Economic Botany

, 44:92 | Cite as

Quinua and Relatives (Chenopodium sect.Chenopodium subsect.Celluloid)

  • Hugh D. Wilson


Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.


Economic Botany Amaranth Aztec Chenopodium Quinoa Chilean Coast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Aellen, P. 1929. Beitrag zur Systematik derChenopodium–Arten Amerikas, vorweigend auf Grund der Sammlung des United States National Museum in Washington, D.C. Feddes Repert. Spec. Nov. Regni Veg. 26:31–64, 119-160.Google Scholar
  2. —. 1960.Chenopodium. Pages 533–657in G. Hegi, ed., Illustrierte Flora von Mitteleuropa, 2nd ed., vol. 3. C. Hanser, Munich.Google Scholar
  3. —, and T. Just. 1943. Key and synopsis of the American species of the genusChenopodium L. Amer. Midi. Naturalist 30:47–67.CrossRefGoogle Scholar
  4. Brücher, H. 1987. The isthmus of Panama as a crossroad for prehistoric migration of domesticated plants. Geojournal 14:121–122.CrossRefGoogle Scholar
  5. Crawford, D. J. 1973. Morphology, flavonoid chemistry, and chromosome number of theChenopodium neomexicanum complex. Madroño 22:185–195.Google Scholar
  6. Cusack, D. F. 1984. Quinua: grain of the Incas. The Ecologist 14:21–31.Google Scholar
  7. Dostalek, J. 1987. Influence of the mode of pollination on offspring of some species of the genusChenopodium. Preslia 59:263–269.Google Scholar
  8. Early, D. K. 1979. Cultivation and uses of amaranth in contemporary Mexico. Pages 22–29in J. N. Cole, ed., Amaranth from the past for the future. Rodale Press, Emmaus, PA.Google Scholar
  9. Etchevers, G. G. 1980. Composición química de algunas leguminosas y Chenopodiâceas de la Provincia de ~Nubie. Cienc. Invest. Agrar. (Chile) 7:191–196.Google Scholar
  10. — 1981 Efecto de la fecha de siembra, distancia entre surcos y ecotipos sobre el rendimiento y comportamiento de quinoa (Chenopodium quinoa Willd.) in Chilian. Cienc. Invest. Agrar. (Chile) 8:19–26.Google Scholar
  11. Fritz, G. 1984. Identification of cultigen amaranth and chenopod from rocksheiter sites in northwest Arkansas. Am. Antiquity 49:558–572.CrossRefGoogle Scholar
  12. Gilmore, M. R. 1931. Vegetal remains of the Ozark Bluff Dweller culture. Pap. Michigan Acad. Sci. 14:83–103.Google Scholar
  13. Harlan, J. R. 1965. The possible role of weed races in the evolution of cultivated plants. Euphytica 14:173–176.CrossRefGoogle Scholar
  14. Heiser, C. B. 1985. Of plants and people. University of Oklahoma Press, Norman.Google Scholar
  15. Hunziker, A. T. 1943. Los especies alimenticias deAmaranthus y Chenopodium cultivadas por los Indios de America. Revista Argent. Agron. 30:297–353.Google Scholar
  16. —. 1952. Los pseudocereales de la agriculture indigena de América. ACME Agency, Buenos Aires.Google Scholar
  17. —, and A. M. Planchuelo. 1971. Sobre un neuvo hallazgo deAmaranthus caudatus en tumbas indigena de Argentina. Kurtziana 6:63–67.Google Scholar
  18. Iljin, M. M. 1936. Chenopodiaceae. Pages 2–354in V. L. Komarov, ed., Flora URSS (Centrospermae). Akademiia Nauk, Leningrad.Google Scholar
  19. Kirkpatrick, K. J., and H. D. Wilson. 1988. Interspecific gene flow inCucurbita: C. texana vs.C. pepo. Amer. J. Bot. 75:519–527.CrossRefGoogle Scholar
  20. Looser, G. 1943.Chenopodium quinoa: un cultivo que desaparece de Chile. Revista Argentina de Agronomia 10:111–113.Google Scholar
  21. Partap, T., and P. Kapoor. 1985a. The Himalayan grain chenopods. I. Distribution and ethnobotany. Agric. Ecosystems Environ. 14:185–199.CrossRefGoogle Scholar
  22. —, and —. 1985b. The Himalayan grain chenopods. II. Comparative morphology. Agric. Ecosystems Environ. 14:201–220.CrossRefGoogle Scholar
  23. Risi, J. C., and N. W. Galwey. 1984. TheChenopodium grains of the Andes: Inca crops for modern agriculture. Adv. Appl. Biol. 10:145–216.Google Scholar
  24. Safford, W. E. 1917.Chenopodium nuttalliae, a food plant of the Aztecs. J. Wash. Acad. Sci. 8:521–527.Google Scholar
  25. Sauer, C. O. 1950. Cultivated plants of South and Central America. Pages 495–497in J. J. Steward, ed., Handbook of the South American Indians. Bureau of American Ethnology Bull. 143. Part 6.Google Scholar
  26. —. 1952. Agricultural origins and dispersals. American Geographical Society, New York.Google Scholar
  27. —. 1965. Cultural factors in plant domestication in the New World. Euphytica 14:301–306.CrossRefGoogle Scholar
  28. Scott, A. J. 1978. A review of the classification ofChenopodium L. and related genera (Chenopodiaceae). Bot. Jahrb. Syst. 100:205–220.Google Scholar
  29. Simmonds, N. W. 1965. The grain chenopods of the tropical American highlands. Econ. Bot. 19: 223–235.Google Scholar
  30. —. 1976a. Quinoa and relatives. Pages 29–30in N. W. Simmonds, ed., Evolution of crop plants. Longman, New York.Google Scholar
  31. —. 1976b. Potatoes. Pages 279–283in N. W. Simmonds, ed., Evolution of crop plants. Longman, New York.Google Scholar
  32. Smith, B. G. 1985.Chenopodium berlandieri ssp.jonesianum: evidence for a Hopewellian domesticate from Ash Cave, Ohio. Southeastern Archaeology 4:107–133.Google Scholar
  33. —. 1986. The archaeology of the southeastern United States: from Dalton to de Soto, 10,500 B.P. Pages 1–92in F. Wendorf and A. E. Close, eds., Advances in world archaeology 5. Academic Press, Orlando, FL.Google Scholar
  34. —. 1987a. The economic potential ofChenopodium berlandieri in prehistoric eastern North America. J. Ethnobiol. 7:29–54.Google Scholar
  35. -. 1987b. The independent domestication of indigenous seed-bearing plants in eastern North America. Pages 3–47in W. F. Keegan, ed., Emergent horticultural economies of the eastern woodlands. Southern Illinois University of Carbondale Center for Archaeological Investigations.Google Scholar
  36. —. 1989. Origins of agriculture in eastern North America. Science 246:1566–1571.CrossRefPubMedGoogle Scholar
  37. —, and V. A. Funk. 1985. A newly described subfossil cultivar ofChenopodium (Chenopodiaceae). Phytologia 57:445–448.Google Scholar
  38. Tapia, M. 1979. Historia y distributión geográfica. Pages 11–19in M. E. Tapia, ed.,Quinua ykañiwa: cultivos andinos. CIID, Bogotá.Google Scholar
  39. —, H. Gandarillas, S. Alandia, A. Cardozo, and A. Mujica. 1979. Quinua y kañiwa: cultivos andinos. CIID, Bogotá.Google Scholar
  40. Wahl, H. A. 1954. A preliminary study of the genusChenopodium in North America. Bartonia 27: 1–46.Google Scholar
  41. Walters, T. W. 1988a. Relationship between isozymic and morphologic variation in the diploidsChenopodium fremontii, C. neomexicanum, C. palmeri, andC. watsonii. Amer. J. Bot. 75:97–105.CrossRefGoogle Scholar
  42. — 1988b. Electrophoretic evidence for the evolutionary relationship of the tetraploidChenopodium berlandieri to its putative diploid progenitors. Selbyana 10:36–55.Google Scholar
  43. Weeden, N. F., J. J. Doyle, and M. Lavin. 1989. Distribution and evolution of a glucosephosphate isomerase duplication in the Leguminosae. Evolution 43:1637–1651.CrossRefGoogle Scholar
  44. West, G. C. 1967. Nutrition of tree sparrows during winter in central Illinois. Ecology 48:58–67.CrossRefGoogle Scholar
  45. Williams, J. T., and J. L. Harper. 1965. Seed polymorphism and germination. I. The influence of nitrates and low temperatures on the germination ofChenopodium album. Weed Res. 5:141–150.CrossRefGoogle Scholar
  46. Wilson, H. D. 1976. Genetic control and distribution of leucine aminopeptidase in the cultivated chenopods and related weed taxa. Biochem. Genet. 14:913–919.Google Scholar
  47. —. 1980. Artificial hybridization among species ofChenopodium sectionChenopodium. Syst. Bot. 5:253–263.CrossRefGoogle Scholar
  48. —. 1981a. Genetic variation among tetraploidChenopodium populations of southern South America (sect.Chenopodium subsect.Cellulata). Syst. Bot. 6:380–398.CrossRefGoogle Scholar
  49. —. 1981b. DomesticatedChenopodium of the Ozark Bluff Dwellers. Econ. Bot. 35:233–239.Google Scholar
  50. —. 1985.Chenopodium quinoa Willd.: variation and relationships in southern South America. Nat. Geog. Soc. Res. Repts. 19:711–721.Google Scholar
  51. —. 1988a. Allozyme variation and morphological relationships ofChenopodium hircinum (s.l.). Syst. Bot. 13:215–228.CrossRefGoogle Scholar
  52. —. 1988b. Quinua biosystematics I: domesticated populations. Econ. Bot. 42:461–477.Google Scholar
  53. —. 1988c. Quinua biosystematics II: free-living populations. Econ. Bot. 42:478–494.Google Scholar
  54. —, S. C. Barber, and T. W. Walters. 1983. Loss of duplicate gene expression in tetraploidChenopodium. Biochem. Syst. Ecology 11:7–13.CrossRefGoogle Scholar
  55. —, and C. B. Heiser, Jr. 1979. The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttalliae Saffbrd), domesticated chenopod of Mexico. Amer. J. Bot. 66:198–206.CrossRefGoogle Scholar
  56. Wood, R. W. 1988. Quinoa–the supergrain. Japan Publications, Tokyo.Google Scholar

Copyright information

© The New York Botanical Garden 1990

Authors and Affiliations

  • Hugh D. Wilson
    • 1
  1. 1.Department of BiologyTexas A&M University

Personalised recommendations