Skip to main content
Log in

Ceanothus megacarpus chaparral: A synthesis of ecosystem processes during development and annual growth

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

The evergreen sclerophyll shrub,Ceanothus megacarpus, dominates the chaparral in many areas of the Santa Ynez Mountains, Santa Barbara County, California, USA. Often occurring in pure stands,C. megacarpus chaparral accumulates large amounts of aboveground live biomass during growth after fire as a result of high rates of net primary productivity (850 g/m2/yr) compared to other chaparral areas and Mediterranean scrublands of the world. Populations ofC. megacarpus are even-aged, growing from buried seed which requires heat treatment for germination. During the early years of stand development after fire, competition for water among the shrubs results in mortalities of up to 50% of the initial population. This competition is evident by changes in the population size-structure and dispersion pattern of the living shrubs. Water potential measurements during the summer drought show that smaller individuals are more severely stressed than larger individuals. Similarly, shrubs in younger stands develop lower water potentials than shrubs in older stands. There is little mortality after 15 to 20 years of growth; competition for water is alleviated in older stands presumably because the surviving shrubs have developed more extensive root systems. Leaf area reaches a steady-state of 1.6 m2/m2 in 20-year-old stands. At this stage of development, competition for light is manifest in shrub physiognomy, particularly in the death of lower branches.

Nutrient losses occur as a result of volatilization and erosion due to fire, and long periods of time are apparently necessary to replace nutrients such as nitrogen from atmospheric sources. Nevertheless, stands ofC. megacarpus show little evidence of nutrient deficiencies. Decomposition of plant detritus is rapid and this species shows efficient internal nutrient use. Up to 46% of the nitrogen and 56% of the phosphorus needed for annual growth are supplied by reabsorption from senescing foliage before abscission. These aspects of nutrient cycling may help explain the long-term persistence and sustained productivity of chaparral dominated byC. megacarpus in this area of California.

Résumé

L’arbuste sclérophylle sempervivantCeanothus megacarpus domine la végétationchaparral de beaucoup de régions des montagnes Santa Ynez du comté de Santa Barbara dans la Californie des Etats-Unis. Souvent en futaies pures, ce chaparral àC. megacarpus produit une très grande biomasse aérienne vivante pendant un accroissement qui suit un feu et qui résulte d’une productivité primaire nette de 850 g/m2/an en comparaison d’autres régions dechaparral et de formations ligneuses basses du type méditerrané du monde. Les arbustes des peuplements deC. megacarpus sont tous du même âge parce qu’ils sont nés de graines dans le sol dont la germination exige la chaleur de feu. Pendant les premières années d’accroisement après un feu, la moitié des arbustes meurt à cause d’une compétition pour l’eau mise en évidence par des modifications aportées à la distribution des classes des diamètres des bases dans le peuplement et à la distribution spatiale des arbustes vivants. Des mesures de potentiel hydrique pendant la sécheresse d’été montrent que les petits individus sont plus affectés que les grands. Les arbustes de futaies plus jeunes ont de potentiel hydrique plus bas que ceux de futaies plus âgées. Il y a moins de mortalité à partir de 15 à 20 ans; la compétition pour l’eau ralentit chez les arbustes plus âgés, probablement parce que ceux-ci ont une plus grande biomasse racinaire. La surface de feuilles des arbustes de futaies âgées de 20 ans atteint 1,6 m2/m2, étage de développement où la compétition pour la lumière se manifeste par la mort des branches les plus basses.

Les éléments minéraux se perdent à cause de volitilization et de feu, et il semble qu’il faille beaucoup de temps pour remplacer de l’atmosphère des minéraux tels que l’azote. Néanmoins les futaies deC. megacarpus ne semblent pas avoir un minéralomasse insuffisante. La matière organique d’origine végétale se décompose rapidement etC. megacarpus utilise efficacement les minéraux produits par ce moyen. Jusqu’à 45% de l’azote et 56% du phosphore pour l’accroissement annuel se fournissent par une réabsorption de produits dans des feuilles en sénescence avant la perte de ces structures. Ces aspects de cycles d’éléments minéraux peuvent contribuer à expliquer la longue persistence et la productivité soutenue du chaparral àC. megacarpus de cette région de la Californie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Antonovics, J. andD. A. Levin. 1980. The ecological and genetic consequences of densitydependent regulation in plants. Annual Rev. Ecol. Syst.11: 411–452.

    Google Scholar 

  • Axelrod, D. I. 1977. Outline history of California vegetation. Pp. 139–193in M. G. Barbour and J. Major (eds.). Terrestrial vegetation of California. John Wiley, New York.

    Google Scholar 

  • — 1978. The origin of coastal sage vegetation, Alta and Baja California. Amer. J. Bot.65: 1117–1131.

    Google Scholar 

  • Bauer, H. L. 1936. Moisture relations in the chaparral of the Santa Monica Mountains, California. Ecol. Monogr.6: 409–454.

    Google Scholar 

  • Birk, E. M. andR. W. Simpson. 1980. Steady state and the continuous input model of litter accumulation and decomposition in Australian eucalypt forests. Ecology61: 481–485.

    Google Scholar 

  • Biswell, H. H. 1974. Effects of fire on chaparral. Pp. 321–364in T. T. Kozlowski and C. E. Ahlgren (eds.). Fire and ecosystems. Academic Press, New York.

    Google Scholar 

  • Bjørndalen, J. E. 1978. The chaparral vegetation of Santa Cruz Island, California. Norweg. J. Bot.25: 255–269.

    Google Scholar 

  • Bonnicksen, T. M. 1977. A policy-oriented simulation model of debris production from a chaparral-covered watershed. Pp. 431–442in H. A. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S. Forest Service, Washington, General Technical Report WO-3.

    Google Scholar 

  • Bugbee, R. E. 1971. A new species of ArizonaEurytoma phytophagous inCeanothus greggii seeds. J. Kansas Entomol. Soc.44: 111–112.

    Google Scholar 

  • Burk, J. H. 1978. Seasonal and diurnal water potentials in selected chaparral shrubs. Amer. Midl. Naturalist99: 244–248.

    Google Scholar 

  • Byrne, R., J. Michaelsen andA. Soutar. 1977. Fossil charcoal as a measure of wildfire frequency in southern California: A preliminary analysis. Pp. 361–367in H. A. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S. Forest Service, Washington, General Technical Report WO-3.

    Google Scholar 

  • Campbell, B. 1980. Some mixed hardwood forest communities of the coastal ranges of southern California. Phytocoenologia8: 297–320.

    Google Scholar 

  • Christensen, N. L. 1973. Fire and the nitrogen cycle in California chaparral. Science181: 66–68.

    PubMed  CAS  Google Scholar 

  • — 1977. Changes in structure, pattern and diversity associated with climax forest maturation in Piedmont, North Carolina. Amer. Midl. Naturalist97: 176–188.

    Google Scholar 

  • — andC. H. Muller. 1975. Effects of fire on factors controlling plant growth inAdenostoma chaparral. Ecol. Monogr.45: 29–55.

    Google Scholar 

  • Clark, P. J. andF. C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology35: 445–453.

    Google Scholar 

  • Cody, M. L. andH. A. Mooney. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annual Rev. Ecol. Syst.9: 265–321.

    Google Scholar 

  • Cooper, C. F. 1961. Pattern in ponderosa pine forests. Ecology42: 493–499.

    Google Scholar 

  • Cooper, W. S. 1922. The broad-sclerophyll vegetation of California; An ecological study of the chaparral and its related communities. Publ. Carnegie Inst. Wash. No. 319.

  • Curtis, J. D. 1952. Effect of pregermination treatments on the viability ofCeanothus seed. Ecology33: 577–578.

    Google Scholar 

  • DeBano, L. F. and C. E. Conrad. 1976. Nutrients lost in debris and runoff water from a burned chaparral watershed. Pp. 3–13 to 3–27in Proceedings of the third federal interagency sedimentation conference. Denver, Colorado.

  • ——. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology59: 489–497.

    CAS  Google Scholar 

  • —,G. E. Eberlein andP. H. Dunn. 1979. Effects of burning on chaparral soils: I. Soil nitrogen. Soil Sci. Soc. Amer. J.43: 504–509.

    CAS  Google Scholar 

  • Delwiche, C. C., P. J. Zinke andC. M. Johnson. 1965. Nitrogen fixation byCeanothus. Pl. Physiol.40: 1045–1047.

    CAS  Google Scholar 

  • Dibblee, T. W. 1966. Geology of the central Santa Ynez Mountains, Santa Barbara County, California. California Division of Mines and Geology, San Francisco, Geological Bulletin 186.

    Google Scholar 

  • Dunn, P. H. andL. F. DeBano. 1977. Fire’s effect on biological and chemical properties of chaparral soils. Pp. 75–84in H. A. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S. Forest Service, Washington, General Technical Report WO-3.

    Google Scholar 

  • —— andG. E. Eberlein. 1979. Effects of burning on chaparral soils: II. Soil microbes and nitrogen mineralization. Soil Sci. Soc. Amer. J.43: 509–514.

    CAS  Google Scholar 

  • Duvigneaud, P. andS. Denaeyer-De Smet. 1970. Biological cycling of minerals in temperate deciduous forests. Pp. 199–225in D. E. Reichle (ed.). Analysis of temperate forest ecosystems. Springer Verlag, New York.

    Google Scholar 

  • Epstein, E. 1965. Mineral metabolism. Pp. 438–466in J. Bonner and J. E. Varner (eds.). Plant biochemistry. Academic Press, New York.

    Google Scholar 

  • Fonteyn, P. J. andB. E. Mahall. 1981. An experimental analysis of structure in a desert plant community. J. Ecol.69: 883–896.

    Google Scholar 

  • Foster, N. W. andI. K. Morrison. 1976. Distribution and cycling of nutrients in a naturalPinus banksiana ecosystem. Ecology57: 110–120.

    CAS  Google Scholar 

  • Gill, D. S. 1982. A quantitative description of the phenology of an evergreen and a deciduous shrub species with reference to temperature and water relations in the Santa Ynez Mountains, Santa Barbara County, California. M.A. Thesis, University of California, Santa Barbara.

    Google Scholar 

  • Goodall, D. W. andN. E. West. 1979. A comparison of techniques for assessing dispersion patterns. Vegetatio40: 15–27.

    Google Scholar 

  • Gray, J. T. 1981. Production, nutrient cycling, and nutrient resource-use inCeanothus chaparral and coastal sage scrub of southern California. Ph.D. Thesis, University of California, Santa Barbara.

    Google Scholar 

  • — andW. H. Schlesinger. 1981a. Biomass, production, and litterfall in the coastal sage scrub of southern California. Amer. J. Bot.68: 24–33.

    Google Scholar 

  • ——. 1981b. Nutrient cycling in Mediterranean type ecosystems. Pp. 259–285in P. C. Miller (ed.). Resource use by chaparral and matorral. Springer Verlag, New York.

    Google Scholar 

  • Grier, C. C. 1975. Wildfire effects on nutrient distribution and leaching in a coniferous forest ecosystem. Canad. J. Forest Res.5: 599–607.

    CAS  Google Scholar 

  • Griffin, J. R. 1973. Xylem sap tension in three woodland oaks of central California. Ecology54: 152–159.

    Google Scholar 

  • Gutiérrez, J. R. andE. R. Fuentes. 1979. Evidence for intraspecific competition in theAcacia caven (Leguminosae) savanna of Chile. Oecol. Pl.14: 151–158.

    Google Scholar 

  • Hadley, E. B. 1961. Influence of temperature and other factors onCeanothus megacarpus seed germination. Madrono16: 132–138.

    Google Scholar 

  • Hanes, T. L. 1965. Ecological studies on two closely related chaparral shrubs in southern California. Ecol. Monogr.35: 213–235.

    Google Scholar 

  • — 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr.41: 27–52.

    Google Scholar 

  • — 1977. California chaparral. Pp. 417–469in M. G. Barbour and J. Major (eds.). Terrestrial vegetation of California. John Wiley, New York.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, New York.

    Google Scholar 

  • — andJ. White. 1971. The dynamics of plant populations. Pp. 41–63in P. J. den Boer and G. R. Gradwell (eds.). Dynamics of populations. Center for Agricultural Publication and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  • Hellmers, H., J. F. Bonner andJ. M. Kelleher. 1955a. Soil fertility: A watershed management problem in the San Gabriel Mountains of southern California. Soil Sci.80: 189–197.

    Google Scholar 

  • —,J. S. Horton, G. Juhren andJ. O’Keefe. 1955b. Root systems of some chaparral plants in southern California. Ecology36: 667–678.

    Google Scholar 

  • Heusser, L. 1978. Pollen in Santa Barbara Basin, California: A 12,000-yr record. Bull. Geol. Soc. Amer.89: 673–678.

    Google Scholar 

  • Hill, M. O. 1973. The intensity of spatial pattern in plant communities. J. Ecol.61: 225–235.

    Google Scholar 

  • Hochberg, M. C. 1980. Factors affecting leaf size of chaparral shrubs on the California islands. Pp. 189–206in D. M. Power (ed.). The California islands: Proceedings of a multidisciplinary symposium. Santa Barbara Museum of Natural History, Santa Barbara, California.

    Google Scholar 

  • Horton, J. S. andC. J. Kraebel. 1955. Development of vegetation after fire in the chamise chaparral of southern California. Ecology36: 244–262.

    Google Scholar 

  • Jow, W. M., S. H. Bullock andJ. Kummerow. 1980. Leaf turnover rates ofAdenostoma fasciculatum (Rosaceae). Amer. J. Bot.67: 256–261.

    Google Scholar 

  • Keeley, J. E. 1975. Longevity of nonsproutingCeanothus. Amer. Midl. Naturalist93: 504–507.

    Google Scholar 

  • — 1977. Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and nonsprouting chaparral shrubs. Ecology58: 820–829.

    Google Scholar 

  • — 1981. Reproductive cycles and fire regimes. Pp. 231–277in H. A. Mooney, J. M. Bonnicksen, N. L. Christensen, J. E. Lotan and W. A. Reiners (eds.). Fire regimes and ecosystem properties. U.S. Forest Service, Washington, General Technical Report WO-26.

    Google Scholar 

  • — andP. H. Zedler. 1978. Reproduction of chaparral shrubs after fire: A comparison of sprouting and seeding strategies. Amer. Midl. Naturalist99: 142–161.

    Google Scholar 

  • Kent, B. M. andP. E. Dress. 1980. On the convergence of forest stand spatial pattern over time: The cases of regular and aggregated initial spatial patterns. Forest Sci.26: 10–22.

    Google Scholar 

  • Kira, T., H. Ogawa andN. Sakazaki. 1953. Intraspecific competition among higher plants. I. Competition-yield-density interrelationship in regularly dispersed populations. J. Inst. Polytech., Osaka City Univ. Ser. D, Biol.4: 1–16.

    Google Scholar 

  • Kittredge, J. 1955. Litter and forest floor of the chaparral in parts of the San Dimas Experimental Forest, California. Hilgardia23: 563–596.

    Google Scholar 

  • Kummerow, J., J. V. Alexander, J. W. Neel andK. Fishbeck. 1978a. Symbiotic nitrogen fixation inCeanothus roots. Amer. J. Bot.65: 63–69.

    CAS  Google Scholar 

  • —,D. Krause andW. Jow. 1977. Root systems of chaparral shrubs. Oecologia29: 163–177.

    Google Scholar 

  • ———. 1978b. Seasonal changes of fine root density in the southern Californian chaparral. Oecologia37: 201–212.

    Google Scholar 

  • Laessle, A. M. 1965. Spacing and competition in natural stands of sand pine. Ecology46: 65–72.

    Google Scholar 

  • Lewis, W. M. 1975. Effects of forest fires on atmospheric loads of soluble nutrients. Pp. 833–846in F. G. Howell, J. B. Gentry and M. H. Smith (eds.). Mineral cycling in southeastern ecosystems. National Technical Information Service, Springfield, Virginia, CONF-740513.

    Google Scholar 

  • Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton andN. M. Johnson. 1977. Biogeochemistry of a forested ecosystem. Springer Verlag, New York.

    Google Scholar 

  • MacLean, D. A. andR. W. Wein. 1976. Biomass of jack pine and mixed hardwood stands in northeastern New Brunswick. Canad. J. Forest Res.6: 441–447.

    Google Scholar 

  • ——. 1977. Nutrient accumulation for postfire jack pine and hardwood succession patterns in New Brunswick. Canad. J. Forest Res.7: 562–578.

    CAS  Google Scholar 

  • ——. 1978. Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Canad. J. Bot.56: 2730–2749.

    CAS  Google Scholar 

  • ——. 1980. Simulation of wildfire effects on the nitrogen cycle of aPinus banksiana ecosystem in New Brunswick, Canada. Ecol. Model.10: 167–192.

    Google Scholar 

  • Mahall, B. E. and W. H. Schlesinger. Submitted. Effects of irradiance on growth, photosynthesis, and water use efficiency of seedlings of the chaparral shrub,Ceanothus megacarpus. Oecologia.

  • Marion, G. M., J. Kummerow andP. C. Miller. 1981. Predicting nitrogen mineralization in chaparral soils. Soil Sci. Soc. Amer. J.45: 956–961.

    CAS  Google Scholar 

  • Mason, B. 1966. Principles of geochemistry. 3rd ed. John Wiley, New York.

    Google Scholar 

  • Mason, H. L. 1942. Distributional history and fossil record ofCeanothus. Pp. 281–303in Ceanothus. Santa Barbara Botanic Garden, Santa Barbara, California.

    Google Scholar 

  • McKell, C. M., J. R. Goodin andC. C. Duncan. 1968. Chaparral fires change soil moisture depletion patterns. Calif. Agric.22: 15–16.

    Google Scholar 

  • McMinn, H. E. 1930. A geographic and taxonomic study of the California species of the genusCeanothus. Contr. Dudley Herb.1: 121–149.

    Google Scholar 

  • — 1942. A systematic study of the genusCeanothus. Pp. 131–279in Ceanothus. Santa Barbara Botanic Garden, Santa Barbara, California.

    Google Scholar 

  • Miller, P. C. (ed.). 1981. Resource use by chaparral and matorral. Springer Verlag, New York.

    Google Scholar 

  • — andH. A. Mooney. 1974. The origin and structure of American arid-zone ecosystems. The producers: Interactions between environment, form, and function. Pp. 201–209in Proceedings of the First International Congress of ecology. The Hague, The Netherlands.

    Google Scholar 

  • — andE. Ng. 1977. Root: shoot biomass ratios in shrubs in southern California and central Chile. Madrono24: 215–223.

    Google Scholar 

  • — andD. K. Poole. 1979. Patterns of water use by shrubs in southern California. Forest Sci.25: 84–98.

    Google Scholar 

  • Minnich, R. A. 1980. Vegetation of Santa Cruz and Santa Catalina Islands. Pp. 123–137in D. M. Power (ed.). The California islands: Proceedings of a multidisciplinary symposium. Santa Barbara Museum of Natural History, Santa Barbara, California.

    Google Scholar 

  • Mohler, C. L., P. L. Marks andD. G. Sprugel. 1978. Stand structure and allometry of trees during self-thinning of pure stands. J. Ecol.66: 599–614.

    Google Scholar 

  • Mooney, H. A. (ed.). 1977a. Convergent evolution in Chile and California Mediterranean climate ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • — 1977b. Southern coastal scrub. Pp. 471–489in M. G. Barbour and J. Major (eds.). Terrestrial vegetation of California. John Wiley, New York.

    Google Scholar 

  • — 1977c. The carbon cycle in Mediterranean-climate evergreen scrub communities. Pp. 107–115in H. A. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S. Forest Service, Washington, General Technical Report WO-3.

    Google Scholar 

  • — andE. L. Dunn. 1970. Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution24: 292–303.

    Google Scholar 

  • —,A. T. Harrison andP. A. Morrow. 1975. Environmental limitations of photosynthesis on a California evergreen shrub. Oecologia19: 293–301.

    Google Scholar 

  • —,J. Kummerow, A. W. Johnson, D. J. Parsons, S. Keeley, A. Hoffmann, R. I. Hays, J. Giliberto andC. Chu. 1977. The producers—their resources and adaptive responses. Pp. 85–143in H. A. Mooney (ed.). Convergent evolution in Chile and California Mediterranean climate ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • — andD. J. Parsons. 1973. Structure and function of the California chaparral—an example from San Dimas. Pp. 83–112in F. di Castri and H. A. Mooney (eds.). Mediterranean type ecosystems. Springer Verlag, New York.

    Google Scholar 

  • — andP. W. Rundel. 1979. Nutrient relations of the evergreen shrub,Adenostoma fasciculatum, in the California chaparral. Bot. Gaz.140: 109–113.

    CAS  Google Scholar 

  • Morisita, M. 1959. Measuring of the dispersion of individuals and analysis of the distributional patterns. Mem. Fac. Sci. Kyushu Univ. Ser. E, Biol.2: 215–235.

    Google Scholar 

  • Müller, C. H., R. B. Hanawalt andJ. K. McPherson. 1968. Allelopathic control of herb growth in the fire cycle of California chaparral. Bull. Torrey Bot. Club95: 225–231.

    Google Scholar 

  • Munz, P. A. 1968. A California flora with supplement. University of California Press, Berkeley.

    Google Scholar 

  • — 1974. A flora of southern California. University of California Press, Berkeley.

    Google Scholar 

  • Musick, H. B. 1972. Post-fire seedling ecology of twoCeanothus species in relation to slope exposure. M.A. Thesis, University of California, Santa Barbara.

    Google Scholar 

  • Naveh, Z. andR. H. Whittaker. 1979. Structural and floristic diversity of shrublands and woodlands in northern Israel and other Mediterranean areas. Vegetatio41: 171–190.

    Google Scholar 

  • Nilsen, E. T. andW. H. Schlesinger. 1981. Phenology, productivity, and nutrient accumulation in the post-fire chaparral shrubLotus scoparius. Oecologia48: 217–224.

    Google Scholar 

  • Nobs, M. A. 1963. Experimental studies on species relationships inCeanothus. Publ. Carnegie Inst. Wash. No. 623.

  • Oechel, W. C. andW. T. Lawrence. 1979. Energy utilization and carbon metabolism in Mediterranean scrub vegetation of Chile and California. I. Methods: A transportable cuvette field photosynthesis and data acquisition system and representative results forCeanothus greggii. Oecologia39: 321–335.

    Google Scholar 

  • Orme, M. L. andT. A. Leege. 1976. Emergence and survival of redstem (Ceanothus sanguineus) following prescribed burning. Proc. Tall Timbers Fire Ecol. Conf.14: 391–420.

    Google Scholar 

  • Peet, R. K. andN. L. Christensen. 1980. Succession: A population process. Vegetatio43: 131–140.

    Google Scholar 

  • Philips, P. W. 1966. Variation and hybridization inCeanothus cuneatus andCeanothus megacarpus. M.A. Thesis, University of California, Santa Barbara.

    Google Scholar 

  • Pielou, E. C. 1960. A single mechanism to account for regular, random and aggregated populations. J. Ecol.48: 575–584.

    Google Scholar 

  • Poole, D. K. andP. C. Miller. 1975. Water relations of selected species of chaparral and coastal sage communities. Ecology56: 1118–1128.

    Google Scholar 

  • Quick, C. R. 1959.Ceanothus seeds and seedlings on burns. Madroño15: 79–81.

    Google Scholar 

  • — andA. S. Quick. 1961. Germination ofCeanothus seeds. Madrono16: 23–30.

    Google Scholar 

  • Radosevich, S. R. andS. G. Conard. 1980. Physiological control of chamise shoot growth after fire. Amer. J. Bot.67: 1442–1447.

    Google Scholar 

  • Radwan, M. A. andG. L. Crouch. 1977. Seed germination and seedling establishment of redstemCeanothus. J. Wildlife Managern.41: 760–766.

    Google Scholar 

  • Raison, R. J. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: A review. Pl. &Soil51: 73–108.

    CAS  Google Scholar 

  • Raven, P. H. 1977. The California flora. Pp. 109–137in M. G. Barbour and J. Major (eds.). Terrestrial vegetation of California. John Wiley, New York.

    Google Scholar 

  • Rice, R. M. 1974. The hydrology of chaparral watersheds. Pp. 27–34in M. Rosenthal (ed.). Symposium on living with the chaparral-proceedings. Sierra Club, San Francisco, California.

    Google Scholar 

  • Rowe, P. B. 1948. Influence of woodland and chaparral on water and soil in central California. California Forest and Range Experiment Station, Sacramento.

    Google Scholar 

  • Rundel, P. W. andD. J. Parsons. 1979. Structural changes in chamise (Adenostoma fasciculatum) along a fire-induced age gradient. J. Range Managern.32: 462–466.

    Google Scholar 

  • ——. 1980. Nutrient changes in two chaparral shrubs along a fire-induced age gradient. Amer. J. Bot.67: 51–58.

    Google Scholar 

  • Sampson, A. W. 1944. Plant succession on burned chaparral lands in northern California. University of California, Berkeley. Agric. Exp. Sta. Bull. 685.

    Google Scholar 

  • Schlesinger, W. H. andD. S. Gill. 1978. Demographic studies of the chaparral shrub,Ceanothus megacarpus, in the Santa Ynez Mountains, California. Ecology59: 1256–1263.

    Google Scholar 

  • ——. 1980. Biomass, production, and changes in the availability of light, water, and nutrients during the development of pure stands of the chaparral shrub,Ceanothus megacarpus, after fire. Ecology61: 781–789.

    Google Scholar 

  • — andJ. T. Gray. 1982. Atmospheric precipitation as a source of nutrients in chaparral ecosystems.In Proceedings of the symposium on dynamics and management of Mediterranean-type ecosystems. U.S. Forest Ser. Washington, General Technical Report.

    Google Scholar 

  • — andM. M. Hasey. 1980. The nutrient content of precipitation, dry fallout, and intercepted aerosols in the chaparral of southern California. Amer. Midl. Naturalist103: 114–122.

    CAS  Google Scholar 

  • —— 1981. Decomposition of chaparral shrub foliage: Losses of organic and inorganic constituents from deciduous and evergreen leaves. Ecology62: 762–774.

    CAS  Google Scholar 

  • Schopmeyer, C. S. 1974. Seeds of woody plants in the United States. U.S. Forest Service, Washington, Agricultural Handbook 450.

    Google Scholar 

  • Schultz, A. M., J. L. Launchbaugh andH. H. Biswell. 1955. Relationship between grass density and brush seedling survival. Ecology36: 226–238.

    Google Scholar 

  • —,H. H. Biswell andV. Vlamis. 1958. Responses of brush seedlings to fertilizers. Calif. Fish Game44: 335–348.

    Google Scholar 

  • Scott, K. M. and R. P. Williams. 1978. Erosion and sediment yields in the Transverse Ranges, southern California. U.S. Geological Survey, Professional Paper 1030.

  • Singh, J. S. andS. R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev.43: 449–528.

    CAS  Google Scholar 

  • Smith, C. F. 1976. A flora of the Santa Barbara region, California. Santa Barbara Museum of Natural History, Santa Barbara, California.

    Google Scholar 

  • Soil Conservation Service. 1977. Soil survey, Santa Barbara County, California, southern coastal part, interim report. U.S. Soil Conservation Service, Portland, Oregon.

    Google Scholar 

  • Specht, R. L. 1969. A comparison of the sclerophyllous vegetation characteristic of Mediterranean type climates in France, California, and southern Australia: II. Dry matter, energy, and nutrient accumulation. Austral. J. Bot,17: 293–308.

    CAS  Google Scholar 

  • Stewart, A. J. 1942. Propagation and cultivation. Pp. 115–128in Ceanothus. Santa Barbara Botanic Garden, Santa Barbara, California.

    Google Scholar 

  • Tukey, H. B. 1970. The leaching of substances from plants. Annual Rev. Pl. Physiol.21: 305–324.

    CAS  Google Scholar 

  • Van Rensselaer, M. 1942.Ceanothus for gardens, parks and roadsides. Pp. 114In Ceanothus. Santa Barbara Botanic Garden, Santa Barbara, California.

    Google Scholar 

  • Vlamis, J. andK. D. Gowans. 1961. Availability of nitrogen, phosphorus, and sulfur after brush burning. J. Range Managern.14: 38–40.

    CAS  Google Scholar 

  • —,E. C. Stone andC. L. Young. 1954. Nutrient status of brushland soils in southern California. Soil Sci.78: 51–55.

    CAS  Google Scholar 

  • Waring, R. H. andB. D. Cleary. 1967. Plant moisture stress: Evaluation by pressure bomb. Science155: 1248–1254.

    PubMed  Google Scholar 

  • Wein, R. W. andJ. M. Moore. 1977. Fire history and rotations in the New Brunswick Acadian forest. Canad. J. Forest Res.7: 285–294.

    Google Scholar 

  • Weir, W. W. 1950. Soils of the southern coastal area, Santa Barbara County, California. University of California, Berkeley, College of Agriculture.

  • Wells, P. V. 1969. The relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. Evolution23: 264–267.

    Google Scholar 

  • Westman, W. E. 1981. Factors influencing the distribution of species of Californian coastal sage scrub. Ecology62: 439–455.

    Google Scholar 

  • White, J. andJ. L. Harper. 1970. Correlated changes in plant size and number in plant populations. J. Ecol.58: 467–485.

    Google Scholar 

  • Whittaker, R. H. andW. A. Niering. 1975. Vegetation of the Santa Catalina mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology56: 771–790.

    Google Scholar 

  • Wright, E. 1931. The effect of high temperatures on seed germination. J. Forestry29: 679–687.

    Google Scholar 

  • Yarranton, M. andG. A. Yarranton. 1975. Demography of a jack pine stand. Canad. J. Bot.53: 310–314.

    Google Scholar 

  • Yeaton, R. I. andM. L. Cody. 1976. Competition and spacing in plant communities: the northern Mohave desert. J. Ecol.64: 689–696.

    Google Scholar 

  • —,J. Travis andE. Gilinsky. 1977. Competition and spacing in plant communities: The Arizona upland association. J. Ecol.65: 587–595.

    Google Scholar 

  • Yeilding, L. 1977. Decomposition in chaparral. Pp. 419–425.In H. A. Mooney and C. E. Conrad (eds.). Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems. U.S. Forest Service, Washington, General Technical Report WO-3.

    Google Scholar 

  • Yoda, K., T. Kira, H. Ogawa andK. Hozumi. 1963. Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). J. Biol. Osaka City Univ.14: 107–129.

    Google Scholar 

  • Youngberg, C. T. andA. G. Wollum. 1976. Nitrogen accretion in developingCeanothus velutinus stands. Soil Sci. Soc. Amer. J.40: 109–112.

    CAS  Google Scholar 

  • Zavitovski, J. andM. Newton. 1968. Ecological importance of snowbrushCeanothus velutinus in the Oregon Cascades. Ecology49: 1134–1145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reprints of this issue [48(1)] may be obtained from: Publications Office, The New York Botanical Garden, Bronx, NY 10458, USA. PRICE (includes postage and handling fee):U.S. ORDERS: $9.25NON-U.S. ORDERS: $10.00 (Payment in U.S. currency drawn on a U.S. bank. Thank you.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlesinger, W.H., Gray, J.T., Gill, D.S. et al. Ceanothus megacarpus chaparral: A synthesis of ecosystem processes during development and annual growth. Bot. Rev 48, 71–117 (1982). https://doi.org/10.1007/BF02860536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860536

Keywords

Navigation