Skip to main content
Log in

Absorption of water by plants

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  • Addoms, R. M. 1946. Entrance of water into suberized roots of trees. Plant Physiol.21: 109–111.

    PubMed  CAS  Google Scholar 

  • Aldrich, W. W., Work, R. A., andLewis, M. R. 1935. Pear root concentration in relation to soil-moisture extraction in heavy clay soil. Jour. Agr. Res.50: 975–988.

    Google Scholar 

  • Andel, O. M. van 1952. Determinations of the osmotic value of exudation sap by means of the thermoelectric methods of Baldes and Johnson. Proc. Kon. Ned. Akad. Wet.55: 40–48.

    Google Scholar 

  • —. 1953. The influence of salts on the exudation of tomato plants. Acta Bot. Néerl.2: 445–521.

    Google Scholar 

  • Arcichovskij, V., andOssipov, A. 1931. Untersuchungen über die Saugkraft der Pflanzen. V. Die Saugkraft der baumartigen Pflanzen der zentralasiatischen Wüsten, nebst Transpirationmessungen am Saxaul (Arthrophytum haloxylon Litw.). Planta14: 552–565.

    Google Scholar 

  • Arisz, W. H., Helder, R. J., andNie, R. van. 1951. Analysis of the exudation process in tomato plants. Jour. Exp. Bot.2: 257–297.

    CAS  Google Scholar 

  • Army, T. J., andKozlowski, T. T. 1951. Availability of soil moisture for active absorption in drying soil. Plant Physiol.26: 353–362.

    PubMed  CAS  Google Scholar 

  • Arvidsson, I. 1951. Austrocknungs und Dürreresistenzverhältnisse einiger Repräsentanten öländischer Pflanzenvereine nebst Bemerkungen über Wasserabsorption durch oberirdische Organe. Oikos, Suppl. 1.

  • Aykin, S. 1946. The relations between water permeability and suction potential in living and non-living osmotic systems. Rev. Fac. Sci. Univ. Istanbul11: 271–295.

    Google Scholar 

  • Bange, G. G. J. 1953. On the quantitative explanation of stomatal transpiration. Acta Bot. Néerl.2: 255–297.

    CAS  Google Scholar 

  • Bennett-Clark, T. A. 1948. Non-osmotic water movement in plant cells. Disc. Faraday Soc.3: 134–139.

    Google Scholar 

  • — andBexon, D. 1940. Water relations of plant cells. New Phytol.39: 337–361.

    Google Scholar 

  • Greenwood, A. D., andBarker, J. W. 1936. Water relations and osmotic pressure of plant cells. New Phytol.35: 277–291.

    Google Scholar 

  • Bernstein, L. Gardner, W. R., andRichards, L. A. 1959. Is there a vapor gap around plant roots. Science129: 1750–1753.

    PubMed  Google Scholar 

  • — andHayward, H. E. 1958. Physiology of salt tolerance. Ann. Rev. Plant Physiol.9: 25–46.

    CAS  Google Scholar 

  • Bertrand, A. R., andKohnke, H. 1957. Subsoil conditions and their effects on oxygen supply and the growth of corn roots. Proc. Soil. Sci. Soc. Amer.21: 135–140.

    CAS  Google Scholar 

  • Bialoglowski, J. 1936. Effect of extent and temperature of roots on transpiration of rooted lemon cuttings. Proc. Amer. Soc. Hort. Sci.34: 96–102.

    Google Scholar 

  • Blair, G. Y., Richards, L. A., andCampbell, R. B. 1950. The rate of elongation of sunflower plants and the freezing point of soil moisture in relation to permanent wilt. Soil Sci.70: 431–439.

    CAS  Google Scholar 

  • Bloodworth, M. E., Page, J. B., andCowley, W. R. 1956. Some applications of the thermoelectric method for measuring water flow rates in plants. Agron. Jour.48: 222–228.

    Google Scholar 

  • Bogen, H. J. 1940. Ionenwirkung auf die Permeabilität vonRhoeo discolor. Zeit. Bot.36: 65–106.

    CAS  Google Scholar 

  • —. 1941. Ionenwirkung auf die Permeabilität vonGentiana cruciata. Planta32: 150–175.

    CAS  Google Scholar 

  • Bonner, J. 1959. Water transport. Science129: 447–450.

    Google Scholar 

  • —,Bandurski, R. S., andMillerd, A. 1953. Linkage of respiration to auxin-induced water intake. Physiol. Plant.6: 511–522.

    CAS  Google Scholar 

  • Boon-Long, T. S. 1941. Transpiration as influenced by osmotic concentration and cell permeability. Amer. Jour. Bot.28: 333–343.

    Google Scholar 

  • Bormann, F. H. 1957. Moisture transfer between plants through intertwined root systems. Plant Physiol.32: 48–55.

    PubMed  CAS  Google Scholar 

  • Boynton, D. 1954. Nutrition by foliar application. Ann. Rev. Plant Physiol.5: 31–54.

    CAS  Google Scholar 

  • Brauner, L., andHasman, M. 1949. Über den Mechanismus der Heteroauxinwirkung auf die Wasseraufnahme von pflanzlichen Speichergewebe. Bull. Fac. Med. Istanbul12: 57–71.

    Google Scholar 

  • ——. 1952. Weitere Untersuchungen über den Wirkungsmechanismus des Heteroauxins bei der Wasseraufnahme von Pflanzenparenchymen. Protoplasma41: 302–326.

    Google Scholar 

  • Breazkale, J. F., andCrider, F. J. 1934. Plant association and survival, and the build-up of moisture in semi-arid soils. Ariz. Agr. Exp. Sta., Tech. Bull 53.

  • — andMcGeorge, W. T. 1953a. Exudation pressure in roots of tomato plants under humid conditions. Soil Sci.75: 293–298.

    Google Scholar 

  • ——. 1953b. Influence of atmospheric humidity on root growth. Soil Sci.76: 361–365.

    Google Scholar 

  • ——, andBreazeale, J. F. 1950. Moisture absorption by plants growing in an atmosphere of high humidity. Plant Physiol.25: 413–419.

    Google Scholar 

  • ———. 1951. Water absorption and transpiration by leaves. Soil Sci.72: 239–244.

    Google Scholar 

  • Brewig, A. 1936a. Die Regulationserscheinungen bei der Wasseraufnahme und die Wasserleitgeschwindigkeit inVicia faba—Wurzeln. Jahrb. Wiss. Bot.82: 803–828.

    Google Scholar 

  • —. 1936b. Beobachtungen über den Einfluss der Spross-Saugung auf die Stoffdurchlässigkeit der Wurzel. Ber. Deut. Bot. Ges.54: 80–85.

    Google Scholar 

  • —. 1937. Permeabilitätsänderungen der Wurzelgewebe, die vom Spross aus beeinflusst werden. Zeit. Bot.31: 481–540.

    Google Scholar 

  • —. 1939. Ausloesung leichter Wasserdurchlässigkeit an Wurzeln vonVicia faba. Planta29: 341–360.

    CAS  Google Scholar 

  • Brierley, W. G. 1934. Absorption of water by the foliage of some common fruit species. Proc. Amer. Soc. Hort. Sci.32: 277–283.

    CAS  Google Scholar 

  • —. 1936. Further studies of the absorption of water by red raspberry foliage, and some evidence relative to the movement of water within the plant. Proc. Amer. Soc. Hort. Sci.34: 385–388.

    Google Scholar 

  • Briggs, G. E. 1957. Some aspects of free space in plant tissues. New Phytol.56: 305–324.

    Google Scholar 

  • Brouwer, R. 1953. Water absorption by the roots ofVicia faba at various transpiration strengths. I. Analysis of the uptake and the factors determining it. Proc. Kon. Ned. Akad. Wet. C.56: 106–115.

    Google Scholar 

  • —. 1954. Water absorption by the roots ofVicia faba at various transpiration strengths. III. Changes in water conductivity artificially obtained. Proc. Kon. Ned. Akad. Wet. C.57: 68–80.

    Google Scholar 

  • Brown, E. M. 1939. Some effects of temperature on the growth and chemical composition of certain pasture grasses. Missouri Agr. Exp. Sta., Res. Bull. 299.

  • Brown, R., andRickless, P. 1949. A new method for the study of cell division and cell extension with some preliminary observations on the effect of temperature and nutrients. Proc. Roy. Soc. B.136: 110–125.

    CAS  Google Scholar 

  • Broyer, T. C. 1947a. The movement of materials into plants. Part I. Osmosis and the movement of water into plants. Bot. Rev.13: 1–58.

    CAS  Google Scholar 

  • —. 1947b. The movement of materials into plants. Part II. The nature of solute movement into plants. Bot. Rev.13: 125–167.

    CAS  Google Scholar 

  • —. 1950. On the theoretical interpretation of turgor pressure. Plant Physiol.25: 135–139.

    PubMed  CAS  Google Scholar 

  • —. 1951a. An outline of energetics in relation to the movement of materials through a two-phased system. Plant Physiol.26: 598–610.

    PubMed  CAS  Google Scholar 

  • —. 1951b. Further theoretical considerations of modes of expression and factors possibly concerned in the movement of materials through a two-phased system. Plant Physiol.26: 655–676.

    PubMed  CAS  Google Scholar 

  • Brueckner, A. E. 1945. Transpiration studies on some Natal Midlands thornveld trees. So. Afr. Jour. Sci.41: 186–193.

    Google Scholar 

  • Buckingham, E. 1907. Studies on the movement of soil moisture. U. S. Dept. Agr., Bur. Soils, Bull. 38.

  • Buffel, K. 1952. New techniques for comparative permeability studies on the oat coleoptile with reference to the mechanism of auxin action. Med. Kon. Vlaamse. Acad. Wet. België14: No. 7.

  • Burström, H. 1941. Formative effects of carbohydrates on root growth. Bot. Not.3: 310–334.

    Google Scholar 

  • —. 1953. Growth and water absorption ofHelianthus tuber tissue. Physiol Plant.6: 685–691.

    Google Scholar 

  • Cameron, S. H. 1941. The influence of soil temperature on the rate of transpiration of young orange trees. Proc. Amer. Soc. Hort. Sci.38: 75–79.

    Google Scholar 

  • Cannon, W. A. 1925. Physiological features of roots, with especial reference to the relation of roots to aeration of the soil. Carnegie Inst. Wash., Pub. 368.

  • Chang, H. T., andLoomis, W. E. 1945. The effect of carbon dioxide on absorption of water and nutrients by roots. Plant Physiol.20: 221–232.

    PubMed  CAS  Google Scholar 

  • Chapman, H. D., andParker, E. R. 1942. Weekly absorption of nitrate by young bearing orange trees growing out of doors in solution cultures. Plant Physiol.17: 366–376.

    PubMed  CAS  Google Scholar 

  • Childs, E. C., andCollis-George, N. 1948. Soil geometry and soil-water equilibria. Disc. Faraday Soc.3: 78–85.

    Google Scholar 

  • ——. 1950. The permeability of porous materials. Proc. Roy. Soc. A.201: 392–405.

    CAS  Google Scholar 

  • Chung, C. H. 1935. A study of certain aspects of the phenomenon of transpiration periodicity. Ph. D. Diss., Ohio State Univ.

  • Clements, H. F., Shigeura, G., andAkamine, E. K. 1952. Factors affecting the growth of sugar cane. Univ. Hawaii Agr. Tech. Bull.18.

  • Commoner, B., Fogel, S., andMuller, W. H. 1943. The mechanism of auxin action. The effect of auxin on water absorption by potato tuber tissue. Amer. Jour. Bot.30: 23–28.

    CAS  Google Scholar 

  • — andMazia, D. 1942. The mechanism of auxin action. Plant Physiol.17: 682–685.

    PubMed  CAS  Google Scholar 

  • Cook, J. A., andBoynton, D. 1952. Some factors affecting the absorption of urea by McIntosh Apple leaves. Proc. Amer. Soc. Hort. Sci.59: 82–90.

    Google Scholar 

  • Corey, A. T., andBlake, G. R. 1953. Moisture available to various crops in some New Jersey soils. Proc. Soil Sci. Soc. Amer.17: 314–330.

    Google Scholar 

  • Crafts, A. S. 1933. Sulfuric acid as a penetrating agent in arsenical sprays for weed control. Hilgardia8: 125–147.

    CAS  Google Scholar 

  • -,Currier, H. B. andStocking, C. R. (1949).-Water in the physiology of plants.

  • Crider, F. J. 1933. Selective absorption of ions not confined to young roots. Science78: 169.

    PubMed  CAS  Google Scholar 

  • Currier, H. B. 1944. Water relations of root cells ofBeta vulgaris. Amer. Jour. Bot.31: 378–387.

    CAS  Google Scholar 

  • Davis, C. H. 1940. Absorption of soil moisture by maize roots. Bot. Gaz.101: 791–805.

    Google Scholar 

  • Davson, H., andDanielli, J. F. 1952. The permeability of natural membranes.

  • Day, P. R. 1942. The moisture potential of soils. Soil Sci.54: 391–400.

    CAS  Google Scholar 

  • Dittmer, H. J. 1937. A quantitative study of the roots and root hairs of a winter rye plant (Secale cereale). Amer. Jour. Bot.24: 417–420.

    Google Scholar 

  • —. 1949. Root hair variations in plant species. Amer. Jour. Bot.36: 152–155.

    Google Scholar 

  • Dixon, H. H. 1914. Transpiration and the ascent of sap in plants. 1924. The transpiration stream.

  • Döring, B. 1935. Die Temperätureabhängigkeit der Wasseraufnahme und ihre ökologische Bedeutung. Zeits. Bot.28: 305–383.

    Google Scholar 

  • Duvdevani, S. 1953. Dew gradients in relation to climate, soil and topography. Proc. UNESCO Desert Research Symp.: 136–152.

  • —. 1957. Dew research for arid agriculture. Discovery18: 330–334.

    Google Scholar 

  • Eaton, F. M. 1941. Water uptake and root growth as influenced by inequalities in the concentration of the substrate. Plant Physiol.16: 545–564.

    PubMed  CAS  Google Scholar 

  • —. 1942. Toxicity and accumulation of chloride and sulfate in plants. Jour. Agr. Res.64: 357–399.

    CAS  Google Scholar 

  • —. 1943. The osmotic and vitalistic interpretations of exudation. Amer. Jour. Bot.30: 663–674.

    CAS  Google Scholar 

  • Ebeling, W. 1939. The rôle of surface tension and contact angle in the performance of spray liquids. Hilgardia12: 665–698.

    CAS  Google Scholar 

  • Edlefsen, N. E. 1941. Some thermodynamic aspects of the use of soil-moisture by plants. Trans. Amer. Geophys. Union22: 917–940.

    Google Scholar 

  • — andAnderson, A.B.C. 1943. Thermodynamics of soil-moisture. Hilgardia15: 31–298.

    CAS  Google Scholar 

  • — andBodman, G. B. 1941. Field measurement of water movement through a silt loam soil. Jour. Amer. Soc. Agron.33: 713–731.

    Google Scholar 

  • Eisenzopf, R. 1952. Ionenwirkungen auf die kutikuläre Wasseraufnahme von Koniferen. Phyton4: 149–159.

    Google Scholar 

  • Elazari-Volcani, T. 1936. The influence of a partial interruption of the transpiration stream by root pruning and stem incisions on the turgor of citrus trees. Palestine Bot. Hort. Sci.1: 94–96.

    Google Scholar 

  • Ellis, C., andSwaney, M. W. 1947. Soilless growth of plants.

  • Emerson, W. W. 1954. Water conduction by severed grass roots. Jour. Agr. Sci.45: (2): 241–245.

    Google Scholar 

  • Epstein, E. 1956a. Mineral nutrition of plants: Mechanisms of uptake and transport. Ann. Rev. Plant Physiol.7: 1–24.

    CAS  Google Scholar 

  • —. 1956b. Ion transport in plants. Science124: 1937.

    Google Scholar 

  • Erickson, L. C. 1946. Growth of tomato roots as influenced by oxygen in the nutrient solution. Amer. Jour. Bot.33: 551–561.

    CAS  Google Scholar 

  • Esau, K. 1953. Plant anatomy.

  • Evans, H. 1938. Studies on the absorbing surface of sugarcane root systems. I. Method of study with some preliminary results. Ann. Bot. (N.S.)2: 159–182.

    Google Scholar 

  • Fogg, G. E. 1947. Quantitative studies on the wetting of leaves by water. Proc. Roy. Soc. B.134: 503–522.

    Google Scholar 

  • Furr, J. R., andReeve, J. O. 1945. The range of soil-moisture percentages through which plants undergo permanent wilting in some soils from semiarid irrigated areas. Jour. Agr. Res.71: 149–170.

    CAS  Google Scholar 

  • Ganong, W. F. 1894. On the absorption of water by the green parts of plants. Bot. Gaz.19: 136–143.

    Google Scholar 

  • Gates, F. 1914. Winter as a factor in the xerophily of certain evergreen ericads. Bot. Gaz.57: 445–489.

    Google Scholar 

  • Gauch, H. G. 1957. Mineral nutrition of plants. Ann. Rev. Plant Physiol.8: 31–64.

    CAS  Google Scholar 

  • Gier, L. J. 1940. Root systems of bright belt tobacco. Amer. Jour. Bot.27: 780–787.

    CAS  Google Scholar 

  • Gessner, F. 1956. Die Wasseraufnahme durch Blätter und Samen. Encyc. Plant Physiol. Vol.3: 215–246.

    Google Scholar 

  • Gill, W. R., andMiller, R. D. 1956. A method for study of the influence of mechanical impedance and aeration on the growth of seedling roots. Soil Sci. Soc, Proc.20: 154–157.

    CAS  Google Scholar 

  • Gilliland, E. R. 1938. Fundamentals of drying and airconditioning. Ind. Eng. & Chem.30: 506–514.

    CAS  Google Scholar 

  • Gingrich, J. R., andRussell, M. B. 1956. Effect of soil moisture tension and oxygen concentration on the growth of corn roots. Agron. Jour.48: 517–520.

    CAS  Google Scholar 

  • ——. 1957. A comparison of effects of soil moisture tension and osmotic stress on root growth. Soil Sci.84: 185–194.

    Google Scholar 

  • Ginsburg, J. M. 1930. Studies on penetration of oils into plant tissue. N. J. Agr. Exp. Sta., Ann. Rep.51: 163–167.

    Google Scholar 

  • Gradmann, H. 1928. Untersuchungen über die Wasserverhältnisse des Bodens als Grundlage des Pflanzenwachstums. Jahrb. Wiss. Bot.69: 1–100.

    Google Scholar 

  • Greenidge, K. N. H. 1955a. Observations on the movement of moisture in large woody stems. Canad. Jour. Bot.33: 202–221.

    Google Scholar 

  • —. 1955b. Studies in the physiology of forest trees. III. The effect of drastic interruption of conducting tissues on moisture movement. Amer. Jour. Bot.42: 582–587.

    Google Scholar 

  • —. 1957. Ascent of sap. Ann. Rev. Plant Physiol.8: 237–256.

    CAS  Google Scholar 

  • —. 1958. A note on the rates of upward travel of moisture in trees under differing experimental conditions. Canad. Jour. Bot.36: 357–361.

    Google Scholar 

  • Gregory, F. G., Milthorpe, F. L., Pearse, H. L., andSpencer, H. J. 1950a. Experimental studies of the factors controlling transpiration. I. Apparatus and experimental technique. Jour. Exp. Bot.1: 1–14.

    Google Scholar 

  • —, —, — and — 1959b. Experimental studies of the factors controlling transpiration. II. The relation between transpiration rate and leaf water content. Jour. Exp. Bot.1: 15–28.

    Google Scholar 

  • Grossenbacher, K. A. 1939. Autonomic cycle of rate of exudation of plants. Amer. Jour. Bot.26: 107–109.

    Google Scholar 

  • Guest, P. L., andChapman, H. D. 1949. Investigations on the use of iron sprays, dusts, and soil applications to control iron chlorosis of citrus. Proc. Amer. Soc. Hort. Sci.54: 11–21.

    CAS  Google Scholar 

  • Gurr, C. G., Marshall, T. J., andHutton, J. T. 1952. Movement of water in soil due to a temperature gradient. Soil Sci.74: 335–345.

    CAS  Google Scholar 

  • Haas, A. R. C. 1936. Growth and water losses in citrus as affected by soil temperature. Calif. Citrograph21: 467, 469.

    Google Scholar 

  • Hackett, D. P. 1952. The osmotic change during auxin-induced water uptake by potato tissue. Plant Physiol.27: 279–284.

    PubMed  CAS  Google Scholar 

  • — andThimann, K. V. 1952. The nature of the auxin-induced water uptake by potato tissue. Amer. Jour. Bot.39: 553–560.

    CAS  Google Scholar 

  • ——. 1953. The nature of the auxin-induced water uptake by potato tissue. II. The relation between respiration and water absorption. Amer. Jour. Bot.40: 183–188.

    CAS  Google Scholar 

  • Hagan, R. M. 1949. Autonomic diurnal cycles in the water relations of nonexuding detopped root systems. Plant Physiol.24: 441–454.

    PubMed  CAS  Google Scholar 

  • —. 1950. Soil aeration as a factor in water absorption by the roots of transpiring plants. Plant Physiol.25: 748–762.

    PubMed  CAS  Google Scholar 

  • -. 1952a. Temperature and growth processes.In: “Soil physical conditions and plant growth”.

  • -. 1952b. Soil temperature and plant growth.In: “Soil physical conditions and plant growth”.

  • Haines, F. M. 1952. The absorption of water by leaves in an atmosphere of high humidity. Jour. Exp. Bot.3: 95–98.

    Google Scholar 

  • —. 1953. The absorption of water by leaves in fogged air. Jour. Exp. Bot.4: 106–107.

    Google Scholar 

  • Handley, W. R. C. 1939. The effect of prolonged chilling on water movement and radial growth in trees. Ann. Bot.3: 803–813.

    Google Scholar 

  • Harris, D. G., and van Bavel, C. H. M. 1957. Growth, yield and water absorption of tobacco plants as affected by the composition of the root atmosphere. Agron. Jour.49: 11–14.

    CAS  Google Scholar 

  • Hayward, H. E., Blair, W. M., andSkaling, P. E. 1942. Device for measuring entry of water into roots. Bot. Gaz.104: 152–160.

    Google Scholar 

  • — andSpurr, W. B. 1943. Effects of osmotic concentration of substrate on the entry of water into corn roots. Bot. Gaz.105: 152–164.

    CAS  Google Scholar 

  • ——. 1944. Effects of isosmotic concentrations of inorganic and organic substrates on entry of water into corn roots. Bot. Gaz.106: 131–139.

    CAS  Google Scholar 

  • Hendrickson, A. H., andVeihmeyer, F. J. 1929. Irrigation experiments with peaches in California. Calif. Agr. Exp. Sta., Bull.479: 1–56.

    CAS  Google Scholar 

  • ——. 1931. Influence of dry soil on root extension. Plant Physiol.6: 567–576.

    PubMed  CAS  Google Scholar 

  • - and -. 1934. Irrigation experiments with prunes. Calif. Agr. Exp. Sta., Bull. 573.

  • ——. 1941. Moisture distribution in soil containers. Plant Physiol.4: 821–826.

    Google Scholar 

  • - and -. 1942. Irrigation experiments with pears and apples. Calif. Agr. Exp. Sta., Bull. 667.

  • Hilgeman, R. H. 1948. Changes in soil moisture in the top eight feet of bare soil during 22 months after wetting. Jour. Amer. Soc. Agron.40: 919–925.

    Google Scholar 

  • Hoagland, D. R., andBroyer, T. C. 1942. Accumulation of salt and permeability in plant cells. Jour. Gen. Physiol.25: 865–880.

    CAS  Google Scholar 

  • ——. 1942. General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol.11: 471–507.

    Google Scholar 

  • Hohn, K. 1954. Untersuchungen über das Wasserdampfaufnahme- und Wasserdampfabgabe-Vermögen höherer Landpflanzen. Beitr. Biol. Pflanz.30: 159–178.

    Google Scholar 

  • Honert, T. H. van den 1948. Water transport in plants as a catenary process. Disc. Faraday Soc.3: 146–153.

    Google Scholar 

  • Hunt, F. M. 1951. Effects of flooded soil on growth of pine seedlings. Plant Physiol.26: 363–368.

    PubMed  CAS  Google Scholar 

  • Hunter, A. S., andKelley, O. J. 1946. The extension of plant roots into dry soil. Plant Physiol.21: 445–451.

    PubMed  CAS  Google Scholar 

  • Hygen, G. 1953. Studies in plant transpiration. II. Physiol. Plant.6: 106–133.

    Google Scholar 

  • Janes, B. E. 1954. Absorption and loss of water by tomato leaves in a saturated atmosphere. Soil Sci.78: 189–197.

    Google Scholar 

  • Jannti, A. 1953. Grassland practices in relation to soil water in central, west, and north European countries. Acta Agr. Fenn.81(6): 1–39.

    Google Scholar 

  • — andKramer, P. J. 1956. Regrowth of pastures in relation to soil moisture and defoliation. Proc. 7th Int. Grass Conf. Vol.1(2): 1–11.

    Google Scholar 

  • Johnston, R. D. 1959. Control of water movement by stem chilling. Austral. Jour. Bot.7: 97–108.

    Google Scholar 

  • Jones, R. L. 1957. The effect of surface wetting on the transpiration of leaves. Physiol. Plant.10: 281–288.

    Google Scholar 

  • Kaufman, C. M. 1945. Root growth of jack pine on several sites in the Cloquet Forest, Minnesota. Ecology26: 10–23.

    Google Scholar 

  • Kausch, W. 1955. Saugkraft und Wassernachleitung im Boden als physiologische Faktoren. Unter besonderer Berücksichtigung des Tensiometers. Planta45: 217–263.

    CAS  Google Scholar 

  • Kelley, V. W. 1930. Effect of certain hydrocarbon oils on respiration of foliage and dormant twigs of the apple. Illinois Agr. Exp. Sta., Bull.348: 371–406.

    Google Scholar 

  • Kelly, S. 1947. The relations between respiration and water uptake in the oat coleoptile. Amer. Jour. Bot.34: 521–526.

    Google Scholar 

  • Ketellapper, H. J. 1953. The mechanism of the action of indole-3-acetic acid on the water absorption byAvena coleoptile sections. Acta Bot. Néerl.2: 387–444.

    CAS  Google Scholar 

  • Klemm, G. 1956. Untersuchungen über den Transpirationswiderstand der Mesophyllmembranen und seine Bedeutung als Regulator für die stomatäre Transpiration. Planta47: 547–587.

    Google Scholar 

  • Klute, A. 1952. A numerical method for solving the flow equation for water in unsaturated materials. Soil Sci.73: 105–116.

    CAS  Google Scholar 

  • Kmock, H. G., Ramig, R. E., Fox, R. L., andKoehler, F. E. 1957. Root development of winter wheat as influenced by soil moisture and nitrogen fertilization. Agron. Jour.49: 20–25.

    Google Scholar 

  • Knight, H. J., Chamberlain, J. C., andSamuels, C. D. 1929. On some limiting factors in the use of saturated petroleum oils as insecticides. Plant Physiol.4: 299–321.

    PubMed  CAS  Google Scholar 

  • Korven, H. C., andTaylor, S. A. 1959. The Peltier effect and its use for determining relative activity of soil water. Canad. Jour. Soil. Sci.39: 76–85.

    CAS  Google Scholar 

  • Kozlowski, T. T. 1943. Transpiration rates of some forest tree species during the dormant season. Plant Physiol.18: 252–260.

    PubMed  CAS  Google Scholar 

  • — andScholtes, W. 1948. Growth of roots and root hairs of pine and hardwood seedlings in the Piedmont. Jour. Forestry46: 750–754.

    Google Scholar 

  • Kramer, P. J. 1932. The absorption of water by root systems of plants. Amer. Jour. Bot.19: 148–164.

    Google Scholar 

  • —. 1933. The intake of water through dead root systems and its relation to the problem of absorption by transpiring plants. Amer. Jour. Bot.20: 481–492.

    Google Scholar 

  • —. 1937. The relation between rate of transpiration and rate of absorption of water in plants. Amer. Jour. Bot.24: 10–15.

    Google Scholar 

  • —. 1938. Root resistance as a cause of the absorption lag. Amer. Jour. Bot.25: 110–113.

    CAS  Google Scholar 

  • —. 1940a. Root resistance as a cause of decreased water absorption by plants at low temperatures. Plant Physiol.15: 63–79.

    PubMed  CAS  Google Scholar 

  • —. 1940b. Causes of decreased absorption of water by plants in poorly aerated media. Amer. Jour. Bot.27: 216–220.

    CAS  Google Scholar 

  • —. 1941. Soil moisture as a limiting factor for active absorption and root pressure. Amer. Jour. Bot.28: 446–451.

    Google Scholar 

  • —. 1942. Species differences with respect to water absorption at low soil temperatures. Amer. Jour. Bot.29: 828–832.

    Google Scholar 

  • —. 1945. Absorption of water by plants. Bot. Rev.11: 310–355.

    CAS  Google Scholar 

  • —. 1946. Absorption of water through suberized roots of trees. Plant Physiol.21: 37–41.

    PubMed  CAS  Google Scholar 

  • -. 1949. Plant and soil water relationships.

  • —. 1950. Effects of wilting on the subsequent intake of water by plants. Amer. Jour. Bot.37: 280–284.

    Google Scholar 

  • —. 1951. Causes of injury to plants resulting from flooding of the soil. Plant Physiol.26: 722–736.

    PubMed  CAS  Google Scholar 

  • —. 1955a. Water relations of plant cells and tissues. Ann. Rev. Plant Physiol.6: 253–272.

    CAS  Google Scholar 

  • —. 1955b. Water content and water turnover in plant cells. Encyc. Plant Physiol. Vol.I: 194–222.

    Google Scholar 

  • —. 1956a. The uptake of water by plant cells. Encyc. Plant. Physiol. Vol.2: 316–336.

    Google Scholar 

  • —. 1956b. Permeability in relation to respiration. Encyc. Plant Physiol. Vol.2: 358–368.

    Google Scholar 

  • —. 1956c. Physical and physiological aspects of water absorption. Encyc. Plant Physiol. Vol.3: 124–159.

    Google Scholar 

  • —. 1956d. Roots as absorbing organs. Encyc. Plant Physiol. Vol.3: 188–214.

    Google Scholar 

  • —. 1957. Outer space in plants. Science125: 633–635.

    PubMed  Google Scholar 

  • — andCoile, T. S. 1940. An estimate of the volume of water made available by root extension. Plant Physiol.15: 743–747.

    PubMed  CAS  Google Scholar 

  • — andJackson, W. T. 1954. Causes of injury to flooded tobacco plants. Plant Physiol.29: 241–245.

    PubMed  CAS  Google Scholar 

  • Krause, H. 1935. Beiträge zur Kenntnis der Wasseraufnahme durch oberirdische Pflanzenorgane. Österr. Bot. Zeits.84: 241–270.

    Google Scholar 

  • Kuiper, P. J. C., andBierhuizen, J. F. 1958. The effect of some environmental factors on the transpiration of plants under controlled conditions. Med. Landb. Hoogesch. Wageningen58: 1–16.

    Google Scholar 

  • Lachenmeier, J. 1932. Transpiration und Wasserabsorption intaker Pflanzen nach vorausgegangener Verdunkelung bei Konstanz der Lichtintensität und der übrigen Aussenfaktoren. Jahrb. Wiss. Bot.76: 765–827.

    Google Scholar 

  • Leonard, O. A. 1944. Use of root pressures in determining injury to roots by cultivation. Plant Physiol.19: 157–163.

    PubMed  CAS  Google Scholar 

  • — andPinckard, J. A. 1946. Effect of various oxygen and carbon dioxide concentrations on cotton root development. Plant Physiol.21: 18–36.

    PubMed  CAS  Google Scholar 

  • Levitt, J. 1941. Frost killing and hardiness of plants.

  • —. 1947. The thermodynamics of active (non-osmotic) water absorption. Plant Physiol.22: 514–525.

    PubMed  CAS  Google Scholar 

  • —. 1953. Further remarks on the thermodynamics of active (nonosmotic) water absorption. Physiol. Plant.6: 240–252.

    Google Scholar 

  • —. 1954a. Do plants absorb water against a gradient. VIII Int. Bot. Congr.11: 213–215.

    Google Scholar 

  • —. 1954b. Steady state versus equilibrium thermodynamics in the concept of “Active” water absorption. Physiol. Plant.7: 592–594.

    Google Scholar 

  • — andScarth, G. W. 1936. Frost-hardening studies with living cells. II. Permeability in relation to frost resistance and the seasonal cycle. Canad. Jour. Res. C.14: 285–305.

    Google Scholar 

  • —— andGibbs, R. D. 1936. Water permeability of isolated protoplasts in relation to volume change. Protoplasma26: 237–248.

    CAS  Google Scholar 

  • Lewis, F. J. 1945. Physical condition of the surface of the mesophyll cell walls of the leaf. Nature156: 407–490.

    Google Scholar 

  • —. 1948. Water movement in leaves. Disc. Faraday Soc.3: 159–162.

    Google Scholar 

  • Lewis, G. N. andRandall, M. 1923. Thermodynamics and the free energy of chemical substances.

  • Livingston, B. E. 1913. The resistance offered by leaves to transpirational water loss. Plant World16: 1–35.

    Google Scholar 

  • Long, E. M. 1943. The effect of salt additions to the substrate on intake of water and nutrients by roots of approach-grafted tomato plants. Amer. Jour. Bot.30: 594–601.

    CAS  Google Scholar 

  • MacDougal, D. T. 1926. The hydrostatic system of trees.

  • Magistad, O. C. 1945. Plant growth on saline and alkali soils. Bot. Rev.11: 181–230.

    CAS  Google Scholar 

  • Marloth, R. 1909. Notes on the absorption of water by aerial organs of plants. Trans. Roy. Soc. So. Africa1: 429–433.

    Google Scholar 

  • —. 1926. Weitere Beobachtungen über die Wasser der Pflanzen durch oberirdische Organe. Ber. Deut. Bot. Ges.44: 448–455.

    Google Scholar 

  • Martin, E. V. 1940. Effect of soil moisture on growth and transpiration inHelianthus annuus. Plant Physiol.15: 449–466.

    PubMed  CAS  Google Scholar 

  • Mason, T. G., andPhillis, E. 1939. Experiments on the extraction of sap from the vacuole of the leaf of the cotton plant and their bearing on the osmotic theory of water absorption of the cell. Ann. Bot. (N.S.)3: 531–544.

    Google Scholar 

  • McDermott, J. J. 1945. The effect of the moisture content of the soil upon the rate of exudation. Amer. Jour. Bot.32: 570–574.

    Google Scholar 

  • Maximov, N. A. 1929. The plant in relation to water.

  • Mees, G. C., andWeatherley, P. E. 1957a. The mechanism of water absorption by roots. I. Preliminary studies on the effects of hydrostatic pressure gradients. Proc. Roy. Soc. B.147: 367–380.

    CAS  Google Scholar 

  • ——. 1957b. The mechanism of water absorption by roots. II. The role of hydrostatic pressure gradients across the cortex. Proc. Roy. Soc. B.147: 381–391.

    CAS  Google Scholar 

  • Meidner, H. 1954a. Measurements of water intake from the atmosphere by leaves. New Phytol.53: 423–426.

    Google Scholar 

  • —. 1955. Changes in the resistance of the mesophyll tissue with changes in the leaf water content. Jour. Exp. Bot.6: 94–99.

    Google Scholar 

  • Mendel, K. 1944. Orange leaf transpiration under orchard conditions. II. Soil moisture content decreasing. Palestine Jour. Bot. (R)5: 59–85.

    Google Scholar 

  • Mercer, F. V. 1955. The water relations of plant cells. Proc. Linn. Soc. New So. Wales80: 6–29.

    CAS  Google Scholar 

  • Meyer, B. S. 1938. The water relations of plant cells. Bot. Rev.4: 531–547.

    CAS  Google Scholar 

  • —. 1945. A critical evaluation of the terminology of diffusion phenomena. Plant Physiol.20: 142–164.

    PubMed  CAS  Google Scholar 

  • —. 1956. Wall and turgor pressure and tension. Diffusion pressure defiit or suction force. Encyc. Plant Physiol. Vol.2: 38–56.

    Google Scholar 

  • Michaelis, P. 1934. Ökologische Studien an der alpinen Baumgrenze. IV. Zur Kenntnis des winterlichen Wasserhaushaltes. Jahrb. Wiss. Bot.80: 169–247.

    Google Scholar 

  • Milthorpe, F. L. 1959. Transpiration from crop plants. Field Crop Abstracts12(1): 1–9.

    Google Scholar 

  • — andSpencer, E. 1957. Experimental studies of the factors controlling transpiration. Jour. Exp. Bot.8: 413–437.

    Google Scholar 

  • Monselise, S. P., andHagin, J. 1955. Influence of soil aggregation on the rooting of carnation cuttings. Plant & Soil6: 245–250.

    Google Scholar 

  • Monteith, J. L., andOwen, P. C. 1958. A thermocouple method for measuring relative humidity in the range 95–100%. Jour. Sci. Instr.35: 443–446.

    CAS  Google Scholar 

  • Myers, G. M. P. 1951. The water permeability of unplasmolysed tissues. Jour. Exp. Bot.2: 129–144.

    CAS  Google Scholar 

  • Nakajima, Y. 1928. Wirkung des der Luft entleerten Wassers auf die Wasseraufnahme verschiedener Körper. Sci. Rep. Tôhoku. Imp. Univ. IV. Biol.3: 279–298.

    Google Scholar 

  • Nightingale, G. T. 1935. Effects of temperature on growth, anatomy and metabolism of apple and peach roots. Bot. Gaz.96: 581–639.

    CAS  Google Scholar 

  • Nutman, F. J. 1934. The root-system of Coffea arabica. III. The spatial distribution of the absorbing area of the root. Emp. Jour. Exp. Agr.2: 293–302.

    Google Scholar 

  • Oppenheimer, H. R. 1951. Physiological behavior of maize under irrigation. Palestine Jour. Bot. R8: 32–44.

    Google Scholar 

  • Ordin, L., Applewhite, T. H., andBonner, J. 1956. Auxin-induced water uptake byAvena coleoptile sections. Plant Physiol.31: 44–53.

    PubMed  CAS  Google Scholar 

  • — andBonner, J. 1956. Permeability ofAvena coleoptile sections to water measured by diffusion of deuterium hydroxide. Plant Physiol.31: 53–57.

    PubMed  CAS  Google Scholar 

  • — andJacobson, L. 1955. Inhibition of ion absorption and respiration in barley roots. Plant Physiol.30: 21–27.

    PubMed  CAS  Google Scholar 

  • — andKramer, P. J. 1956. Permeability of Vicia Faba root segments to water as measured by diffusion of deuterium hydroxide. Plant Physiol.31: 468–471.

    PubMed  CAS  Google Scholar 

  • Overbeek, J. van. 1942. Water uptake by excised root systems of the tomato due to non-osmotic forces. Amer. Jour. Bot.29: 677–682.

    Google Scholar 

  • —. 1944. Auxin water uptake and osmotic pressure in potato tissue. Amer. Jour. Bot.31: 265–269.

    Google Scholar 

  • Owen, P. C. 1952. The relation of water absorption by wheat seeds to water potential. Jour. Exp. Bot.3: 276–296.

    Google Scholar 

  • Palmiter, D. H., Roberts, E. A., andSouthwick, M. D. 1946. Apple leaf structure in relation to penetration by spray solutions. Phytopath.36: 681.

    Google Scholar 

  • Parker, J. 1949. Effects of variations in the root leaf ratio on transpiration rate. Plant Physiol.24: 739–743.

    PubMed  CAS  Google Scholar 

  • —. 1950. The effects of flooding on the transpiration and survival of some south-eastern forest tree species. Plant Physiol.25: 453–460.

    PubMed  CAS  Google Scholar 

  • Peters, D. B. 1957. Water uptake of corn roots as influenced by soil moisture content and soil moisture tension. Soil Sci. Soc. Amer., Proc.21: 481–484.

    CAS  Google Scholar 

  • Philip, J. R. 1954. Some recent advances in hydrologie physics. Jour. Inst. Eng. Australia26: 255–259.

    Google Scholar 

  • —. 1955. The concept of diffusion applied to soil water. Proc. Nat. Acad. [India] A.211: 93–104.

    Google Scholar 

  • —. 1957a. The physical principles of soil water movement during the irrigation cycle. Proc. III. Int. Congr. Irrig. Drainage8: 125–154.

    Google Scholar 

  • —. 1957b. The theory of infiltration. I. The infiltration equation and its solution. Soil Sci.83: 345–357.

    CAS  Google Scholar 

  • -. 1958a. Physics of water movement in porous solids. Highway Res. Board, Washington, Spec. Rep. 40.

  • —. 1958b. The osmotic cell, solute diffusibility, and the plant water economy. Plant Physiol.33: 264–271.

    PubMed  CAS  Google Scholar 

  • —. 1958c. Osmosis and diffusion in tissue: Half-times and internal gradients. Plant Physiol.33: 275–278.

    PubMed  CAS  Google Scholar 

  • — andVries, D. A. de. 1957. Moisture movement in porous materials under temperature gradients. Trans. Amer. Geophys. Union38: 222–232.

    Google Scholar 

  • Pisek, A. andCartellieri, E. 1939. Zur Kenntnis des Wasserhaushaltes der Pflanzen. IV. Bäume und Sträucher. Jahrb. Wiss. Bot.88: 22–68.

    Google Scholar 

  • Postlethwait, S. N., andRogers, B. 1958. Tracing the path of the transpiration stream in trees by the use of radio-active isotopes. Amer. Jour. Bot.45: 753–757.

    CAS  Google Scholar 

  • Preston, R. D. 1952. Movement of water in higher plants.In: “Deformation and flow in biological systems”.

  • —. 1954. The transpiration of plants. Proc. Leeds Phil. & Lit. Soc.6: 154–167.

    Google Scholar 

  • Reed, J. F. 1939. Root and shoot growth of shortleaf and loblolly pines in relation to certain environmental conditions. Duke Univ., School Forestry, Bull. 4.

  • Reinders, D. E. 1938. The process of water-intake by discs of potato tuber tissue. Proc. Koni. Akad. Wet. Amsterdam41: 820–831.

    Google Scholar 

  • —. 1942. Intake of water by parenchymatic tissue. Rec. Trav. Bot. Néerl.39: 1–140.

    CAS  Google Scholar 

  • Renner, O. 1911. Experimentelle Beiträge zur Kenntnis der Wasserbewegung. Flora103: 171–247.

    Google Scholar 

  • Renner, O.. 1912. Versuche zur Mechanik der Wasserversorgung. I. Der Druck in den Leitungsbahnen von Freilandpflanzen. Ber. Deut. Bot. Ges.30: 576–580.

    Google Scholar 

  • Renner, O.. 1915. Die Wasserversorgung der Pflanzen. Handwörterbuch Naturwiss.10: 538–557.

    Google Scholar 

  • Renner, O.. 1929. Versuche zur Bestimmung des Filtrationswiderstandes der Wurzeln. Jahrb. Wiss. Bot.70: 805–838.

    CAS  Google Scholar 

  • Richards, L. A. 1936. Capillary conductivity data for three soils. Jour. Amer. Soc. Agron.28: 297–300.

    CAS  Google Scholar 

  • Renner, O. andLoomis, W. E. 1942. Limitations of auto-irrigators for controlling soil moisture under growing plants. Plant Physiol.17: 223–235.

    Google Scholar 

  • Renner, O. andMoore, D. C. 1952. Influence of capillary conductivity and depth of wetting on moisture retention in soil. Trans. Amer. Geophys. Union.22: 531–540.

    Google Scholar 

  • Renner, O. andOgata, Gen 1958. Thermocouple for vapour pressure measurements in biological and soil systems at high humidity. Science128: 1089–1090.

    Google Scholar 

  • - andWadleigh, C. H. 1952. Soil water and plant growth.In: “Soil physical conditions and plant growth”.

  • Renner, O. andWeaver, L. R. 1944. Moisture retention by some irrigated soils as related to soil-moisture tension. Jour. Agr. Res.69: 215–235.

    Google Scholar 

  • Renner, O. andWilson, B. D. 1936. Capillary conductivity measurement in peat soils. Jour. Amer. Soc. Agron.28: 427–431.

    Google Scholar 

  • Roberts, E. A., Southwick, M. D. andPalmiter, D. H. 1948. A microchemical examination of McIntosh apple leaves showing relationship of cell wall constituents to penetration of spray solutions. Plant Physiol.23: 557–559.

    PubMed  CAS  Google Scholar 

  • Roberts, O., andStyles, S. A. 1939. An apparent connection between the presence of colloids and the osmotic pressures of conifer leaves. Sci. Proc. Roy. Dublin Soc.22: 119–125.

    CAS  Google Scholar 

  • Robertson, R. N. 1958. The uptake of minerals. Encyc. Plant Physiol. Vol.4: 243–279.

    Google Scholar 

  • Rohrbaugh, P. W. 1934. Penetration and accumulation of petroleum spray oils in the leaves, twigs and fruit of citrus trees. Plant Physiol.9: 699–730.

    PubMed  CAS  Google Scholar 

  • Rollins, R. L., Spangler, M. G., andKirkham, D. 1954. Movement of soil moisture under a thermal gradient. Highway Res. Board Proc.33: 492–508.

    CAS  Google Scholar 

  • Rønnike, F. 1957. On the growth of roots and hypocotyls of lupine plants cultivated in substrata with different water contents. Physiol. Plant.10: 440–444.

    Google Scholar 

  • Rosene, H. F. 1937. Distribution of the velocities of absorption of water in the onion root. Plant Physiol.12: 1–19.

    PubMed  CAS  Google Scholar 

  • —. 1941. Comparison of rate of water intake in contiguous regions of intact and isolated roots. Plant Physiol.16: 19–38.

    PubMed  CAS  Google Scholar 

  • —. 1943. Quantitative measurement of the velocity of water absorption in individual root hairs by a microtechnique. Plant Physiol.18: 588–607.

    PubMed  CAS  Google Scholar 

  • —. 1944. Effect of cyanide on rate of exudation in excised onion roots. Amer. Jour. Bot.31: 172–174.

    CAS  Google Scholar 

  • -. 1947. A bibliography of continuous bioelectric currents and bioelectric fields in animals and plants.In: “Bioelectric fields and growth”.

  • —. 1950. Effect of anoxia on water exchange and oxygen consumption of onion root tissues. Jour. Cell. & Comp. Physiol.35: 179–193.

    CAS  Google Scholar 

  • —. 1954. The water absorptive capacity of root hairs. VIII. Int. Bot. Congr.11: 217–218.

    Google Scholar 

  • — andBartlett, L. E. 1950. Effect of anoxia on water influx of individual radish root hair cells. Jour. Cell. & Comp. Physiol.36: 83–96.

    CAS  Google Scholar 

  • — andWalthall, A. M. J. 1954. Comparison of the velocities of water influx into young and old root hairs of wheat seedlings.Physiol. Plant. 7: 190–194.

    CAS  Google Scholar 

  • Rouschal, E. 1938. Zur Ökologie der Macchien. I. Jahrb. Wiss. Bot.87: 436–523.

    Google Scholar 

  • —. 1939. Beiträge zum winterlichen Wasserhaushalt vonCheiranthus cheiri und anderer wintergrünen Gartenpflanzen. Öster. Bot. Zeits.88: 148–154.

    Google Scholar 

  • Ruhland, W. 1955. Encyclopedia of Plant Physiology. Vol. 1.

  • -. 1956a. Encyclopedia of Plant Physiology. Vol. 2.

  • -. 1956b. Encyclopedia of Plant Physiology. Vol. 3.

  • Russell, M. B. 1952. Soil aeration and plant growth.In: “Soil physical conditions and plant growth”.

  • — andDanielson, R. E. 1956. Time and depth patterns of water use by corn. Agron. Jour.48: 163–165.

    Google Scholar 

  • —,Davis, F. E. andBlair, R. A. 1940. The use of tensiometers for following soil moisture conditions under corn. Jour. Amer. Soc. Agron.32: 922–930.

    CAS  Google Scholar 

  • Sandstrom, B. 1950. The ion absorption in roots lacking epidermis. Physiol. Plant.3: 496–505.

    Google Scholar 

  • Scholander, P. F., Love, W. E., andKanwisher, J. W. 1955. The rise of sap in tall grapevines. Plant Physiol.30(2): 93–104.

    PubMed  CAS  Google Scholar 

  • —,Ruud, B., andLeivestad, H. 1957. The rise of sap in a tropical liana. Plant Physiol.32: 1–6.

    PubMed  CAS  Google Scholar 

  • Schroeder, R. A. 1939. The effect of root temperature upon the absorption of water by the cucumber. Missouri Agr. Exp. Sta., Res. Bull. 309.

  • Scott Russell, R., andShorrocks, V. M. 1959. The relationship between transpiration and the absorption of inorganic ions by intact plants. Jour. Exp. Bot.10: 301–316.

    Google Scholar 

  • Shaw, B. T. 1952. Soil physical conditions and plant growth.

  • Sierp, H., andBrewig, A. 1935. Quantitative Untersuchungen über die Wasserabsorptionszone der Wurzeln. Jahrb. Wiss. Bot.82: 99–122.

    Google Scholar 

  • Slatyer, R. O. 1956a. Absorption of water from atmospheres of different humidity and its transport through plants. Aust. Biol. Sci.9: 552–558.

    Google Scholar 

  • —. 1956b. Evapotranspiration in relation to soil moisture. Neth. Jour. Agr. Sci.4: 73–76.

    Google Scholar 

  • —. 1957a. The influence of progressive increases in total soil moisture stress on transpiration, growth and internal water relationships of plants. Aust. Jour. Biol. Sci.10: 320–336.

    Google Scholar 

  • —. 1957b. The significance of the permanent wilting percentage in studies of plant and soil water relations. Bot. Rev.23: 585–636.

    CAS  Google Scholar 

  • - andTaylor, S. A. 1960. Terminology in plant-soil water relations. Nature [in press].

  • Spanner, D. C. 1951. The Peltier effect and its use in the measurement of suction pressure. Jour. Exp. Bot.11: 145–168.

    Google Scholar 

  • —. 1952. The suction potential of plant cells and some related topics. Ann. Bot. (N.S.)16: 379–407.

    Google Scholar 

  • —. 1954. The thermodynamics of actively-maintained turgor pressure, with a note on the idea of permeability. Physiol. Plant.7: 278–282.

    Google Scholar 

  • Staple, W. V., andLehane, J. J. 1954. Movement of water in unsaturated soils. Canad. Jour. Agr. Sci.34: 329–342.

    CAS  Google Scholar 

  • Steubing, L. 1949. Beiträge zur Tauwasseraufnahme höherer Pflanzen. Biol. Zentr.68: 252–259.

    CAS  Google Scholar 

  • Steward, F. C., Stout, P. R., andPreston, C. 1940. The balance sheet of metabolites for potato discs showing the effect of salts and dissolved oxygen on metabolism at 23 °C. Plant Physiol.15: 409–447.

    PubMed  CAS  Google Scholar 

  • Stiles, W. 1956. Water relations of the plant cell. Sci. Progr.44: 686–696.

    Google Scholar 

  • Stocker, O.u. Kausch, W. 1952. Bodenfeuchte und Tensiometermessung. Ber. Deut. Wetterdienst U. S. Zone32: 15–18.

    Google Scholar 

  • Stocking, C. R. 1945. The calculations of tensions in Cucurbita pepo. Amer. Jour. Bot.32: 126–134.

    Google Scholar 

  • —. 1956. Osmotic pressure or osmotic value. Encyc. Plant Physiol. Vol.2: 57–70.

    Google Scholar 

  • Stone, E. C. 1957a. Dew as an ecological factor. I. A review of the literature. Ecology38: 407–413.

    Google Scholar 

  • —. 1957b. Dew as an ecological factor. II. The effect of artificial dew on the survival ofPinus ponderosa and associated species. Ecology38: 414–422.

    Google Scholar 

  • — andFowells, H. A. 1955. Survival value of dew as determined under laboratory conditions withPinus ponderosa. Forest Science1: 183–188.

    Google Scholar 

  • —,Shachori, A. Y., andStanley, R. G. 1956. Water absorption by needles ofpondcrosa pine seedlings and its internal redistribution. Plant Physiol.31: 120–126.

    PubMed  CAS  Google Scholar 

  • —,Went, F. W., andYoung, C. L. 1950. Water absorption from the atmosphere by plants growing in dry soil. Science111: 546–548.

    PubMed  CAS  Google Scholar 

  • Stuckey, I. H. 1941. Seasonal growth of grass roots. Amer. Jour. Bot.28: 486–491.

    Google Scholar 

  • Strugger, S. 1943. Der aufsteigende Saftstrom in der Pflanze. Naturwiss.31: 181–194.

    CAS  Google Scholar 

  • -. 1949. Praktikum der Zell- und Gewebephysiologie der Pflanze.

  • Taylor, S. A., andCavazza, L. 1954. The movement of soil moisture in response to temperature gradients. Soil Sci Soc. Amer. Proc.18: 351–358.

    Google Scholar 

  • Turrell, F. M. 1947. Citrus leaf stomata: Structure, composition and pore size in relation to penetration of liquids. Bot. Gaz.108: 476–483.

    CAS  Google Scholar 

  • Ursprung, A., andBlum, G. 1916. Über die Verteilung des osmotischen Wertes in der Pflanze. Ber. Deut. Bot. Ges.34: 88–104.

    Google Scholar 

  • Veihmeyer, F. J., andHendrickson, A. H. 1927. Soil moisture conditions in relation to plant growth. Plant Physiol.2: 71–82.

    PubMed  CAS  Google Scholar 

  • ——. 1928. Soil moisture at permanent wilting of plants. Plant Physiol.3: 350–357.

    Google Scholar 

  • ——. 1934. Some plant and soil moisture relationships. Bull. Amer. Soil Survey Assoc.15: 76–80.

    Google Scholar 

  • ——. 1938. Soil moisture as an indication of root distribution in deciduous orchards. Plant Physiol.13: 169–177.

    PubMed  CAS  Google Scholar 

  • ——. 1946. Soil density as a factor in determining the permanent wilting percentage. Soil Sci.62: 451–456.

    CAS  Google Scholar 

  • ——. 1948. Soil density and root penetration. Soil Sci.65: 487–493.

    CAS  Google Scholar 

  • ——. 1949. Methods of measuring field capacity and permanent wilting percentage of soils. Soil Sci.68: 75–94.

    Google Scholar 

  • Volk, G. M. 1947. Significance of moisture translocation from soil zones of low moisture tension to zones of high moisture tension by plant roots. Jour. Amer. Soc. Agron.39: 93–106.

    CAS  Google Scholar 

  • Waisel, Y. 1958. Dew absorption by plants of arid zones. Bull. Res. Council Israel6D: 180–186.

    Google Scholar 

  • Waiter, H. 1936. Die ökologischen Verhältnisse in der Namib-Nebelwüste. (Südwestafrika). Jahrb. Wiss. Bot.84: 58–222.

    Google Scholar 

  • -. 1951. Einführung in die Phytologie. III. Grundlagen der Pflanzenverbreitung. 1.

  • —. 1955. The water economy and hydrature of plants. Ann. Rev. Plant Physiol.6: 239–252.

    Google Scholar 

  • Weatherley, P. E. 1951. Studies of the water relations of the cotton plant. II. Diurnal and seasonal fluctuations and environmental factors. New Phytol.50: 36–51.

    Google Scholar 

  • — andSlatyer, R. O. 1957. Relationship between relative turgidity and diffusion pressure deficit in leaves. Nature179: 1085–1086.

    Google Scholar 

  • Weaver, J. E., andZink, E. 1946. Annual increase of underground materials in three range grasses. Ecology277: 115–127.

    Google Scholar 

  • Went, F. W. 1944. Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant. Amer. Jour. Bot.31: 597–618.

    CAS  Google Scholar 

  • Wetzel, K. 1924. Die Wasseraufnahme der höheren Pflanzen gemässigter Klimate durch oberirdische Organe. Flora117: 221–269.

    Google Scholar 

  • Whitney, J. B. 1942. Effects of the composition of the soil atmosphere on the absorption of water by plants. Ohio State Univ., Abs. Doc. Diss.38: 97–103.

    Google Scholar 

  • Wiersma, D. andVeihmeyer, F. J. 1954. Absence of water exudation from roots of plants grown in an atmosphere of high humidity. Soil Sci.78: 33–36.

    CAS  Google Scholar 

  • Wiersum, L. K. 1957. The relationship of the size and structural rigidity of pores to their penetration by roots. Plant & Soil9: 75–85.

    Google Scholar 

  • Williams, W. T. andAmer, F. A. 1957. Transpiration from wilting leaves. Jour. Exp. Bot.8: 1–19.

    Google Scholar 

  • Wilson, B. D., andRichards, S. J. 1938. Capillary conduction of peat soils at different capillary tensions. Jour. Amer. Soc. Agron.30: 583–588.

    CAS  Google Scholar 

  • Wind, G. P. 1955a. A field experiment concerning capillary rise of moisture in a heavy clay soil. Neth. Jour. Agr. Sci.3: 60–69.

    Google Scholar 

  • —. 1955b. Flow of water through plant roots. Neth. Jour. Agr. Sci.3: 259–264.

    Google Scholar 

  • Zamfirescu, N. 1931. Cercetari asupra Absorptiunii apei prin organele aeriene ale plantelor. Bull. Min. Agr. Domenilor3: 3–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slatyer, R.O. Absorption of water by plants. Bot. Rev 26, 331–392 (1960). https://doi.org/10.1007/BF02860807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860807

Keywords

Navigation