Skip to main content
Log in

Micrurgy and the plant cell

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Allen, C. E. The potentialities of a cell. Amer. Jour. Bot.10: 387–398. 1923.

    Google Scholar 

  2. Arens, K. Determination of turgor pressure in a single cell with manometer. Planta30: 113–117. 1939.

    Google Scholar 

  3. Banfield, W. M. Studies in cellular pathology. I. Effects of cane gall bacteria upon gall tissue cells of the black raspberry. Bot. Gaz.97: 193–239. 1935.

    Google Scholar 

  4. Barber, M. A. A new method of isolating micro-organisms. Jour. Kan. Med. Soc.4: 487–494. 1904.

    Google Scholar 

  5. —The rate of multiplication ofBacillus coli at different temperatures. Jour. Inf. Dis.5: 380–383. 1908.

    Google Scholar 

  6. —A technic for the inoculation of bacteria and other substances into living cells. Jour. Inf. Dis.8: 348–360. 1911a.

    Google Scholar 

  7. —The effect on the protoplasm ofNitella of various chemical substances and of microorganisms introduced into the cavity of the living cell. Jour. Inf. Dis.9: 117–129. 1911b.

    CAS  Google Scholar 

  8. —The pipette method in the isolation of single microorganisms and in the inoculation of substances into living cells. Philippine Jour. Sci. B. Trop. Med.9 (4): 307–360. 1914.

    Google Scholar 

  9. — Use of the single cell method in obtaining pure cultures of anaerobes. Jour. Exp. Med.32: 295–312. 1920.

    Google Scholar 

  10. Battista, O. A. Micrurgy—a new science. Columbia Mag.26: 4, 23. 1947.

    Google Scholar 

  11. Baumgartner, G. Infektionsversuche mit isolierten oxychromatischen Einschlussen des Herpes. Schweiz. Med. Wochenschr.16: 759–760. 1935.

    Google Scholar 

  12. Bawden, F. C., andB. Kassanis. Some effects of host plant nutrition on the multiplication of viruses. Ann. Appl. Biol.37: 215–227. 1950.

    CAS  Google Scholar 

  13. Bayliss, W. M. The properties of colloidal systems. IV. Reversible gellation in living protoplasm. Proc. Roy. Soc. B.91: 196–201. 1920.

    Google Scholar 

  14. Beale, H. P. Relation of Stanley’s crystalline tobacco-virus protein to intracellular crystalline deposits. Contr. Boyce Thomp. Inst.8: 413–431. 1937.

    Google Scholar 

  15. Benda, G. T. A. Infection following virus inoculation of single plant cells. [Abs.] Plant Physiol.31 (suppl.): X 1956a.

    Google Scholar 

  16. —Infection ofNicotiana glutinosa L. following injection of two strains of tobacco mosaic virus into a single cell. Virology2: 820–827. 1956b.

    PubMed  CAS  Google Scholar 

  17. Bergold, G. H. Insect viruses. Adv. Virus Res.1: 91–139. 1953.

    CAS  Google Scholar 

  18. Berkeley, G. H. Reactions of plants to virus infection. 34th Rep. Quebec Soc. Protect. Plants: 101–115. 1952.

  19. Buller, A. H. R. Researches on Fungi. Vol. IV. Further observations on the Coprini together with some investigations on social organization and sex in the Hymenomycetes. Longmans, Green & Co. London. New York. 1931.

    Google Scholar 

  20. — Researches on Fungi. Vol. V. Hyphal fusions and protoplasmic streaming in the higher fungi, together with an account of the production and liberation of spores inSporobolomyces, Tilletia, andSphaerobolus. Longmans, Green & Co. London. New York. 1933.

    Google Scholar 

  21. Burch, G. E. A simple method for accurate injection of small volumes of fluid. Proc. Soc. Exp. Biol. & Med.40: 676–678. 1939.

    Google Scholar 

  22. Bütschli, O. (1) Studien über die ersten Entwickelungsvorgange der Eizelle, die Zelltheilung und die Konjugation der Infusorien. Abhandl der Senckenberg. naturforsch. Ges.10. 1876.

  23. Bütschli, O.(2) Über die Entstehung des Schwarmsprosslings derPodophaya quadripartita Clp. u Schm. Legendi f. die Zoologischen Wiss. Polytech. Zur Carlsruhe: 1–23. 1876.

  24. Castle, E. S. Discontinuous growth of single plant cells measured at short intervals, and the theory of intussusception. Jour. Cell. & Compar. Physiol.15: 285–298. 1940.

    CAS  Google Scholar 

  25. Chambers, R. Some physical properties of cell nucleus. Science40: 824–827. 1914.

    PubMed  CAS  Google Scholar 

  26. — Microdissection studies on the germ cell. Science41: 290–293. 1915a.

    PubMed  Google Scholar 

  27. —Microdissection studies on the physical properties of protoplasm. Lancet-Clinic.113 (13): 363–365. 1915b.

    Google Scholar 

  28. — The microvivisection method. Biol. Bul.34: 121–136. 1918.

    Google Scholar 

  29. — A simple apparatus for micro-manipulation under the highest magnifications of the microscope. Science54: 411–413. 1921.

    PubMed  Google Scholar 

  30. — New apparatus and methods for the dissection and injection of living cells. Anat. Rec.24: 1–19. 1922.

    Google Scholar 

  31. -The physical structure of protoplasm as determined by microdissection and injection. Section V: 237–309. Cowdry, E. V. General Cytology. Ed. 2. Univ. Chicago Press. 754 pp. 1924.

  32. — The physical properties of protoplasm. Mayo Foundation Lectures: 113–132. W. B. Saunders Co. Philadelphia and London. 244 pp. 1927.

    Google Scholar 

  33. —The nature of the living cell as revealed by micro-dissection. Harvey Lecture Ser. XXII: 41–58. 1928a.

    Google Scholar 

  34. — The nature of living cells as revealed by micro-manipulation.Alexander, J. Colloidal Chemistry, Theoretical and Applied. Vol. II: 467–486 The Chemical Catalog Co. New York: 1928b.

    Google Scholar 

  35. - Hydrogen ion concentration of protoplasm. Bul. Nat. Res. Council, No. 69: 37–47. Washington, D.C. 1929a.

  36. - The oxidation-reduction potential of protoplasm. Bul. Nat. Res. Council. No. 69: 48–50. Washington, D.C. 1929b.

  37. — The body as a biochemical mechanism: Is it? Symposium on Physical Education & Health. New York Univ. Press., 118–126, NewYork. 1930a.

    Google Scholar 

  38. —Vital staining with Methyl Red. Proc. Soc. Exp. Biol. & Med.27: 809–811. 1930b.

    CAS  Google Scholar 

  39. —The living cell. Chap.I: 17–39.Harrow, B. andC. P. Sher-win. A Textbook of Biochemistry. W. B. Saunders Co. Philadelphia. 797 pp. 1935.

    Google Scholar 

  40. —Blue nuclei in tulip petals. Amer. Jour. Bot.28: 445–446. 1941.

    CAS  Google Scholar 

  41. — andM. Black. Electrolytes and nuclear structure of the cells of the onion bulb epidermis. Amer. Jour. Bot.28: 364–371. 1941.

    CAS  Google Scholar 

  42. — andH. P. Hale. The formation of ice in protoplasm. Proc. Roy. Soc. B110: 336–352. 1932.

    CAS  Google Scholar 

  43. — andK. Hofler. Micrurgical studies on the tonoplast ofAllium cepa. Protoplasma12: 338–355. 1931.

    Google Scholar 

  44. — andT. Kerr. Intracellular hydrion concentration studies VIII. Cytoplasm and vacuole ofLimnobium root-hair cells. Jour. Cell & Compar. Physiol.2: 105–119. 1932.

    CAS  Google Scholar 

  45. — andM. J. Kopac. Micrurgical technique for the study of cellular phenomena. McClung’s Handbook of Microscopical Technique: 62–109. Ed. 2.Paul B. Hoeber, Inc. New York. 698 pp. 1937.

    Google Scholar 

  46. — andH. C. Sands. A dissection of the chromosomes in the pollen mother cells ofTradescantia virginica. Jour. Gen. Physiol.5: 815–819. 1923.

    Google Scholar 

  47. Demoor, J. Contribution à l’étade de la physiologie de la cellule (independence fonctionnelle du protoplasme et du noyau). Arch. Biol.13: 163–244. 1894.

    Google Scholar 

  48. Doolittle, S. P., andM. N. Walker. Aphis transmission of cucumber mosaic. [Abs.] Phytopath.18: 143. 1928.

    Google Scholar 

  49. Dujardin, F. F. Recherches sur les organismes inferieur. Ann. Sci. Nat. II. Zool.4: 343–376. 1835.

    Google Scholar 

  50. Duryea, W. R. R. Chambers, pioneer in the study of living cells. Science126: 645. 1957.

    Google Scholar 

  51. Eames, A. J., andL. H. MacDaniels. An Introduction to Plant Anatomy. Ed. 1 & 2. McGraw-Hill Book Co. New York. 1925, 1947.

    Google Scholar 

  52. Ewart, A. J. On the physics and physiology of protoplasmic streaming in plants. Oxford, England. 1902.

  53. Farr, W. K. X-Ray diffraction patterns of cellulose particles and interpretations of cellulose diffraction data. Contr. Boyce-Thomp. Inst.6: 315–321. 1934.

    CAS  Google Scholar 

  54. —Certain colloidal reactions of cellulose membranes. Jour. Phys. Chem.41: 987–995. 1937.

    CAS  Google Scholar 

  55. — The microscopic structure of plant cell membranes in relation to the micellar hypothesis. Jour. Phys. Chem.42: 1113–1147. 1938.

    CAS  Google Scholar 

  56. — andS. H. Eckerson. Separation of cellulose particles in membranes of cotton fibers by treatment with hydrochloric acid. Contr. Boyce-Thomp. Inst.6: 309–313. 1934.

    CAS  Google Scholar 

  57. — andW. A. Sisson. Observations on the membranes of epidermal cells of theAvena coleoptile. Contr. Boyce-Thomp. Inst.10: 127–137. 1939.

    CAS  Google Scholar 

  58. Fife, J. M., andV. L. Frampton. The pH gradient extending from the phloem into the parenchyma of the sugar beet and its relation to the feeding behavior ofEutettix tenellus. Jour. Agr. Res.53: 581–593. 1936.

    CAS  Google Scholar 

  59. Flemming, W. Neue Beiträge zur Kenntnis der Zelle. II. Theil. Arch. Mikr. Anat.37: 685–751. 1891.

    Google Scholar 

  60. Franz, E., E. Schiebold, andC. Weygand. Über den morphologischen Aufbau der Bakterienzellulose. Natarwiss.31: 350. 1943.

    CAS  Google Scholar 

  61. French, C. S., andM. L. Anson. Oxygen production by isolated chloroplasts. Amer. Jour. Bot. (Suppl.)28: 12s. 1941.

    Google Scholar 

  62. Frey-Wyssling, A. Submicroscopic morphology of protoplasm and its derivatives. Eisevier Publ. Co. Amsterdam, New York, London. 255 pp. 1948.

    Google Scholar 

  63. Gee, A. H., andG. A. Hunt. Single cell technic. A presentation of the pipette method as a routine laboratory procedure. Jour. Bact.16: 327–347. 1928.

    CAS  Google Scholar 

  64. Gelfan, S. The electrical conductivity of protoplasm and a new method of its determination. Univ. Calif. Publ. Zool.29: 453–465. 1927.

    CAS  Google Scholar 

  65. Glaser, R. W. The germ-free culture of certain invertebrates. Chap. 7: 164–184.Reyniers, J. A. Micrurgical and Germ-Free Methods. Chas. C. Thomas. Springfield, Ill. 274 pp. 1943.

    Google Scholar 

  66. — andH. A. Coria. The culture and reactions of purified protozoa. Amer. Jour. Hyg.21: 111–121. 1935.

    Google Scholar 

  67. Gordon, H. K., andR. Chambers. The particle size of acid dyes and their diffusibility into living cells. Jour. Cell. & Compar. Physiol.17: 97–108. 1941.

    CAS  Google Scholar 

  68. Green, P. B., andG. B. Chapman. On the development and structure of the cell wall inNitella. Amer. Jour. Bot.42: 685–693. 1955.

    Google Scholar 

  69. Guilliermond, A. Observations vitales sur le chondriome des végétaux et recherches sur l’origine des chromoplastides et le mode de formation des pigments xanthophylliens and carotinians. Rev. Gen. Bot.36: 372–416. 1919.

    Google Scholar 

  70. — Recherches ultramicroscopiques sur les cellules végétales. Rev. Gen. Bot.42: 129–143. 1930.

    Google Scholar 

  71. Gutterberg, H. V. 1943. The cultivation of isolated plant cells. Planta.33: 576–588. 1943.

    Google Scholar 

  72. Heilbrunn, L. V. Studies in artificial parthenogenesis. II. Physical changes in the egg ofArbacia. Biol. Bull.29: 149–203. 1915.

    Google Scholar 

  73. —The physical effects of anesthetics upon living protoplasm. Biol. Bull.39: 307–315. 1920.

    Google Scholar 

  74. — Protoplasmic viscosity changes during mitosis. Jour. Exp. Zool.34: 417–447. 1921.

    CAS  Google Scholar 

  75. Heilbronn, A. Eine neue Methode zur Bestimmung der Viskosität leben der Protoplasten. Jahr. Wiss. Bot.61: 284–338. 1922.

    Google Scholar 

  76. Heilbrunn, L. V. The Dynamics of Living Protoplasm. Acad. Press, Inc. New York. 325 pp. 1956.

    Google Scholar 

  77. Hildebrand, E. M. Infectivity of the fire blight organism. Phytopath.27: 850–852. 1937.

    Google Scholar 

  78. — Techniques for the isolation of single micro-organisms. Bot. Rev.4: 627–664. 1938a.

    Google Scholar 

  79. — Growth rates of phytopathogenic bacteria. Jour Bact.35: 487–492. 1938b.

    CAS  Google Scholar 

  80. — Strains of the fire blight organism. [Abs.] Phytopath.30: 9. 1940a.

    Google Scholar 

  81. — Cane gall of brambles caused byPhytomonas rubi n. sp. Jour. Agr. Res.61: 688–696. 1940b.

    Google Scholar 

  82. — Micrurgical studies with special reference to the infection mechanism in tomato. [Abs.] Phytopath.31: 13–14. 1941a.

    Google Scholar 

  83. — Rapid transmission of yellow-red virosis in peach. Contr. Boyce-Thomp. Inst.11: 485–496. 1941b.

    Google Scholar 

  84. — A micrurgical study of crown gall infection in tomato. Jour. Agr. Res.65: 45–59. 1942a.

    Google Scholar 

  85. — A darkening technique for inducing virus symptoms in mature as well as in growing leaves. Science95: 390. 1942b.

    PubMed  Google Scholar 

  86. — Micrurgy and botany with special reference to phytopathology. Chap.3: 72–92.Reyniers, J. A. Micrurgical and Germ-Free Methods. Chas. C. Thomas. Springfield, Ill. 274 pp. 1943.

    Google Scholar 

  87. — Techniques for the isolation of single microorganisms. II. Bot Rev.16: 181–207. 1950.

    Google Scholar 

  88. — Relative stability of fire blight bacteria. Phytopath,44: 192–197. 1954.

    Google Scholar 

  89. — Sweetpotato internal cork virosis indexed on Scarlett O’Hara morning glory. Science123: 605–507. 1956a.

    Google Scholar 

  90. — Cork virus leaf spots on Triumph sweetpotato contain separated parenchyma cells. Science123: 1034–1035. 1956b.

    PubMed  Google Scholar 

  91. — Rapid inoculation techniques for mechanical transmission of sweetpotato internal cork virus. Plant Dis. Rep.40: 527–530. 1956c.

    Google Scholar 

  92. — The mechanism of virus inoculation in plants. [Abs.] Phytopath48. 262–263. 1958.

    Google Scholar 

  93. — andL. H. MacDaniels. Modes of entry ofErwinia amylovora into the principal pome fruits [Abs.] Phytopath.25: 20. 1935.

    Google Scholar 

  94. C. E. Steinbauer, C. Drechsler, andE. C. Tatman. Studies on sweetpotato stem rot or wilt and its causal agent. Plant Dis. Rep.42: 112–121. 1958.

    Google Scholar 

  95. Hofmeister, W. Die Lehre von der Pflanzen Zelle. Leipzig. Handb. Physiol. Bot. Vol.1: 1–404. 1867.

    Google Scholar 

  96. Hofmeister, L. Mikrurgische Studien an Diatomeen. Seits. Wiss. Mikr.57: 259–273. 1940a.

    Google Scholar 

  97. — Studien über Mikroinjektion in Planzenzellen. Zeits. Wiss. Mikr.57: 274–290. 1940b.

    Google Scholar 

  98. Howland, R. B., andA. Bernstein. A method for determining the oxygen consumption of a single cell. Jour. Gen. Physiol.14: 339–348. 1931.

    CAS  Google Scholar 

  99. Iwanowski, D. Über die Mosaikkrankheit der Tabakopflanze. Zeits. Pflanzenkr.13: 1–41. 1903.

    Google Scholar 

  100. Jackson, R. C. Low chromosome number for plants. Science126: 1115–1116. 1957.

    Google Scholar 

  101. Kamiya, N. The control of protoplasmic streaming. Science.92: 462. 1940.

    PubMed  Google Scholar 

  102. Kassanis, B., andF. M. L. Sheffield. Variations in the cytoplasmic inclusions induced by three strains of the tobacco mosaic virus. Ann. Appl. Biol.28: 360–367. 1941.

    Google Scholar 

  103. Kelly, S. M., andL. M. Black. The origin, development and cell structure of a virus tumor in plants. Amer. Jour. Bot.36: 65–73. 1949.

    CAS  Google Scholar 

  104. Kerr, T., andI. W. Bailey. The cambium and its derivative tissues. X. Structure, optical properties, and chemical composition of the socalled middle lamella. Jour. Arn. Arb.15: 327–349. 1934.

    Google Scholar 

  105. Kite, G. L. The nature of the fertilization membrane of the egg of the sea urchin (Arbacia punctulata). Science (N.S.)36: 562–564. 1912.

    Google Scholar 

  106. — The relative permeability of the surface and interior portions of the cytoplasm of animal and plant cells. Biol. Bull.25: 1–7. 1913a.

    Google Scholar 

  107. — Studies on the physical properties of protoplasm. Amer. Jour. Physiol.32: 146–164. 1913b.

    Google Scholar 

  108. — Studies on the permeability of the internal cytoplasm of animal and plant cells. Amer. Jour. Physiol.37: 282–299. 1915.

    CAS  Google Scholar 

  109. — andR. Chambers. Vital staining of chromosomes and the function and structure of the nucleus. Science36: 639–641. 1912.

    PubMed  Google Scholar 

  110. Kuhne, W. Untersuchungen über das Protoplasma und die Contractilitát. Leipzig. 1864.

  111. Lepeschkin, W. Kolloidchemie des Protoplasmas. Verlag von Julius Springer Berlin. 228 pp. 1924.

  112. Lister, A. Notes on the plasmodium ofBadhamia utricularis andBrefeldia maxima. Ann Bot.2: 1–24. 1888.

    Google Scholar 

  113. Livingston, L. G., andB. M. Duggar. Experimental procedures in a study of the location and concentration within the host cells of the virus of tobacco mosaic. Biol. Bull.67: 504–512. 1934.

    Google Scholar 

  114. Luria, S. E. General Virology. John Wiley & Sons. New York. 427 pp. 1953.

    Google Scholar 

  115. McClung, L. S. Recent developments in microbiological techniques. Ann. Rev. Microbiol.1: 395–422. 1949.

    Google Scholar 

  116. McWhorter, F. P. Chlorazol Fast Pink B and Trypan Blue tests for virus and other proteinaceous inclusions. Stain Techn.32: 135–138. 1957.

    PubMed  CAS  Google Scholar 

  117. — andW. C. Price. Evidence that two different plant viruses can multiply simultaneously in the same cell. Science109: 116–117. 1949.

    PubMed  Google Scholar 

  118. Maramorosch, K. Semiautomatic equipment for injecting insects with measured amounts of liquids containing viruses or toxic substances. Phytopath.46: 188–190. 1956.

    Google Scholar 

  119. —,M. K. Brakke, andL. M. Black. Mechanical transmission of a plant tumor virus to an insect vector. Science110: 162–163. 1949.

    PubMed  Google Scholar 

  120. Muhlethaler, K. Electron micrographs of plant fibers. Biochim. Biophys. Acta3: 15–25. 1949a.

    CAS  Google Scholar 

  121. — The structure of bacterial cellulose. Biochim. Biophys. Acta3: 527. 1949b.

    CAS  Google Scholar 

  122. — Electron microscopy of developing plant cell walls. Biochim. Biophys. Acta5: 1–9. 1950.

    PubMed  CAS  Google Scholar 

  123. — The structure of plant slimes. Exp. Plant Res.1: 341–350. 1950.

    CAS  Google Scholar 

  124. Nageli, O. Von. Cell nuclei, cell formation and cell growth in plants. Zeits. Wiss. Bot.3&4: 22–253. 1846.

    Google Scholar 

  125. Needham, J., andD. M. Needham. The hydrogen-ion concentration and oxidation reduction potential of the cell interior: a microinjection study. Proc. Roy. Soc. [London]. B98: 259. 1925.

    Google Scholar 

  126. Nemec, B. Über Pflanzentumoren. Arch. Zellforsch.6: 172–177. 1928.

    Google Scholar 

  127. Nichols, S. P. Methods of healing in some algal cells. Amer. Jour. Bot.9: 18–27. 1922.

    Google Scholar 

  128. —The effect of wounds upon the rotation of the protoplasm in the internodes of Nitella. Bull. Torrey Bot. Club.52: 351–363. 1925.

    CAS  Google Scholar 

  129. Norman, A. G. The Biochemistry of Cellulose, the Polyuronides, Lignin, etc. Oxford Clarendon Press. 237 pp. 1937.

  130. Overton, E. Studien über die Aufnahme der Anilinfarben durch die lebende Zelle. Jahrb. Wiss. Bot.34: 669–701. 1900.

    Google Scholar 

  131. Peterfi, T. Mikrurgische Methodik. Handb. Biol. Arbeitsmeth. (Abderhalden).5: 479–516. 1923.

    Google Scholar 

  132. — Die heizbare feuchte Kammer. Leit. Wiss. Mikroskop.44: 296–308. 1927.

    Google Scholar 

  133. Pfeffer, W. Zur Kenntnis der Plasmahaut und der Vacuolen nebst Bemerkungen über den Aggregatszustand des Protoplasmas und über osmotische Untersuchungen. Abhandl. Math. Physik. Kl. K., Sachs. Ges. Wiss.16: 187–343. 1900.

    Google Scholar 

  134. Pinoy, P. E. A propos du cancer des plantes on crown gall. Compt. Rend. Acad. Sci. [Paris]180: 311–313. 1925.

    Google Scholar 

  135. Policard, A. La méthode de la microincinération, exposé practique. 50 pp. 1939.

  136. Porter, K. R., A. Claude, andE. F. Fullam. A study of tissue culture cells by electron microscopy. Methods and preliminary observations. Jour. Exp. Med.81: 233–246. 1945.

    Google Scholar 

  137. Preston, R. D., E. Nicolai, R. Reed, andA. Millard. An electron microscope study of cellulose in the cell wall ofValonia ventricosa. Nature162: 665–667. 1948.

    CAS  Google Scholar 

  138. Pringsheim, E. G. Pure cultures of algae. Their preparation and maintenance. Cambridge Univ. Press. London, New York. 119 pp. 1946.

    Google Scholar 

  139. Riker, A. J., W. M. Banfield, W. H. Wright, G. W. Keitt, andH. E. Sagen. Studies on infectious hairy root of nursery apple trees. Jour. Agr. Res.41: 507–540. 1930.

    Google Scholar 

  140. Sands, H. E. The structure of the chromosomes inTradescantia virginica L. Amer. Jour. Bot.10: 343–360. 1923.

    Google Scholar 

  141. — A microdissection of the pachytene threads ofTradescantia virginica L. with observations on some aspects of mitosis. Jour. Gen. Physiol.9: 181–190. 1925.

    Google Scholar 

  142. Santiago, J. C. The importance of single spore techniques on rust work. Robigo1956 (2): 11–12. 1956.

    Google Scholar 

  143. Scarth, G. W. XXVI. Adhesion of protoplasm to cell walls and the agents which cause it. Trans. Roy. Soc. Canada16: 137–143. 1923.

    Google Scholar 

  144. — The toxic action of distilled water and its antagonism by cations. Trans. Roy. Soc. Canada18: 97–104. 1924a.

    CAS  Google Scholar 

  145. — Colloidal changes associated with protoplasmic contraction. Quart. Jour. Exp. Physiol.14: 99–113. 1924b.

    CAS  Google Scholar 

  146. — The action of cations on the contraction and viscosity of protoplasm. Quart. Jour. Exp. Physiol.14: 114–122. 1924c.

    CAS  Google Scholar 

  147. —The influence of external osmotic pressure and of disturbance of the cell surface on the permeability ofSpirogyra for acid dyes. Protoplasma1: 204–213. 1926.

    CAS  Google Scholar 

  148. — The structural organization of plant protoplasm in the light of micrurgy. Protoplasma2: 189–205. 1927.

    Google Scholar 

  149. —The influence of H-ion concentration on the turgor and movement of plant cells with special reference to stomatal behavior. Proc. Int. Congr. Plant Sci. Vol.2: 1151–1162. 1929.

    CAS  Google Scholar 

  150. Schmidt, H. D. On the minute structure of the Hepatic lobules, particularly with reference to the relationship between the capillary blood vessels, the Hepatic cells, and the canals which carry off the secretion of the latter. Amer. Jour. Med. Sci. (N.S.)37: 2–40. Blanchard & Lea. Philadelphia. 1859.

    Google Scholar 

  151. Scott, F. M. Internal suberization of plant tissues. Science108: 654–655. 1948.

    PubMed  Google Scholar 

  152. —Plasmodesmata in xylem vessels. Bot. Gaz.110: 492–495. 1949.

    Google Scholar 

  153. —Internal suberization of tissues. Bot. Gaz.111: 378–394. 1950.

    CAS  Google Scholar 

  154. Scott, J. F. Electron micrograph studies on sodium desoxyribose nucleate. Biochem. et Biophys. Acta2: 1–6. 1948.

    CAS  Google Scholar 

  155. Schleiden, M. J. Beitrage zur Phytogenesis. Arch. Anat. Physiol. Wiss. Med: 137–176. 1838.

  156. Schultze, M. Das Protoplasma der Rhizopoden und der Pflanzenzellen; ein Beitrag zur Theorie der Zelle. Leipzig. 1863.

  157. Seifriz, W. Observations on the structure of protoplasm by aid of microdissection. Biol. Bull.34: 307–324. 1918.

    CAS  Google Scholar 

  158. — Viscosity values of protoplasm as determined by microdissection. Bot. Gaz.70: 360–386. 1920.

    Google Scholar 

  159. — Observations on some physical properties of protoplasm by aid of microdissection. Ann. Bot.35: 269–296. 1921.

    CAS  Google Scholar 

  160. — New material for microdissection. Protoplasma.3: 191–196. 1928.

    Google Scholar 

  161. -The viscosity of protoplasm. Bull. Nat. Res. Council. No.69: 229–261. Washington, D. C. 1929.

  162. — Alveolar structure of protoplasm. Protoplasma9: 177–208. 1930.

    Google Scholar 

  163. Sheffield, F. M. L. The formation of intracellular inclusions in Solanaceous hosts infected with aucuba mosaic on tomato. Ann. Appl. Biol.18: 471–493. 1931.

    Google Scholar 

  164. — The development of assimilatory tissue in Solanaceous hosts infected with aucuba mosaic of tomato. Ann. Appl. Biol.20: 57–69. 1933.

    Google Scholar 

  165. — Experiments bearing on the nature of intracellular inclusions in plant virus diseases. Ann. Appl. Biol.21: 430–453. 1934.

    Google Scholar 

  166. — The susceptibility of the plant cell to virus disease. Ann. Appl. Biol.23: 498–508. 1936.

    Google Scholar 

  167. — Micrurgical studies on virus infected plants. Proc. Roy. Soc. B.126 528–538. 1939a.

    Google Scholar 

  168. — X. Some effects of plant virus diseases on the cells of their host. Jour. Roy. Micr. Soc. III.59: 149–161. 1939b.

    Google Scholar 

  169. Sinke, N. Experimental studies on cell nuclei. Mem. Coll. Sci. Kyoto Imper. Univ. B.15: 1–126. 1939.

    Google Scholar 

  170. Smith, E. F., N. A. Brown, andL. McCulloch. The structure and development of crown gall, a plant cancer. U. S. Dept. Agr., Bur. Plant Ind., Bul. 255. 1912.

  171. Stanley, W. M. Chemical studies on the virus of tobacco mosaic. VI. The isolation from diseased Turkish tobacco plants of a crystalline protein possessing the properties of tobacco mosaic virus. Phytopath.26: 305–320. 1936.

    CAS  Google Scholar 

  172. Steere, R. L., andR. C. Williams. Identification of crystalline inclusion bodies extracted intact from plant cells infected with tobacco mosaic virus. Amer. Jour. Bot.40: 81–84. 1953.

    Google Scholar 

  173. Storey, H. H. Investigations of the mechanism of the transmission of plant viruses by insect vectors. I. Proc. Roy. Soc. [London] B.113: 463–485. 1933.

    Google Scholar 

  174. — Investigations of the mechanism of the transmission of plant viruses by insect vectors. II. The part played by puncture in transmission. Proc. Roy. Soc. B.125: 455–477. 1938.

    Google Scholar 

  175. —Investigations of the mechanism of the transmission of plant viruses by insect vectors. III. The insect’s saliva. Proc. Roy. Soc. B.127: 526–543. 1939.

    Google Scholar 

  176. Strugger, S. Untersuchungen an isolierten Kernen der Internodial Zellen vonChara fragilis Desv. Planta8: 717–741. 1928.

    Google Scholar 

  177. Taylor, C. V. An accurately controllable micropipette. Science51: 617–618. 1920.

    PubMed  CAS  Google Scholar 

  178. —, andD. M. Whitaker. Potentiometric determinations in the protoplasm and cell sap ofNitella. Protoplasma3:: 1–6. 1928.

    Google Scholar 

  179. Tilford, P. E. Fasciation of sweet peas caused byPhytomonas fas.cians. N. sp. Jour. Agr. Res.53: 383–394. 1936.

    Google Scholar 

  180. Thomas, R. C. Composition of fungus hyphae. I. The Fusaria. Amer. Jour. Bot.15: 537–547. 1928.

    CAS  Google Scholar 

  181. — Composition of fungus hyphae. II. Sclerotinia. Amer. Jour. Bot.17: 779–787. 1930.

    Google Scholar 

  182. Topler, F. Über Vernarbung und Wundreis in Algenzellen. Ber. Deut. Bot. Ges.21: 291–300. 1903.

    Google Scholar 

  183. Trager, W. Cultivation of the virus of grasserie in silkworm tissue cultures. Jour. Exp. Med.61: 501–513. 1935.

    Google Scholar 

  184. Van Iterson, G. De Wording van den plantaardigen celwand. Chem. Weekblad.24: 166–187. 1927.

    CAS  Google Scholar 

  185. Viegas, A. P., andE. M. Hildebrand. Acetylene microburner for making micropipettes for micromanipulator. Phytopath.46: 698. 1956.

    Google Scholar 

  186. Von Mohl, H. Über die Verbindung der Zellen untereinander. Diss., Tubingen. 1835.

  187. — Über die Saftbewegung im Innere der Zelle. Bot. Zeit.4: 73–78, 89–94. 1846.

    Google Scholar 

  188. Wada, B. Anstichversuche an der Zellen der Staubfadenhaare vonTradescantia virginka, Cytologia1: 404–416. 1930.

    Google Scholar 

  189. Wright, W. H. A convenient case for sterilizing and storing micropipettes. Jour. Bact.17: 10. 1829.

    Google Scholar 

  190. — andE. F. McCoy. An accessory to the Chambers’ apparatus for the isolation of single bacterial cells. Jour. Lab. & Clin. Med.12: 795–800. 1927.

    Google Scholar 

  191. — andA. A. Hendrickson, andA. J. Riker. Studies on the progeny of single cell isolations from the hairy root and crown gall organisms. Jour. Agr. Res.41: 541–547. 1930.

    Google Scholar 

  192. Wyckoff, R. W. G, The electron microscopy of developing bacteriophage. I. Plaques on solid media. Biochim. et Biophys. Acta2: 27–37. 1948.

    Google Scholar 

  193. — Electronmicroscopy. Technique and Application. Interscience Publ., Inc. New York. 248 pp. 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildebrand, E.M. Micrurgy and the plant cell. Bot. Rev 26, 277–330 (1960). https://doi.org/10.1007/BF02860806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860806

Keywords

Navigation