Brunsting &H. H. van Laar. 1974. Products, requirements and efficiency of biosynthesis: A quantitative approach. J. Theor. Biol.45: 339–377.Google Scholar
  130. Powell, G. R. 1977. Biennial strobilus production in balsam fir: Review of its morphogenesis and a discussion of its apparent physiological basis. Canad. J. Forest. Res.7: 547–555.Google Scholar
  131. Primack, R. B. 1978. Evolutionary aspects of wind pollination in the genusPlantago (Plantaginaceae). New Phytol.81: 449–458.Google Scholar
  132. — &J. Antonovics. 1982. Experimental ecological genetics inPlantago. VII. Reproductive effort in populations ofP. lanceolata L. Evolution36: 742–752.Google Scholar
  133. — &D. G. Lloyd. 1980. Andromonoecy in the New Zealand montane shrub manuka,Leptospermum scoparium (Myrtaceae). Amer. J. Bot.67: 361–368.Google Scholar
  134. Putwain, P. D. &J. L. Harper. 1972. Studies in the dynamics of plant populations. V. Mechanisms governing the sex ratio inRumex acetosa andR. acetosella. J. Ecol.60: 113–129.Google Scholar
  135. Rai, K. N. &S. K. Jain. 1982. Population biology ofAvena. IX. Gene flow and neighborhood size in relation to microgeographic variation inAvena barbota. Oecologia53: 399–405.Google Scholar
  136. Redmann, R. E. &E. G. Reekie. 1982. Carbon balance in grasses. Pages 195–231in J. R. Estes, R. J. Tyrl & J. N. Brunken (eds.), Grasses and grasslands: Systematics and ecology. University of Oklahoma Press, Norman, Oklahoma.Google Scholar
  137. Reekie, E. G. 1985. The meaning and measurement of reproductive effort in plants, with specific reference toAgropyron repens. Ph.D. Thesis. University of Illinois, Urbana-Champaign.Google Scholar
  138. Robbins, C. T. 1983. Wildlife feeding and nutrition. Academic Press, New York.Google Scholar
  139. Roeser, J., Jr. 1941. Some aspects of flower and cone production in ponderosa pine. J. Forest.39: 534–536.Google Scholar
  140. Ross, M. D. &H. R. Gregorius. 1983. Outcrossing and sex function in hermaphrodites: A resource-allocation model. Amer. Naturalist121: 204–222.Google Scholar
  141. Rubenstein, D. I. 1982. Risk, uncertainty and evolutionary strategies. Pages 91–111in King’s College Sociobiology Group (ed.), Current problems in sociobiology. Cambridge University Press, Cambridge.Google Scholar
  142. Sarvas, R. 1962. Investigations on the flowering and seed crop ofPinus silvestris. Commun. Inst. Forest. Fenniae53: 1–198.Google Scholar
  143. Schemske, D. W. 1978a. Sexual reproduction in an Illinois population ofSanguinaria canadensis L. Amer. Midi. Naturalist100: 261–268.Google Scholar
  144. —. 1978b. Evolution of reproductive characteristics inImpatiens (Balsaminaceae): The significance of cleistogamy and chasmogamy. Ecology59: 596–613.Google Scholar
  145. Schoen, D. J. 1982. Male reproductive effort and breeding system in an hermaphroditic plant. Oecologia53: 255–257.Google Scholar
  146. Schopmeyer, C. S. (ed.). 1974. Seeds of woody plants in the United States. USDA Forest Service, Ag. Handbook 450.Google Scholar
  147. Silen, R. G. 1967. Earlier forecasting of Douglas-fir cone crop using male buds. J. Forest.65: 888–892.Google Scholar
  148. Smith, C. A. &W. E. Evenson. 1978. Energy distribution in reproductive structures inAmaryllis. Amer. J. Bot.65: 714–716.Google Scholar
  149. Smith, C. C. 1981. The facultative adjustment of sex ratio in lodgepole pine. Amer. Naturalist118: 297–305.Google Scholar
  150. Snell, T. W. 1976. Effects of density on seed size and biochemical composition. Amer. Midl. Naturalist95: 499–507.Google Scholar
  151. Spector, W. S. 1956. Handbook of biological data. Saunders, New York.Google Scholar
  152. Stanley, R. G. &E. G. Kirby. 1973. Shedding of pollen and seeds. Pages 295–340in T. T. Kozlowski (ed.), Shedding of plant parts. Academic Press, New York.Google Scholar
  153. — &M. F. Linskens. 1974. Pollen: Biology, biochemistry, management. Springer-Verlag, New York.Google Scholar
  154. Steinbrenner, E. C., J. W. Duffield &R. K. Campbell. 1960. Increased cone production of young Douglas-fir following nitrogen and phosphorus fertilization. J. Forest.58: 105–110.Google Scholar
  155. Storey, W. B. 1953. Genetics of the papaya. J. Heredity44: 70–78.Google Scholar
  156. Sweet, G. B. &M. P. Bollman. 1971. Seasonal growth of the female strobilus inPinus radiata. New Zealand J. Forest. Sci.1: 15–21.Google Scholar
  157. Tepedino, V. J. &F. D. Parker. 1982. Changes in the relative importance of pollen and nectar to bee species foraging on sunflowers. Environ. Entomol.11: 246–250.Google Scholar
  158. Thompson, K. &A. J. A. Stewart. 1981. The measurement and meaning of reproductive effort in plants. Amer. Naturalist117: 205–211.Google Scholar
  159. Thomson, J. D. &S. C. H. Barrett. 1981. Temporal variation of gender inAralia hispida Vent. (Araliaceae). Evolution35: 1094–1107.Google Scholar
  160. Tkachuk, R. 1966. Note on the nitrogen-to-protein conversion factor for wheat flour. Cereal Chem.43: 223–225.Google Scholar
  161. —. 1969. Nitrogen-to-protein conversion factors for cereals and oilseed meals. Cereal Chem.46: 419–423.Google Scholar
  162. Todd, F. E. &O. Bretherick. 1942. The composition of pollens. J. Econ. Entomol.35: 312–317.Google Scholar
  163. Tyson, J. E. (ed.). 1977 Symposium on pregnancy. The medical clinics of North America. Vol.61(1).Google Scholar
  164. Vasek, F. C. 1966. The distribution and taxonomy of three western junipers. Brittonia18: 350–372.Google Scholar
  165. Verner, J. 1965. Selection for sex ratio. Amer. Naturalist99: 419–421.Google Scholar
  166. Walker, A. J. &L. C. Ho. 1977. Carbon translocation in the tomato: Carbon import and fruit growth. Ann. Bot.41: 813–823.Google Scholar
  167. Wallace, C. S. &P. W. Rundel. 1979. Sexual dimorphism and resource allocation in male and female shrubs ofSimmondsia chinensis. Oecologia44: 34–39.Google Scholar
  168. Watt, B. K. &A. L. Merrill. 1963. Composition of foods. Agric. Handbook 8, USDA Washington, D.C.Google Scholar
  169. Williams, G. C. 1966. Natural selection, the costs of reproduction, and a refinement of Lack’s principal. Amer. Naturalist100: 687–690.Google Scholar
  170. —. 1975. Sex and evolution. Princeton University Press, Princeton, New Jersey.Google Scholar
  171. Williams, I. H. &J. B. Free. 1979. Compensation of oil-seed rape (Brassica napus L.) plants after damage to their buds and pods. J. Agric. Sci.92: 53–59.Google Scholar
  172. Willson, M. F. 1983. Plant reproductive ecology. Wiley-Interscience, New York.Google Scholar
  173. —. 1984. Mating patterns in plants. Pages 261–276in R. Dirzo & J. Sarukhan (eds.), Plant population biology. Sinauer Assoc, Sunderland, Massachusetts.Google Scholar
  174. —. 1986. On the costs of reproduction in plants:Acer negundo. Amer. Midl. Naturalist115: 204–207.Google Scholar
  175. — &N. Burley. 1983. Mate choice in plants. Mechanisms, tactics, and consequences. Princeton University Press, Princeton, New Jersey.Google Scholar
  176. — &K. P. Ruppel. 1984. Resource allocation and floral sex ratios inZizania palustris L. Canad. J. Bot.62: 799–805.Google Scholar
  177. Wolgast, L. J. 1978a. A study of variability in the production of immature acorns in bear oak. Bull. New Jersey Acad. Sci.23: 21–25.Google Scholar
  178. —. 1978b. Effects of site quality and genetics on bear oak mast production. Amer. J. Bot.65: 487–489.Google Scholar
  179. Wright,J. W. 1953. Notes on flowering and fruiting of northeastern trees. USDA Forest Service, NE For. Exp. Sta., Sta. Paper 56, 74 pp.Google Scholar
  180. Wu Leung, W-T., F. Busson &C. Jardin. 1968. Food composition table for use in Africa. U.S. Dept. of Health, Education and Welfare, Public Health Service, Health Services and Mental Health Administration, National Center for Chronic Disease Control, Nutrition Program, Bethesda, Maryland.Google Scholar
  181. Youngberg, C. T. 1952. Effect of soil fertility on the physical and chemical properties of tree seed. J. Forest.50: 850–852.Google Scholar
  182. Younger, V. B. 1961. Low temperature induced male sterility in male-fertilePennisetum clandestinum. Science133: 577–578.Google Scholar
  183. Zimmerman, J. K. &M. J. Lechowicz. 1982. Responses to moisture stress in male and female plants ofRumex acetosella L. (Polygonaceae). Oecologia53: 305–309.Google Scholar

Copyright information

© The New York Botanical Garden 1986

Authors and Affiliations

  • Doris Armstrong Goldman
    • 1
  • Mary F. Willson
    • 1
  1. 1.Department of Ecology, Ethology, and Evolution Shelford VivariumUniversity of IllinoisChampaign

Personalised recommendations