Skip to main content
Log in

Cell wall organization in higher plants I. The primary wall

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Anderson, D. B. 1927. Über die Struktur der Collenchymzellwand auf Grund mikrochemischer Untersuchungen. Sitz. Ber. Akad. Wiss. Wien.136: 429.

    CAS  Google Scholar 

  2. —, andKerr, T. 1938. Growth and structure of cotton fiber. Ind. Eng. Chem.30: 48.

    Article  CAS  Google Scholar 

  3. Avery, G. S. Jr., andBurkholder, P. R. 1936. Polarized growth and cell studies on theAvena coleoptile, phytohormone test object. Bull. Torrey Bot. Cl.63: 1.

    Article  CAS  Google Scholar 

  4. Bailey, I. W. 1957. Need for a broadened outlook in cell wall terminologies. Phytomorphology7: 136.

    Google Scholar 

  5. Bairati, A., andLehmann, F. E. 1953. Structural and chemical properties of the plasmalemma inAmoeba proteus. Exp. Cell Res.5: 220.

    Article  PubMed  CAS  Google Scholar 

  6. Balashov, V., andPreston, R. D. 1955. Fine structure of cellulose and other microfibrillar substances. Nature176: 64.

    Article  CAS  Google Scholar 

  7. Balls, W. L. 1923. The determination of cellulose structure as seen in the cell wall of cotton hairs. Proc. Roy. Soc. B.95: 72.

    CAS  Google Scholar 

  8. Bannan, M. W. 1956. Some aspects of the elongation of fusiform cambial cells inThuja occidentalis L. Canad. J. Bot.34: 175.

    Google Scholar 

  9. Bannan, M. W., andWhalley, B. E. (1950). Elongation of fusiform cambial cells inChamaecyparis. Canad. J. Res.28: 33.

    Google Scholar 

  10. Baranetzki, J. 1886. Épaissessements des parois des eléménts parenchymateux. Ann. Sci. Nat. Bot. VII Sér.4: 135.

    Google Scholar 

  11. Bayley, S. T., Colvin, J. R., Cooper, F. P., andMartin-Smith, C. A. 1957. The structure of the primary epidermal cell wall ofAvena coleoptiles. J. Biophys. Biochem. Cytol.3: 171.

    PubMed  CAS  Google Scholar 

  12. —, andSetterfield, G. 1957. The influence of mannitol and auxin on growth of cell walls inAvena coleoptiles. Ann. Bot.21: 633.

    Google Scholar 

  13. Becker, W. A. 1935. Über einige Streitfragen der Zellteilung. Zeits. Zellf. u. Mikr. Anatomie23: 253.

    Article  Google Scholar 

  14. —. 1938. Recent investigationsin vivo on the division of plant cells. Bot. Rev.4: 446.

    CAS  Google Scholar 

  15. Beer, M. andSetterfield, G. 1958. Fine structure in thickened primary walls of collenchyma cells of celery petioles. Amer. J. Bot.45: 571.

    Article  Google Scholar 

  16. Belford, D. S., Myers, A., andPreston, R. D. 1958. Spatial and temporal variation of microfibrillar organization in plant cell walls. Nature181: 1251.

    Article  Google Scholar 

  17. — andPreston, R. D. 1961. Structure and growth of root hairs. J. Exper. Bot.12: 157.

    Article  CAS  Google Scholar 

  18. Berkley, E. E., andKerr, T. 1946. Structure and plasticity of undried cotton fibres. Ind. Eng. Chem.38: 304.

    Article  CAS  Google Scholar 

  19. Bishop, C. T., Bayley, S. T., andSetterfield, G. 1958. Chemical constitution of the primary cell walls ofAvena coleoptiles. Plant Physiol.33: 283.

    PubMed  CAS  Google Scholar 

  20. Blank, F. andFrey-Wyssling, A. 1941. Protoplasmawachstum und Stickstoffwanderung in der Koleoptile vonZea mays. Ber. Schweiz. Bot. Ges.51: 116.

    CAS  Google Scholar 

  21. Böhmer, H. 1958. Untersuchungen über das Wachstum and den Feinbau der Zellwände in derAvena Koleoptile. Planta50: 461.

    Article  Google Scholar 

  22. Bolam, F. 1958. Fundamentals of paper making fibres; transactions of the symposium held at Cambridge, September, 1957, ed. by F. Bolam. British Paper and Board Manufacturers’ Assoc.

  23. Bonner, J. 1935. Zum Mechanismus der Zellstreckung auf Grund der Micellarlehre. Jahrb. Wiss. Bot.82: 377.

    Google Scholar 

  24. —. 1936. Chemistry and physiology of the pectins. Bot. Rev.2: 475.

    CAS  Google Scholar 

  25. —. 1960. The mechanical analysis of auxin-induced growth. Zeit. Schweiz. Forstv.30: 141.

    Google Scholar 

  26. Bosshard, H. H. 1951. Variabilität der Elemente des Eschenholzes in Funktion von der Kambiumtätigkeit. Schweiz. Z. Forstw.102: 648.

    Google Scholar 

  27. —. 1952. Elektronenmikroskopische Untersuchungen im Holz vonFraxinus excelsior L. Ber. Schweiz. Bot. Ges.62: 482.

    Google Scholar 

  28. Brown, R. andBroadbent, D. 1950. The development of cells in the growing zones of the root. J. Exp. Bot.1: 249.

    Article  Google Scholar 

  29. Bunning, E. 1952. Morphogenesis in plants.In “Survey of Biological Progress,” George F. Avery, Jr., Ed. Academic Press, N. Y.

    Google Scholar 

  30. Burström, H. 1942. Die osmotischen Verhältnisse wahrend des Streckungswachstum der Wurzel. Ann. Agr. Coll. Sweden10: 1.

    Google Scholar 

  31. Buvat, R. 1958. Recherches sur les infrastructures du cytoplasme, dans les cellules du méristème apical, des ébauches foliaires et des feuilles développées d’Elodea canadensis. Ann. Sci. Nat. Bot. II Sér.19: 121.

    Google Scholar 

  32. Castle, E. S. 1937. Membrane tension and orientation of structure in the plant cell wall. J. Cell Comp. Physiol.10: 113.

    Article  Google Scholar 

  33. —. 1955. The mode of growth of epidermal cells of theAvena coleoptile. Proc. Nat. Acad. Sci. Wash.41: 197.

    Article  CAS  Google Scholar 

  34. Chattaway, M. M. 1955. Anatomy of bark. III. Enlarged fibres in the bloodwoods. Aust. J. Bot.3: 28.

    Article  Google Scholar 

  35. Cheadle, V. I. 1937. Secondary growth by means of a thickening ring in certain monocotyledons. Bot. Gaz.98: 535.

    Article  Google Scholar 

  36. Christiansen, G. S., andThimann, K. V. 1950. The metabolism of stem tissue during growth and its inhibition. III. Nitrogen metabolism. Arch. Biochem.26: 230.

    PubMed  CAS  Google Scholar 

  37. Colvin, J. R., Bayley, S. T., andBeer, M. 1957. The growth of cellulose microfibrils fromAcetobacler xylinum. Biochim. et Biophys. Acta23: 652.

    Article  CAS  Google Scholar 

  38. —, andBeer, M. 1960. The formation of cellulose microfibrils in suspensions ofAcetobacter xylinum. Canad. J. Microbiol.6: 631.

    CAS  Google Scholar 

  39. —,Martin, S. M., andDearing, G. G. 1961. Extracellulose glucose-1-phosphate inAcetobacter xylinum and its role in cellulose synthesis. Canad. J. Biochem. Physiol.39: 493.

    PubMed  CAS  Google Scholar 

  40. Committee of Nomenclature. 1957. International glossary of terms used in wood anatomy. Internat. Assn. Wood Anatomists. Tropical Woods107: 1.

    Google Scholar 

  41. Cormack, R. G. H. 1949. Development of root hairs in angiosperms. Bot. Rev.15: 583.

    Google Scholar 

  42. Diehl, G. M., Gorter, C. J., Iterson, G.van, andKleinhoonte, A. 1939. The influence of growth hormone on hypocotyls ofHelianthus and the structure of their cell walls. Rec. Trav. Bot. Neerl.36: 709.

    CAS  Google Scholar 

  43. Eckdahl, I. 1953. Studies on the growth and the osmotic conditions of root hairs. Symb. Bot. Upsaliensis11(6): 17–83.

    Google Scholar 

  44. —. 1957. The growth of root hairs and roots in nutrient media and bidistilled water and the effects of oxalate. Kung. Lantbrukshogskolans Ann.23: 497.

    Google Scholar 

  45. Elliot, E. 1951. Formation of new cell walls in cell division. Nature168: 1089.

    Article  PubMed  CAS  Google Scholar 

  46. Esau, K. 1950. Development and structure of the phloem tissue. Bot. Rev.16: 67.

    Google Scholar 

  47. —. 1953. Plant Anatomy. Chapman & Hall, London.

    Google Scholar 

  48. Flint, E. A. 1950. The structure and development of the cotton fibre. Biol. Rev. Counl. Phil. Soc.25: 414.

    Article  CAS  Google Scholar 

  49. Frei, E. andPreston, R. D. 1961. Cell wall organization and wall growth in filamentous green algaeCladophora chaetomorpha. I. The basic structure and its formation. Proc. Roy. Soc. (Lond.) B.154: 70.

    Google Scholar 

  50. Frey, A. 1925. Submikroskopische Struktur der Zellmembranen polarisations optische Studie zum Nachweis der Richtigkeit der Mizellartheorie. Jahrb. Wiss. Bot.65: 195.

    Google Scholar 

  51. Frey-Wyssling, A. 1930. Mikroskopische Technik der Micellaruntersuchung von Zellmembranen. Z. Wiss. Mikr.47: 1.

    Google Scholar 

  52. —. 1936. Über der optischem Nachweis der Turgorstrechung. Ber. Dtsch. Bot. Ges.54: 445.

    Google Scholar 

  53. —. 1936. Der Aufbau der pflanzlichen Zellwände. Protoplasma25: 261.

    Article  CAS  Google Scholar 

  54. —. 1937. Über die röntgenometrische Vermessung der Submicroskopischen Raume und Gerüstaubstanzen. Protoplasma27: 372.

    Article  CAS  Google Scholar 

  55. —. 1942. Über Zellwände mit Rohrentextur. Jahrb. Wiss. Bot.90: 705.

    Google Scholar 

  56. — 1948. Submicroscopic morphology of protoplasm and its derivatives; tr. by J. J.Hermans and M. Hollander. Elsevier Publishing Co. Amsterdam, New York.

    Google Scholar 

  57. — 1948. Über die Dehnungsarbeit beim Strickungswachstum pflanzlicher Zellen. Viertelahrsschr. Naturforsch. Ges. Zürich93: 24.

    Google Scholar 

  58. —. 1950. Physiology of cell wall growth. Ann. Rev. Plant Phiysiol. Annual Reviews, Inc., California.

    Google Scholar 

  59. -. 1951. Electronen Mikroskopie. Electronmikrosckopie. Neiyahrsblatt der naturf. Ges., Zürich. Vjschr. Ges. Zürich95.

  60. —. 1952. Deformation and flow in biological systems. Elsevier, Amsterdam.

    Google Scholar 

  61. -. 1953. Growth of plant cell walls. Soc. for Exper. Biol. Symposium No. 6, Cambridge.

  62. —. 1954. The fine structure of cellulose microfibrils. Science119: 80.

    Article  PubMed  CAS  Google Scholar 

  63. —. 1955. On the crystal structure of cellulose. I. Biochim. et Biophys. Acta18: 166.

    CAS  Google Scholar 

  64. —. 1957. Macromolecules in cell structure. Harvard University Press. Cambridge, Massachusetts.

    Google Scholar 

  65. —. 1959. Die Pflanzliche Zellwand. Springer-Verlag, Berlin.

    Google Scholar 

  66. —,Muhlethaler, K., andWyckoff, R. W. G. 1948. Mikrofibrillenbau der Pflanzlichen Zellwande Experientia4: 475.

    Article  Google Scholar 

  67. ——. 1949. Über den Feinbau der Zellwände von Wurzelhaaren. Mikroskopie4: 257.

    Google Scholar 

  68. —. 1950. Bau und Funktion der Wurzelhaare. Schweiz. Landw. Monatsch.6: 212.

    Google Scholar 

  69. —. 1950. Vjschr. Naturforsch. Ges. Zürich95: 45.

    Google Scholar 

  70. —, andStecher, H. 1951. Das Flächenwachstum der pflanzlichen Zellwände. Experientia7: 420.

    Article  PubMed  CAS  Google Scholar 

  71. —, andMüller, H. R. 1957. Submicroscopic differentiation of plasmodesmata and sieve plates inCucurbita. J. Ultrastructure Res.1: 38.

    Article  Google Scholar 

  72. Ginzburg, B. Z. 1958. Evidence for a protein component in the middle lamella of plant tissue. Nature181: 398.

    Article  CAS  Google Scholar 

  73. —. 1961. Evidence for protein cell structure cross-linked by metal cations in the intercellular cement of plant tissue. J. Exper. Bot.12: 85.

    Article  Google Scholar 

  74. Gorham, P. R. andColvin, J. R. 1957. Cellulose deposition in elongating epidermal cells ofAvena coleoptiles. Exp. Cell Res.13: 187.

    Article  PubMed  CAS  Google Scholar 

  75. Gorter, C. J. 1949. Action of 2.3.5.-tri-iodobenzoic acid on growth of root hairs. Nature164: 800.

    Article  PubMed  CAS  Google Scholar 

  76. Gundermann, J., Wergin, W. andHess, K. 1937. Nature and occurrence of the primary substance in the cell walls of plant tissues. Ber. Dtsch. Chem. Ges.70B: 517.

    CAS  Google Scholar 

  77. Hengstenberg, J., andMark, H. 1928. Über Form und Gross der Micelle von Cellulose und Kartsduk. Z. Krist69: 271.

    CAS  Google Scholar 

  78. Hepton, C. E. L., Preston, R. D., andRipley, G. W. 1956. Electron microscopic observations on the secondary wall of the protoxylem ofCucurbita. Nature177: 660.

    Article  Google Scholar 

  79. Hess, K., Trogus, C. andWergin, W. 1936. Untersuchungen über die Bildung der Pflanzlichen Zellwande. Planta25: 419.

    Article  CAS  Google Scholar 

  80. Hessler, L. E., Merola, G. V., andBerkley, E. E. 1948. Degree of polymerization of cellulose in cotton fibres. Text. Res. J.18: 628.

    Google Scholar 

  81. Heyn, A. N. J. 1931. Der Mechanismus der Zellstreckung. Rec. Trav. Bot. Neerl.28: 113.

    Google Scholar 

  82. —. 1933. Further investigations on the mechanism of cell elongation and the properties of the cell wall in connection with elongation. I. The load extension relationship. Protoplasma19: 78.

    Article  Google Scholar 

  83. —. 1933. X-ray investigations of the cellulose in the wall of young epidermis cells. Proc. Akad. Wett. Amsterdam36: 560.

    CAS  Google Scholar 

  84. —. 1934. Weitere Untersuchungen über den Mechanismus der Zellstrechung und die Eigenschaften der Zellmembran. II. Das Röntgendiagramm von jungen wachsenden Zellwanden und parenchymatischen Geweben. Protoplasma21: 299.

    Article  Google Scholar 

  85. —. 1940. Physiology of cell elongation. Bot. Rev.6: 515.

    CAS  Google Scholar 

  86. Hock, C. W., Ramasy, R. C., andHarris, M. 1941. Microscopic structure of the cotton fibre. J. Res. Nat. Bur. Standards26: 94.

    Google Scholar 

  87. Hodge, A. J., andWardrop, A. B. 1950. Electron microscopic investigation of the cell wall organization of conifer tracheids and conifer cambium. Australian J. Sci. Res. B.3: 265.

    Google Scholar 

  88. —,McLean, J. D., andMercer, F. V. 1956. A possible mechanism for the morphogenesis of lamellar systems in plant cells. J. Biophys. Biochem. Cytol.2: 597.

    PubMed  CAS  Google Scholar 

  89. Houwink, A. C., andRoelofsen, P. A. 1954. Fibrillar architecture of growing plant cell walls. Acta Bot. Neerl.3: 385.

    Google Scholar 

  90. Iterson, G. van 1935. Submicroscopical structure of the cell wall. Proc. 6th Internat. Bot. Congr. Amsterdam2: 291.

    Google Scholar 

  91. —. 1936. Structure of the wall ofValonia. Nature138: 364.

    Article  Google Scholar 

  92. —. 1937. A few observations on the hairs of the stamens ofTradescantia virginica. Protoplasma27: 190.

    Article  Google Scholar 

  93. Iwanami, Y. 1959. Physiological studies of pollen. J. Yokohama Municipal Univ.116 (C-34 Biol.-13).

  94. Jansen, E. F., Jang, R., Albersheim, P., andBonner, J. 1960. Pectic metabolism of growing cell walls. Plant Physiol.35: 87.

    Article  PubMed  CAS  Google Scholar 

  95. Jensen, W. A. 1955. A morphological and biochemical analysis of the early phases of cellular growth in the root tip ofVicia faba. Exper. Cell Res.8: 506.

    Article  CAS  Google Scholar 

  96. Jost, L. 1907. Lectures in plant physiology, Clarendon Press, Oxford.

    Google Scholar 

  97. Kerr, T. 1946. Outer wall of the cotton fibre and its influence on fibre properties. Text. Res. J.16: 249.

    CAS  Google Scholar 

  98. -. 1951. Growth and structure of the primary wall.In “Plant Growth Substances.” F. Skoog, ed. Richmond, Va.

  99. —, andBailey, I. W. 1934. Cambium and its derivative tissues. X. Structure, Optical properties and chemical composition of the socalled middle lamella. J. Arnold Arb.15: 327.

    Google Scholar 

  100. Kreger, D. R. 1957. New crystallite orientations of cellulose. I. InSpirogyra cell walls. Nature180: 914.

    Article  CAS  Google Scholar 

  101. Küster, E. 1939. Über die Wirkung des Zentrifugierens aus die Viskosität des lebenden Protoplasmas. Kolloid Zeit.89: 237.

    Article  Google Scholar 

  102. Lamport, D. T. A., andNorthcote, D. H. 1960. Hydroxyproline in primary cell walls of higher plants. Nature188: 665.

    Article  CAS  Google Scholar 

  103. Lundegardh, H. 1946. The growth of root hairs. Arkiv för Botanik33A(5): 1.

    Google Scholar 

  104. Mass Geesteranus, R. A. 1941. On the development of the stellate form of the pith cells ofJuncus species. Proc. Kon. Akad. v. Wetenschaffen Amsterdam44: 489.

    Google Scholar 

  105. Majumdar, G. P., andPreston, R. D. 1941. The fine structure of collenchyma cells inHeracleum sphondylium L. Proc. Roy. Soc. B.130: 201.

    Google Scholar 

  106. Meeuse, A. D. J. 1938. Development and growth of the sclerenchyma fibres and some remarks on the development of the tracheids in some monocotyledons. Rec. Trav. Bot. Neerl.35: 288.

    CAS  Google Scholar 

  107. —. 1941. Plasmodesmata. Bot. Rev.7: 249.

    Google Scholar 

  108. —. 1941. Study of intercellular relationships among cells with special reference to “sliding growth” and to cell shape. Rec. Trav. Bot. Neerl.38: 20.

    Google Scholar 

  109. Meier, H. 1958. On the structure of cell walls and cell wall mannans from ivory nuts and from dates. Biochem. Biophys. Acta28: 229.

    Article  PubMed  CAS  Google Scholar 

  110. Mercer, F. V. 1956. Cytology and the electron microscope. (Extract from presidential address to Linnean Society of New South Wales). Proc. Linnean Soc. N.S.W.81: 4.

    Google Scholar 

  111. Mericle, L. W., Whaley, W. G., andHeimsch, C. 1953. Cell wall structure in apical meristems. Bot. Gaz.114: 382.

    Article  CAS  Google Scholar 

  112. Monne, L. 1940. Schichtung und Feinstruktur des Grundzytoplasmas. Z. Zellforsch.31: 91.

    Article  Google Scholar 

  113. Mosebach, G. 1943. Die Polarisierung derEquisetum Spore durch Sicht. Planta33: 340.

    Article  Google Scholar 

  114. Muhlethaler, K. 1949. The structure of bacterial cellulose. Biochem. Biophys. Acta3: 527.

    Article  CAS  Google Scholar 

  115. —. 1950. Electron microscopy of developing plant cell walls. Biochim. Biophys. Acta5: 1.

    Article  PubMed  CAS  Google Scholar 

  116. —. 1950. Electronenmikroskopische Untersuchungen über den Feinbau und das Wachstum der Zellmembranen in Maisund Haferkopeoptilen. Ber. Schweiz. Bot. Ges.59: 614.

    Google Scholar 

  117. —. 1960. Die Feinstruktur der Zellulosemikro-fibrillen. Zeit. des Schweiz. Forst.30: 55.

    Google Scholar 

  118. —, andLinskens, H. F. 1956. Electronen-mikroskopische Aufnahmen von Pollenschlauchen. Experientia12: 253.

    Article  Google Scholar 

  119. Mukherjee, S. M., andWoods, H. S. 1953. X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim. Biophys. Acta10: 499.

    Article  PubMed  CAS  Google Scholar 

  120. Myers, A., Preston, R. D., andRipley, G. W. 1956. Fine structure in the red algae. I. X-ray and electron-microscope investigations ofGriffithsia flocculosa. Proc. Roy. Soc. (Lond.) B144: 450.

    Google Scholar 

  121. Nakamura, Y., andHess, K. 1938. Zur Kenntnis der chemischen Zusammensetzung von Mais-Koleoptilen. Ber. Dtsch. Chem. Ges.71: 145.

    Article  Google Scholar 

  122. Newcombe, E. H., andSiegesmund, K. S. 1957. Alterations in the fine structure of the primary wall and cytoplasmic surface induced by indoleacetic acid in cultured parenchyma cells. Plant Physiol.32 (suppl.): xix.

    Google Scholar 

  123. Northcote, D. H. 1958. The cell walls of higher plants: their composition, structure and growth. Biol. Rev. Camb. Phil. Soc.33: 53.

    Article  Google Scholar 

  124. O’Kelly, J. C. 1953. The use of C14 in locating growth regions in the cell walls of elongating cotton fibers. Plant Physiol.28: 281.

    Google Scholar 

  125. Ordin, L., Cleland, R. andBonner, J. 1955. Influence of auxin on cell wall metabolism. Proc. Nat. Acad. Sci.41: 1023.

    Article  PubMed  CAS  Google Scholar 

  126. Overbeck, F. 1934. Untersuchungen am Sporogonstiel vonPellia epiphylla. Z. Bot.27 129.

    Google Scholar 

  127. Porter, K., andMachado, R. D. 1960. Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip. J. Biophys. Biochem. Cytol.7: 167.

    CAS  Google Scholar 

  128. Preston, R. D. 1938. The structure of the walls of parenchyma inAvena coleoptiles. Proc. Roy. Soc. B.125: 372.

    CAS  Google Scholar 

  129. -. 1951. Fibrillar units in the structure of native cellulose. Faraday Soc. Discussion No. 11, 165.

  130. —. 1952. Molecular architecture in plant cell walls. Chapman and Hall, London.

    Google Scholar 

  131. -. 1961. Cellulose complexes in plant cell walls.In “Macromolecular complexes.” M. V. Edds, Jr., Ed. Ronald Press Co.

  132. —, andClark, C. S. 1944. Wall deposition inAvena coleoptiles. Proc. Leeds Phil. Lit. Soc.4: 201.

    Google Scholar 

  133. —, andDuckworth, R. B. 1946. The fine structure of the walls of collenchyma cells inPelasites vulgaris L. Proc. Leeds Phil. Lit. Soc.4: 343.

    Google Scholar 

  134. —,Nicolai, E., Reid, R., andMillard, A. 1948. An electron microscope study of cellulose in the wall ofValonia ventricosa. Nature162: 665.

    Article  CAS  PubMed  Google Scholar 

  135. —,Wardrop, A. B., andNicolai, E. 1948. Fine structure of cell walls in fresh plant tissues. Nature162: 957.

    Article  PubMed  CAS  Google Scholar 

  136. —. 1949. Submicroscopic organization of the walls of conifer cambium. Biochim. Biophys. Acta3: 549.

    Article  Google Scholar 

  137. —, andKuyper, B. 1951. Electron microscopic investigations of the walls of green algae. I. A preliminary account of wall lamellation and deposition inValonia ventricosa. J. Exp. Bot.2: 247.

    Article  Google Scholar 

  138. —, andRipley, G. W. 1954. An electron microscopic investigation of the walls of conifer cambium. J. Exp. Bot.5: 410.

    Article  Google Scholar 

  139. Priestley, J. H. 1930. Studies in the physiology of cambial activity. I. Contrasted types of cambial activity. New Phytol.29: 56.

    Article  Google Scholar 

  140. —. 1930. Studies in the physiology of cambial activity. II. The concept of sliding growth. New Phytol.29: 96.

    Article  Google Scholar 

  141. —, andScott, L. I. 1938. The formation of a new cell wall at cell division. Proc. Leeds Phil. Soc.3: 532.

    Google Scholar 

  142. Ranby, B. G. 1952. Physical characteristics of alpha-, beta- and gamma cellulose. Svensk. Papperstidn.55: 115.

    CAS  Google Scholar 

  143. Roelofsen, P. A. 1951. Orientation of the cellulose fibrils in the cell wall of growing cotton hairs and its bearing on the physiology of the cell wall growth. Biochim. Biophys. Acta7: 43.

    Article  PubMed  CAS  Google Scholar 

  144. —. 1954. Some remarks concerning flatness of cellulose micelles. Biochim. Biophys. Acta13: 155.

    Article  PubMed  CAS  Google Scholar 

  145. —. 1958. Cell wall structure as related to surface growth; some supplementary remarks on multinet growth. Acta Bot. Neerl.7: 77.

    Google Scholar 

  146. —. 1959. The plant cell wall. Gebrüder Bornträger, Berlin.

    Google Scholar 

  147. —, andHouwink, A. L. 1951. Cell wall structure of staminal hairs ofTradescantia virginica and its relation with growth. Protoplasma40: 1.

    Article  Google Scholar 

  148. —, andKreger, D. R. 1951. The submicroscopic structure of pectin in collenchyma cell walls. J. Exper. Bot.2: 332.

    Article  CAS  Google Scholar 

  149. —, andHouwink, A. L. 1953. Architecture and growth of the primary cell wall in some plant hairs and in thePhycomyces sporangiophores. Acta Bot. Neerl.2: 218.

    Google Scholar 

  150. Ruge, U. 1937. Untersuchungen über den Einfluss der Hetero-Auxins auf der Streckungswachstum des Hypocotyls vonHelianthus annus. Z. Bot.31: 1.

    CAS  Google Scholar 

  151. Sachs, J. 1878. Ueber die Anordnung der Zellen in jungstem Pflanzenteilen. Arb. Bot. Inst. Wurz.2: 46.

    Google Scholar 

  152. —. 1879. Ueber Zellenanordnung und Wachstum. Arb. Bot. Inst. Wurz.2: 185.

    Google Scholar 

  153. —. 1882. Text-book of botany. Ed. S. H. Vines. 2nd Ed. Clarendon Press, Oxford.

    Google Scholar 

  154. Schaede, R. 1940. Über Doppelbrechung und Feinbau der Darmepithelzellen der Kaulquappe. Z. Zellforsch.33: 1.

    Google Scholar 

  155. Schmidt, W. J. 1943. Über Doppelbrechung und Feinbau der Darmepithelzellen der Kaulquappe. Z. Zell Forsch.33: 1.

    Google Scholar 

  156. Schoch-Bodmer, H. 1936. Zur Kenntnis der Filamentstreckung bei der Graminien. Planta25: 660.

    Article  Google Scholar 

  157. —, andHuber, P. 1951. Das Spitzenwachstum der Bastfasern bieLinum usitatissimum undLinum perenne. Ber. Schweiz. Bot. Ges.61: 377.

    Google Scholar 

  158. ——. 1952. Local apical growth and forking in secondary fibres. Proc. Leeds Phil. Soc.6: 25.

    Google Scholar 

  159. Scott, F. M., Hamner, K. C., Baker, E., andBowler, E. 1956. Electron microscope studies of cell wall growth in the onion root. Amer. J. Bot.43: 313.

    Article  Google Scholar 

  160. Setterfield, G. 1957. Fine structure of guard cell walls inAvena coleoptiles. Can. J. Bot.35: 791.

    Article  Google Scholar 

  161. —. 1961. Structure and composition of plant cell organelles in relation to growth and development. Can. J. Bot.39: 469.

    Google Scholar 

  162. —, andBayley, S. T. 1957. Studies on the mechanism of deposition and extension of primary cell walls. Canad. J. Bot.35: 435.

    Article  Google Scholar 

  163. —. 1958. Deposition of wall material in thickened primary walls of elongating plant cells. Exp. Cell Res.14: 622.

    Article  PubMed  CAS  Google Scholar 

  164. —. 1958. Arrangement of cellulose microfibrils in walls of elongating parenchyma cells. J. Biophys. Biochem. Cyt.4: 377.

    CAS  Google Scholar 

  165. Sinnott, E. W. andBloch, R. 1939. Changes in intercellular relationships during growth and differentiation of leaning plant cells. Amer. J. Bot.26: 625.

    Article  Google Scholar 

  166. Sitte, P. 1958. Die Ultrastruktur von Würzelmeristemzellen der Erbse (Pisum sativum). Protoplasma49: 447.

    Article  Google Scholar 

  167. Soding, H. 1934. Über die Wachstumsmechanik der Haferkoleoptile, Jahrb. Wiss. Bot.79: 231.

    Google Scholar 

  168. Spurr, A. R. 1957. The effect of boron on cell wall structure in celery Amer. J. Bot.44: 637.

    Article  CAS  Google Scholar 

  169. Stecher, H. 1952. Über das Flachenwachstum der pflanzlichen Zellwände. Mikroskopie7: 30.

    PubMed  CAS  Google Scholar 

  170. Sterling, C., andSpit, B. J. 1957. Microfibrillar arrangement in de veloping fibers ofAsparagus. Amer. J. Bot.44: 851.

    Article  Google Scholar 

  171. Steward, F. C., andMuhlethaler, K. 1953. The structure and development of the cell wall in the Valoniaceae as revealed by the electron microscope. Ann. Bot. Land. (N.S.)17: 295.

    CAS  Google Scholar 

  172. Thimann, K. V., andBonner, J. 1933. The mechanism of the action of the growth substance of plants. Proc. Roy. Soc. (Lond.) B113: 126.

    CAS  Google Scholar 

  173. Treitel, O. 1946. Elasticity, plasticity and fine structure of plant cell walls. J. Colloid. Sci.1: 327.

    Article  CAS  Google Scholar 

  174. Trieber, E. 1957. Die Chemie der Pflanzenzellwände. Springer-Verlag, Berlin.

    Google Scholar 

  175. Tripp, V. W., Moore, A. T., Rollins, M. L. 1954. Microscopical study of the effects of some typical chemical environments on the primary wall of the cotton fiber. Text. Res. J.24: 956.

    CAS  Google Scholar 

  176. Tupper-Carey, R. M., andPriestley, J. H. 1923. The composition of the cell wall at the apical meristem of stem and root. Proc. Roy. Soc. (Lond.) B95: 109.

    CAS  Google Scholar 

  177. —. 1924. Cell wall in the radicle ofVicia faba and the shape of the meristematic cells. New Phytol.23: 156.

    Article  Google Scholar 

  178. Vogel, A. 1953. Zur Feinstruktur von Ramie. Makromel. Chemi.11: 111.

    Article  CAS  Google Scholar 

  179. Wain, R. L., andWichtman, F. 1956. Chemistry and mode of action of plant growth substances; proceedings of a symposium held at Wye College (University of London), July, 1955. Butterworths Scientific Publication, London.

    Google Scholar 

  180. Wardrop, A. B. 1949. Micellar organization in primary cell walls. Nature164: 366.

    Article  PubMed  CAS  Google Scholar 

  181. —. 1952. Formation of new cell walls in cell division. Nature170: 329.

    Article  PubMed  CAS  Google Scholar 

  182. —. 1954. Fine structure of the conifer tracheids. Holzforsch.8: 12.

    CAS  Google Scholar 

  183. —. 1954. Mechanism of surface growth involved in the differentiation of fibres and tracheids. Australian J. Bot.2: 165.

    Article  Google Scholar 

  184. —. 1955. Mechanism of surface growth in the parenchyma ofAvena coleoptiles. Australian J. Bot.3: 137.

    Article  Google Scholar 

  185. —. 1956. Mechanism of surface growth in the parenchyma ofAvena coleoptiles. Biochim. Biophys. Acta.21: 200.

    Article  CAS  Google Scholar 

  186. —. 1956. Nature of surface growth in plant cells. Australian J. Bot.4: 193.

    Article  Google Scholar 

  187. —. 1957. Phase of lignification in the differentiation of wood fibres. TAPPI40: 225.

    CAS  Google Scholar 

  188. —. 1958. Organization of the primary wall in differentiating conifer tracheids. Australian J. Bot.6: 299.

    Article  Google Scholar 

  189. —. 1959. Cell wall formation in root hairs. Nature184: 996.

    Article  CAS  Google Scholar 

  190. —, andDadswell, H. E. 1952. Nature of reaction wood. III. Cell division and cell wall formation in conifer stems. Australian J. Sci. Res. B.5: 385.

    Google Scholar 

  191. ——. 1953. Development of the conifer tracheid. Holzforsch.7: 33.

    Article  CAS  Google Scholar 

  192. —, andCronshaw, J. 1958. Changes in the cell wall organization resulting from surface growth in parenchyma of oat coleoptiles. Australian J. Bot.6: 89.

    Article  Google Scholar 

  193. Wergin, W. 1937. Zur Kenntnis der optischen Anisotropie in jungen pflanzlichen Zell wanden. Naturwiss.25: 830.

    Article  CAS  Google Scholar 

  194. Whaley, W. G., Mericle, L. W., andHeimsch, C. 1952. Wall of the meristematic cell. Amer. J. Bot.39: 20.

    Article  CAS  Google Scholar 

  195. —— andKephart, J. E. 1959. Endoplasmic reticulum and the Golgi structures in maize root cells. J. Biophys. Biochem. Cytol.5: 501.

    Article  PubMed  CAS  Google Scholar 

  196. —— andLeech, J. H. 1960. The ultrastructure of the meristematic cell. Amer. J. Bot.47: 401.

    Article  Google Scholar 

  197. Whistler, R. L., andSmart, C. L. 1953. Polysaccharide Chemistry. Academic Press, N. Y.

    Google Scholar 

  198. Williams, R. C., andWyckoff, R. W. G. 1946. Electron shadow micrography. J. Appl. Phys.17: 23.

    Article  CAS  Google Scholar 

  199. Wilson, K. 1957. Extension growth in primary cell walls with special reference toElodea canadensis. Ann. Bot.21: 1.

    Google Scholar 

  200. —. 1958. Extension growth in primary cell walls with special reference toHippuris vulgaris. Ann. Bot.21: 1.

    Google Scholar 

  201. Wirth, P. 1946. Membranwachstum während der Zellstreckung. Ber. Schweiz Bot. Ges.56: 175.

    CAS  Google Scholar 

  202. Woon, R. K. S., Gold, A. H., andRawlins, T. E. 1952. Electron microscopy of primary cell walls treated with pectic enzymes. Amer. J. Bot.39: 132.

    Article  Google Scholar 

  203. Yamamori, N., andTachi, I. 1950. On the constitution of the hemicellulose prepared from elm wood (Ulmus davidiana, Planch. var.Japonica nakai). Mem. Coll. Agric. Kyoto Univ. (Chem. Series)57: 12.

    Google Scholar 

  204. Zollikofer, C. 1935. Zur Rolle der Membrandehnbarkeit bei der floralen Bewegung. Ber. Dtsch. Bot. Ges.53: 152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wardrop, A.B. Cell wall organization in higher plants I. The primary wall. Bot. Rev 28, 241–285 (1962). https://doi.org/10.1007/BF02860816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860816

Keywords

Navigation