Advertisement

The Botanical Review

, Volume 40, Issue 1, pp 1–157 | Cite as

Approaches to the identification of angiosperm leaf remains

  • David L. Dilcher
Article

Abstract

During the past 125 years the history of early angiosperms, interpreted through the fossil leaf record has been largely an exercise in paleofloristic studies, ignoring evolution. Imprecise identifications of ancient leaves “matched” to extant genera and families have been used as the basis for reconstructions of paleocommunities and paleoclimates. However, as the result of careful morphological studies of leaf form, venation and cuticular features new insights into the evolution of angiosperms are now available. In this paper considerations are given to the usefulness and shortcomings of leaf form, venation and cuticular analysis as diagnostic tools of plant identification. Many techniques for the study of the morphology of modern and fossil leaves are included in this paper as well as tables outlining features of leaf venation and the epidermis. Careful morphological studies of leaf form (such as the venation and epidermal characters emphasized in this paper) will provide better understanding of the relationships of living angiosperms and transform the fossil leaf record into useful data that can be used to study the evolution of the angiosperms.

Keywords

Botanical Review Guard Cell Subsidiary Cell Leaf Form Extant Genus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Kurzfassung

Die Geschichte der frühen Angiospermen, wie sie sich in der Überlieferung durch Blattabdrücke darstellt, wurde in den letzten 125 Jahren hauptsächlich paläofloristisch betrachtet und die Evolution vernachlässigt. Ungenaue Bestimmungen von fossilen Blättern, die die Fossilien mit lebenden Gattungen und Familien in Verbindung brachten, wurden benutzt, um sowohl fossile Pflanzengesellschaften als auch klimatische Bedingungen zu rekonstruieren. Sorgfältige Untersuchungen jüngeren Datums von Blattform, Aderungsverlauf und Kutikula haben ein neues Verständnis der AngiospermenEvolution möglich gemacht. In dieser Veröffentlichung werden die Möglichkeiten und Grenzen der Analyse von Blattform, Aderung und Kutikula als Hilfsmittel zur Bestimmung dargestellt. Es werden zahlreiche Methoden Zur Untersuchung der Morphologie rezenter und fossiler Blätter diskutiert und wesentliche Eigenschaften von Aderung und Epidermis in Form von Tabellen zusammengestellt. Sorgfältige morphologische Untersuchungen von Angiospermenblättern, wie sie in dieser Arbeit diskutiert sind, werden zu einem besseren Verständnis der Verwandtschaft rezenter Angiospermen untereinander führen und Daten von fossilen Blättern liefern, die direkt zur Entzifferung der Angiospermen-Evolution beitragen werden.

Resumen

Durante los pasados 125 años, la historia de los angiospermos primitivos, interpretada por las huellas de hojas fosilizadas, ha sido mayormente un ejercicio en los estudios paleoflorísticos, ignorando la evolución. Identificaciones imprecisas de hojas primitivas, comparadas con géneros y familias existentes, han sido usadas como la base para reconstrucciones de paleocomunidades y paleoclimas. Sin embargo, como el resultado de diligentes estudios morfológicos de formas de hojas, disposiciones de las nervosidades, y características cuticulares, han surgido nuevos informes sobre la evolución de angiospermos. En este trabajo, se dan consideraciones a las utilidades y las insuficiencias de forma de hojas, disposiciones de las nervosidades, y análisis cuticulares como instrumentos diagnósticos pára investigaciones vegetales. Se incluyen en este trabajo muchas técnicas para el estudio de la morfología hojas existentes y fosilizadas así como tablas bosquejando los rasgos de la disposición de las nervosidades y epidérmis de hojas. Los diligentes estudios morfológicos de formas de hojas (como la disposición de las nervosidades y características epidérmicas acentuadas en este trabajo) nos darán un mejor conocimiento de las relaciones entre angiospermos vivos y transformarán las huellas de hojas fosilizadas en datos utiles que se pueden usar para estudiar la evolución de los angiospermos.

РЕФЕРАТ

В теченив последних 125 лет история ранних покрытосеменных, истолкованная на основе отпечатков ископаемых листьев, составляла в значительной степени пренебрегающее эволюцией упражнение в области палеофлористики. Неточно определенные древние листья, “подогнанные” под сохранившиеся роды и семейства, служили основой для восстановления палеосообществ и палеоклиматов. Однако в результате тщательных морфологических исследований формы листа, жилкования и кутикулярных признаков создались новые понятия об эволюции покрытосеменных. В настоящем докладе разбираются полезность и недостатки формы листа, жилкования и особенностей кутикулы в качестве диагностических признаков при распознавании растений. В докладе упоминается множество различных технических приемов, используемых при исследовании морфологии современных и ископаемых листьев, а также и схемы, дающие в общих чертах особенности листового жилко вания и эпидермы. Тщательные морфологические исследования формы листа (типа выделенных в настоящем докладе жилкования и признаков эпидермы) обеспечат более глубокое понимание соотношений современных покрытосеменных и превратят сведения об ископаемых листьях в полезные данные, которые можно будет использовать при исследовании эволюции покрытосеменных.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alvin, K. L. 1970. The study of fossil leaves by SEM. Scanning Electron Microscopy3: 121–218.Google Scholar
  2. Andersen, F. J. 1971. A lost art remembered. Gard. Jour.21: 41–47.Google Scholar
  3. Anderson, G. J. & D. L. Dilcher. 1968. Cuticular analysis of the extinct genusDryophyllum of the Fagaceae. Ind. Acad. Sci.77: 130–131 (Abstract).Google Scholar
  4. Andrews, H. N. 1970. Index of Generic Names of Fossil Plants, 1820–1965. Geol Survey Bull. 1300, U.S. Gov. Printing Office, Wash. 354 pp.Google Scholar
  5. Anonymous. 1972a. Leaf skeletons hold clues to prehistoric times. Missouri Bot. Gard. Bull. 61, no. 4.Google Scholar
  6. Anonymous. 1972b. Leaf art. Better Homes & Gard., Nov. 226 pp.Google Scholar
  7. Arnold, C. A. 1969. Paleobotany. Chpt. (pp. 103–108)In: A Short History of Botany in the United States, Editor J. Ewan, XI Internat. Bot. Congress, Hafner, N.Y. 174 pp.Google Scholar
  8. Axelrod, D. I. 1952. A theory of angiosperm evolution. Evolution6: 29–60.CrossRefGoogle Scholar
  9. —. 1958. Evolution of the Madro-Tertiary geoflora. Botan. Rev.24: 433–509.Google Scholar
  10. —. 1960. The evolution of flowering plants. Evolution after Dar-win, Vol I, The Evolution of Life, Univ. of Chicago Press, Chicago, 227–305. S. Tax, editor.Google Scholar
  11. —. 1966. The Eocene Copper Basin flora of Northeastern Nevada. Univ. of Calif. Pub. Geol. Sci.59: 1–83.Google Scholar
  12. —. 1970. Mesozoic paleogeography and early angiosperm history. Bot. Rev.36: 277–319.CrossRefGoogle Scholar
  13. — & H. P. Bailey. 1969. Paleotemperature analysis of Tertiary floras. Palaeogeography, Palaeoclimatol., Palaeoecol.6: 163–195.CrossRefGoogle Scholar
  14. Bailey, I. W. & E. W. Sinnott. 1916. The climatic distribution of certain types of angiosperm leaves. Am. Jour. of Bot.3: 24–39.CrossRefGoogle Scholar
  15. Baker, E. A. & E. Parsons. 1971. Scanning electron microscopy of plant cuticles. Jour. Microscopy94: 39–49.Google Scholar
  16. Bandulska, H. 1923. A preliminary paper on the cuticular structure of certain dicotyledonous and coniferous leaves from the Middle Eocene flora of Bournemouth. Jour. Linn. Soc. Bot.46: 241–266.Google Scholar
  17. —. 1924. On the cuticles of some recent and fossil Fagaceae. Jour. Linn. Soc. Bot.46: 427–441.Google Scholar
  18. —. 1926. On the cuticles of some fossil and recent Lauraceae. Jour. Linn. Soc. Bot.47: 383–424.Google Scholar
  19. —. 1928. A cinnamon from the Bournemouth Eocene. Jour. Linn. Soc. Bot.48: 139–147.CrossRefGoogle Scholar
  20. —. 1931. On the cuticles of some recent and fossil Myrtaceae. Jour. Linn. Soc. Bot.48: 657–671.Google Scholar
  21. Baranova, M. 1972. Systematic anatomy of the leaf epidermis in the Magnolia-ceae and some related families. Taxon21: 447–484.CrossRefGoogle Scholar
  22. Barthel, M. 1966. Johann Georg Bornemann—begründer der kutikularanalyse. Hall. Jb. f. Mitteidt. Erdg.7: 7–10.Google Scholar
  23. —, Z. Kvaček, & L. Rüffle. 1966. Symplocaceen-Blätter im Eozän des Geiseltales. Monatsberichte Deutsch. Akad. Wiss. Berlin8: 354–359.Google Scholar
  24. Bell, W. A. 1949. Uppermost Cretaceous and Paleocene floras of western Alberta. Geol. Survey of Canada, Bull.13: 1–231.Google Scholar
  25. —. 1956. Lower Cretaceous floras of western Canada. Geological Survey of Canada, Memoir285: 1–331.Google Scholar
  26. —. 1957. Flora of the Upper Cretaceous Nanaimo group of Vancouver Island, British Columbia. Geological Survey of Canada, Memoir293: 1–84.Google Scholar
  27. Bennett, S. H. & S. G. Furmidge. 1956. Impression methods for the study of the distribution of deposits and organisms on plant surfaces. Nature178: 152–153.CrossRefGoogle Scholar
  28. Berry, E. W. 1902. Notes of sassafras. Bot. Gaz.34: 426–450.CrossRefGoogle Scholar
  29. —. 1906. Living and fossil species ofComptonia. Am. Naturalist40: 485–524.CrossRefGoogle Scholar
  30. —. 1911. A method of making leaf prints. Torreya11: 62–64.Google Scholar
  31. -. 1916. The lower Eocene floras of southeastern North America. U.S.G.S. Prof. Paper 91. 481 pp.Google Scholar
  32. -. 1924. The Middle and Upper Eocene floras of southeastern North America. U.S.G.S. Prof. Paper 92. 206 pp.Google Scholar
  33. -. 1930. Revision of the lower Eocene Wilcox flora of the south-eastern States. U.S.G.S. Prof. Paper 156. 196 pp.Google Scholar
  34. —. 1933. The cuticle of an EoceneCombretum. Jour. Wash. Acad. Sci.23: 505–508.Google Scholar
  35. -. 1941. Additions to the Wilcox flora from Kentucky and Texas. U.S.G.S. Prof. Paper 193E: 83–99.Google Scholar
  36. Beyn, W. 1940. Die Einschaltungelformter Pflanzenreste in das braunkohlen-profil des mittleren Geiseltales. Nova Acta Leopol. N.F.8: 377–438.Google Scholar
  37. Björlykke, K. 1965. An autoradiographic technique for illustration of struc-tures in sedimentary rocks. Norsk Geologisk Tidsskrift45: 357–358.Google Scholar
  38. Bornemann, J. G. 1856. Über organische Reste der Lettenkoklengruppe Thüringens. Ein Beitrag zur Favena und Flora dieser Formation der jetztweltlichen cycadeegattungen. IX, 85 p., 12 tab., Leipzig (Verl. Wilch, Engelmann).Google Scholar
  39. Boulter, M. C. 1970. Lignified guard cell thickenings in the leaves of some modern and fossil species of Taxodiaceae (Gymnospermae). Biol J. Linn. Soc.2: 41–46.CrossRefGoogle Scholar
  40. —. 1971. A palynological study of two of the Neogene plant beds in Derbyshire. Bull. Brit. Museum, Geol.19(7): 361–410.Google Scholar
  41. Brodie, P. B. 1842. Notice on the occurrence of plants in the plastic clay of the Hampshire coast. Proc. Geol. Soc. Lond.3: 592.Google Scholar
  42. Brown, R. W. 1944. Temperate species in the Eocene flora of the southeast-ern United States. Wash. Acad. Sci. Jour.34: 349–351.Google Scholar
  43. —. 1960. Corkwood in the Eocene flora of the southeastern United States. Jour. Paleontology34: 423–432.Google Scholar
  44. Bůzek, Č., F. Holy, & Z. Kvaček. 1967. Eine bemerkenswerte Art der Familie Platanaceae Lindl. (1836) in nordböhmischen Tertiär. Monats-berichte Deut. Akad. Wiss. Berlin9: 203–315.Google Scholar
  45. Cain, S. A. 1944. Foundation of plant geography. Harper & Bros., N. Y. 556 pp.Google Scholar
  46. Chaloner, W. G. & M. M. Gay. 1973. Scanning electron microscopy of latex casts of fossil plant impressions. Palaeontology16: 645–649.Google Scholar
  47. Cotthem, W. van. 1970. A classification of stomatal types. Bot. Jour. Linn. Soc.63: 235–246.Google Scholar
  48. Critchfield, W. N. 1960. Leaf dimorphism inPopulus Trichocarpa. Am. Jour. Bot.47: 699–711.CrossRefGoogle Scholar
  49. Cronquist, A. 1968. The Evolution and Classification of Flowering Plants. Houghton Mifflin Company, Boston. 396 pp.Google Scholar
  50. Daghlían, C. P. & D. L. Dilcher. 1971.Philodendron leaves from Eocene sediments in Tennessee. Ind. Acad. Sci.80: 95–96 (abstract).Google Scholar
  51. —. 1972. Middle Eocene Sabaloid Palms. Indiana Acad. of Sci.81: 94–95 (abstract).Google Scholar
  52. Darwin, C. 1859. Origin of the species by means of natural selection. Reprint, of 1st Ed. Wats & Co., London, 426 pp.Google Scholar
  53. Delevoryas, T. 1971. Biotic provinces and the Jurassic-Cretaceous floral transition. Proc. North Amer. Paleontol. Conven.,part L: 1660–1674.Google Scholar
  54. De Vries, H., G. Bredemeÿer & W. Heinen. 1967. The decay of cutin and cuticular components by soil microorganisms in their natural environ-ment. Acta Bot. Neerl.,16: 102–110.Google Scholar
  55. Dilcher, D. L. 1963. Cuticular analysis of Eocene leaves ofOcotea obtusi-folia. Amer. Jour. Bot.50: 1–8.CrossRefGoogle Scholar
  56. —. 1965a. Epiphyllous fungi from Eocene deposits in western Tennessee, U.S.A. Palaeontographica, Abt. B.116: 1–54.Google Scholar
  57. —. 1965b. Sapindaceous leaflets from Eocene deposits of Tennes-see. Amer. Jour. Bot.52: 639 (abstract).Google Scholar
  58. —. 1968. Revision of Eocene palms from southeastern North America based upon cuticular analysis. Am. Jour. Bot.55: 725 (ab-stract).Google Scholar
  59. —. 1969.Podocarpus from Eocene of North America. Science164: 299–301.PubMedCrossRefGoogle Scholar
  60. —. 1971. A revision of the Eocene flora of southeastern North America. The Paleobotanist20: 7–18.Google Scholar
  61. —. 1973. A Paleoclimatic Interpretation of the Eocene Floras of Southeastern North America. Chpt. 2.In: Vegetation and Vegetational History of Northern Latin America, ed. by A. Graham, Elsevier Pub. Co., Amsterdam. 39–59.Google Scholar
  62. — & G. E. Dolph. 1970. Fossil leaves ofDendropanax from Eocene sediments of southeastern North America. Amer. J. Bot.,57: 153–160.CrossRefGoogle Scholar
  63. — & J. F. McQuade. 1967. A morphological study ofNyssa endocarps from Eocene deposits in western Tennessee. Bull. Torrey Bot. Club94: 35–40.CrossRefGoogle Scholar
  64. - & B. Mehrotra. 1969a. A re-evaluation of early Tertiary North American Proteaceae. XI Internat. Bot. Cong., Abstracts p. 47.Google Scholar
  65. —. 1969b. A study of leaf compressions ofKnightiophyllum from Eocene deposits of southeastern North America. Amer. J. Bot.56: 936–943.CrossRefGoogle Scholar
  66. — & C. A. Zeck. 1968. A study of the factors controlling variation of cuticular characters. Ind. Acad. Sci.78: 115 (abstract).Google Scholar
  67. Dolph, G. E. 1972. A review of the fossil Apocynaceae from the Eocene of western Tennessee and Kentucky. Indiana Acad. Sci. Proc.81: 93 (abstract).Google Scholar
  68. —. 1973. An analysis of population variability inApocynophyllum mississippiensis. Amer. Jour. Bot.60(4, sup.): 16 (abstract).Google Scholar
  69. —. 1974. Studies in the Apocynaceae, part I: A statistical analysis ofApocynophyllum mississippiensis. Ph.D. dissertation, Department of Plant Sciences, Indiana University, Bloomington, Indiana, 141 pp.Google Scholar
  70. Dorf, E. 1938. Upper Cretaceous floras of the Rocky Mountain region. I: Stratigraphy and palaeontology of the Fox Hills and lower Medicine Bow formations of southern Wyoming and northeastern Colorado. Carnegie Institution of Washington Pub.508: 1–78.Google Scholar
  71. —. 1942. Upper Cretaceous floras of the Rocky Mountain region. II: Flora of the Lance Formation at its type locality, Niobrara County, Wyoming. Carnegie Institution of Washington Pub.508: 78–159.Google Scholar
  72. —. 1964. The use of fossil plants in a paleoclimatic interpretation.In: Nairn, A. E. M. (ed.), Problems in Palaeoclimatology. Interscience, London, 13–30.Google Scholar
  73. —. 1969. Paleobotanical evidence of Mesozoic and Cenozoic cli-matic changes. Proc. North Amer. Paleontol. Conven.,part D: 323–346.Google Scholar
  74. Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic coastal plain and its evolutionary significance. Jour. Arnold Arboret.50: 2–35.Google Scholar
  75. — & L. J. Hickey. 1972. Coordinated evolution in Potomac Group angiosperm pollen and leaves. Amer. Jour. Bot.,59: 660 (abstract).Google Scholar
  76. Dunn, D. B., G. K. Sharma & C. C. Campbell. Stomatal patterns of dicotyle-dons and monocotyledons. Am. Midl. Nat.74: 185–195.Google Scholar
  77. Edwards, C. A. & G. H. Heath. 1963. The role of soil animals in breakdown of leaf material. Pub.In: Soil Organisms, p. 76–84 ed. by J. Doeksen and J. van der Drift, North Holland Pub. Co., Amsterdam. 453 pp.Google Scholar
  78. — & D. E. Reichle, D. A. Crossley. 1970. The role of the soil invertebrates in turn over of organic matter and nutrients chpt. 12 (pp. 147–172).In: Ecological Studies, analysis and synthesis, Vol. 1. Analy-sis of Temperate Ecosystems, ed. by D. E. Reichle, Springer-Verlag, N.Y. 304 pp.Google Scholar
  79. Edwards, W. N. 1935. The systematic value of cuticular characters in recent and fossil angiosperms. Biol. Rev.10: 442–459.CrossRefGoogle Scholar
  80. Elsik, W. & D. L. Dilcher. In press. Palynology and age of clays exposed in Lawrence clay pit, Henry County, Tennessee. Palaeontographica, Abt. b.Google Scholar
  81. Ferguson, D. K. 1971. The Miocene flora of Kreuzau, Western Germany. 1. The Leaf-remains. North-Holland Pub. Co. Amsterdam. 297 pp.Google Scholar
  82. Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und epidermisstruktur der assimilation-sporgane bei den rezenten Koniferen. K. Svenska Vetensk, Akad, Handl.,10: 588 pp.Google Scholar
  83. —. 1933. Studien über die Cycadales des Mesozoikums. K. Svenska Vetensk. Akad. Handl.12: 134 pp.Google Scholar
  84. Fontaine, W. M. 1889. The Potomac or younger Mesozoic flora. U.S. Geol. Survey, Monographs15: 377 pp.Google Scholar
  85. Foster, A. S. 1936. Leaf differentiation in angiosperms. Bot. Rev.2: 349–372Google Scholar
  86. —. 1950a. Morphology and venation of the leaf inQuiina acutan-gula Ducke. Amer. Jour. Bot.37: 159–171CrossRefGoogle Scholar
  87. —. 1950b. Venation and histology of leaflets inTouroulia guianen-sis Aubl. andForesia tricarpa Pires. Amer. Jour. Bot.37: 848–862CrossRefGoogle Scholar
  88. —. 1952. Foliar venation in angiosperms from an ontogenetic standpoint. Am. J. Bot.39: 752–766CrossRefGoogle Scholar
  89. —. 1953. Techniques for the study of venation patterns in the leaves of angiosperms. Proc. 7th Int. Bot. Cong., Stockholm1950: 586–587Google Scholar
  90. Fryns-Claessens, E., & W. Cotthem. 1973. A new classification of the ontogenetic types of stomata. Bot. Rev.39: 71–138Google Scholar
  91. Gindel, I. 1969. Stomatal number and size as related to soil moisture in tree xerophytes in Israel. Ecol.50: 263–267CrossRefGoogle Scholar
  92. Givulescu, R. 1968. Ein neuer Beitrag zur Kenntnis der fossilen Flora von Corus bie Cluj (Rumänien). Geologie17: 572–605Google Scholar
  93. Good, R. 1964. The geography of the flowering plants. John Wiley & Sons Inc., New York. 518 pp.Google Scholar
  94. Graham, A. 1972. Outline of the origin and historical recognition of floristic affinities between Asia and Eastern North America. Chpt. 1,In: Floristics & Paleofloristics of Asia & Eastern North America, ed. by A. Graham, Elsevier Pub. Co., Amsterdam, 1–16.Google Scholar
  95. Gray, J. 1961. Temperate pollen genera in the Eocene (Claiborne) flora, Alabama. Science132: 808–810.CrossRefGoogle Scholar
  96. Gupta, B. 1961. Correlation of tissue in leaves. I. Absolute vein-islet numbers and absolute veinlet termination numbers. II. Absolute stomatal num-bers. Ann. of Bot. New ser.25: 65–77.Google Scholar
  97. Hall, J. P. & Melvill, C. 1951. Veinlet termination number. A new character for the differentiation of leaves. Jour. Pharm. & Pharmacol.3: 934–941.Google Scholar
  98. —. 1954. Veinlet termination number—some further observa-tions. Jour. Pharm. & Pharmacol.6: 129–133.Google Scholar
  99. Hantke, R. 1965. Die fossilen Eichen und Ahorne aus der Molasse der Schweiz und von Oehingen (Süd-Baden). Neujahrsblatt Naturforsch. Ges. Zürich. 167. Stück, 140 pp.Google Scholar
  100. Harris, T. M. 1932. The fossil flora of Scoresby Sound east Greenland, pt. 3: Caytoniales and Bennettitales. Medd. om Grønland Bd. 85 (5) 130 pp.Google Scholar
  101. Harris, T. M. 1935. The Fossil Flora of Scoresby Sound east Greenland, pt. 4: Ginkoales, Coniferales, Lysopodiales and isolated fructifications. Medd. om Grønland Bd.112 (1) 176 pp.Google Scholar
  102. -. 1937. The Fossil Flora of Scoresby Sound east Greenland, pt. 5: Stratigraphic relations of the plant beds. Medd. om Grønland, Bd. 112 (2) 112 pp.Google Scholar
  103. Hickey, L. J. 1971. Evolutionary significance of leaf architectural features in the woody dicots. Amer. J. Bot.58: 469 (abstract).Google Scholar
  104. —. 1973. Classification of the architecture of dicotyledonous leaves. Amer. J. Bot.60: 17–33.CrossRefGoogle Scholar
  105. — & J. A. Doyle. 1972. Fossil evidence on evolution of angiosperm leaf venation. Amer. Jour. Bot.,59: 661 (abstract).Google Scholar
  106. Hofmann, E. 1932. Epidermisreste und Blattabdrücke aus den Braunkohlen-lagern ded Geiseltales. Nov. Act. Leopold, Neue Folge1: 59–74.Google Scholar
  107. —. 1932. Die Bedeutung der kutikularanalyse für die paläobotanik. Verhandl. Zool. Botan. Ges. Wien82: 19–21.Google Scholar
  108. —. 1934. Paläohistologie der Pflanze Grundzüge einer Gewebelehre über Fossile Pflanzen, Julius Springer Verlag, Wien, 308 pp.Google Scholar
  109. Halloway, P. J. 1971. The chemical and physical characteristics of leaf surfaces. pp. 39–65, Ecology of leaf surface Micro-organisms, ed. by T. F. Preece and C. H. Dickinson, Academic Press, London. 640 pp.Google Scholar
  110. Horanic, G. F. & F. E. Gardner. 1967. An improved method of making epidermal imprints. Bot. Gaz.128: 144–150.CrossRefGoogle Scholar
  111. Hughes, N. F. 1963. The assignment of species of fossils to genera. Taxon12: 336–337.CrossRefGoogle Scholar
  112. -. 1970. Remedy for the general data handling failure of palaeon-tology. System. Assoc. Spec. vol. no. 3, “Data Processing in Biology and Geology,” ed. J. L. Cutbill, 321–330.Google Scholar
  113. — & J. C. Moody-Stwart. 1969. A method of stratigraphie correla-tion using early Cretaceous spores. Palaeontology12: 84–111.Google Scholar
  114. Hummel, K. & K. Staesche. Die Verbreitung der haartypen in den natürlichen Verwandtschaftsgruppen. Handbuch der pflanzenanatomie, bd. IV, tiel 5, Gebruder Borntraeger, Berlin, 209–271.Google Scholar
  115. Hunger, R. 1938. Schildhaare aus der eozäne braunkohle des Zeitz-Weissen-felser reviers. Zeit. Natwiss.92: 96–99.Google Scholar
  116. -. 1939. Biostratonomie und Paleobotanik der blätterkohlenvor-kommen des eozänen humodils de Zeitz-Weissenfelser reviers. Inaugu-ral-Dissertation, Wilhelm Knapp, Halle (Saale), Verlag. 37 p.Google Scholar
  117. Huynh, K. 1971. The application of acetolysis for releasing leaf cuticular membranes ofPandanus in taxonomic studies. Stain Tech.46: 227–232.Google Scholar
  118. Jähnichen, H. 1955. Beiträge zur Flora der tertiären plastischen Tone von Preschen bei Bilin CSR. Lauraceae I. Min. Geol Jhb. Dresden1: 59–79.Google Scholar
  119. —. 1956. ÜberCastanopsis furcinervis (Rossm.) Kr. & Wld. (Faga-cee) aus der alttärtiären braunkohle der Ukraine. Jb. Staatl, Mus. Min. Geolog.2: 142–146.Google Scholar
  120. —. 1958. Beitrage zur Flora der tertiären plastischen Tone von Preschen bei Bilin/CSR. Lauraceae II. Jb. Staatl. Mus. Mineral. Geol.1958: 60–95.Google Scholar
  121. —. 1959. Die Kutikularanalyse fossiler Blätter im Rahmen der mikropaläobatnischen Komplexmethode. Z. Geol. Jhrg.8: 697–804.Google Scholar
  122. —. 1965. Beiträge zur tertiär flora der Laustiz-inkohlte Blatter und epidermisstrukturen. Monatsberich. Deut. Ak. Wiss. Berlin7: 664–670.Google Scholar
  123. —. 1966. Morphologisch-anatomische Studien über strukturbie-tende, ganzrandige Eichenblätter des SubgenusEuquercus-Quercus lusatica n. sp. im Tertiär Mitteleuropas. Monatsberichte Deut. Akad. Wiss. Berlin8: 477–512.Google Scholar
  124. —. 1969. Revision zu original en strukturbietender Blätter aus der Lausitzer und Niederrheinschen Braunkohle. Geologie18: 77–111.Google Scholar
  125. Jung, W., E. Knobloch & Z. Kvaoek. 1971. Makrofloristische Untersuchung-en im Braunkohlentertiär der Oberpfalz. Mitt. Bayer Staatssamml. Paläont. hist. Geol.11: 223–249.Google Scholar
  126. Jurasky, K. A. 1934-35. Kutikularanalyse I-III. Biologia Generalis10: 383–402;11: (1) 227–244;11: (2) 1–26.Google Scholar
  127. Kirchheimer, F. 1942. Laubblätter aus dem ältesten Tertiär der Lausitz. Planta33: 1.CrossRefGoogle Scholar
  128. Klucking, E. P. 1962. An Oligocene flora from the western Cascades, with an analysis of leaf structure. Ph.D. Thesis, Univ. of Calif., Berkeley, Dept. of Geology.Google Scholar
  129. Knobloch, E. 1971. Die braunkohle von Wackersdorf, ein dokument aus der geschichte der Pflanzenwelt. Beyerischer Braunkohlen Bergbau, Zeitsch. Bayer. Braunk.-Ind. A.G.H.80: 1–11.Google Scholar
  130. — & Z. Kvaček. 1965a.Byttneriophylum tiliaefolium (Al. Braun) Knobloch et Kvaček in den tertiären Floren der Nordhalbkugel. Sborn-ik Geol. Ved.5: 123–166.Google Scholar
  131. —. 1965b. Einige neuse Erkenntnisse über “Ficus”titliaefolia (Al. Braun) Heer. H. Jb. Geol. Palaont. Abh.121: 13–208.Google Scholar
  132. Koch, B. E., W. L. Friedrich, E. F. Christensen, & E. M. Friis. 1973. Den Miocaene brunkulsflora og dens geologiske miljø i Soby-fasterholt området sydøst for herning. Dansk. geol. Foren., Årsskrift for1972: 1–57.Google Scholar
  133. Krassilov, V. 1973. Cuticular structure of Cretaceous angiosperms from the far east of the USSR. Palaeon. Abt. B,142: 105–116.Google Scholar
  134. Kräusel, R. 1950. Die paläobotanischen Untersuchungsmethoden. Gustav Fischer Verlag, Jena 98 pp.Google Scholar
  135. —. 1953. Neue Praparationsmethoden. Proceed. 7th Inter. Bot. Cong., Stokholm1950: 585–586.Google Scholar
  136. — & H. Weyland. 1950. Kritsche Untersuchungen zur kutikular-analyse tertiärer Blätter I. Palaeontographica, Abt. B,91: 7–92.Google Scholar
  137. —. 1954. Kritsche Untersuchungen zue kutikularanalyse tertiärer Blätter II. Palaeontographica, Abt. B,96: 106–163.Google Scholar
  138. —. 1959. Kritsche Untersuchungen zur kutikularanalyse tertiärer Blätter IV. Dikotyledonen aus der Braunkohle. Palaeontographica, Abt. B,105: 101–124.Google Scholar
  139. Krüssmann, G. 1960–61. Handbuch der Laubgeholze I and II. Berlin.Google Scholar
  140. Kvaček, Z. 1966. Ein kombiniertes Verfahren fur die Gewinnung von Blatte-pidermen. Preslia38: 205–207 (in Czech. with Ger. summary).Google Scholar
  141. —. 1971. Fossil Lauraceae in the stratigraphy of the North-Bohemian Tertiary. Sbornik Geol. Ved, Paleo.13: 47–86.Google Scholar
  142. —. 1972.Engelhardia-leaves in the European Tertiary. Gasopis min. geol.17: 25–31.Google Scholar
  143. — & C. Bůzek. 1966. Einige interessante Lauraceen und Symplo-caceen des nordbömischen Tertiärs. Vestnik Ustred. Ustavu Geol.41: 291–294.Google Scholar
  144. — & E. Knobloch. 1967. Zur nomenklatur der gattungDaphno-gene Ung. und die neue artDaphnogene pannonica sp. n. Vestink Ustred. Ustavu Geol.42: 201–210.Google Scholar
  145. Leopold, E. B. 1969. Late Cenozoic palynology. Chp. 17 (pp 377–438)In: Aspects of Palynology ed. by R. H. Tschudy & R. A. Scott, Wiley-Interscience, J. Wiley & Sons, N. Y. 510 pp.Google Scholar
  146. — & H. D. MacGinitie. 1972. Development and affinities of Terti-ary floras in the Rocky Mountains. Chpt. 12.In: Floristics and Paleofloristics of Asia and Eastern North America. ed. by A. Graham. Elsevier Pub. Co. Amsterdam. 147–200.Google Scholar
  147. Lesquereux, L. 1883. The fossil Flora of the Western Territories. Part III. The Cretaceous and Tertiary Floras. U.S. Geol. Survey, Report, 8: 283 pp.Google Scholar
  148. —. 1891. The flora of the Dakota group. U.S. Geol. Survey, Monographs,17: 1–400.Google Scholar
  149. Levin, F. A. 1929. The taxonomic value of vein-islet areas. Quart. Jour. Pharm. & Pharmacol.2: 17–43.Google Scholar
  150. Litke, R. 1966. Kutikularanalytische Untersuchungen im Niederlausitzer Unterflöz. Paläont. Abh. B.2(2): 193–426.Google Scholar
  151. —. 1967. Kutikularanalytischer Nachweis für einen Wechsel von warmgemässigtem zu warmem Klima im Jungtertiär. Abh. zentr. geol. Inst. H.10: 123–127.Google Scholar
  152. —. 1968. Pflanzenreste aus dem untermiozän in Nordwestsachsen. Palaeontographica Abt. B123: 173–183.Google Scholar
  153. —. 1968. Über den Nachweis tertiärer Gramineen. Monatsberichte Deutsch. Adad. Wiss. Berlin10: 462–471.Google Scholar
  154. Long, F. and F. E. Clements. 1934. The method of collodion films for stomata. Amer. Jour. Bot.21: 7–16.CrossRefGoogle Scholar
  155. Lucic, P. C. 1970. Detailed leaf venation studies of selected species ofAcer. M.A. Thesis, Univ. of Calif., Berkeley, 174 pp.Google Scholar
  156. MacGinitie, H. D. 1953. Fossil plants of the Florissant beds, Colorado. Carnegie Instit. of Washington Pub. 599, Wash. D.C. 198 pp.Google Scholar
  157. —. 1962. The Kilgore flora, a late Miocene flora from northern Nebraska. Univ. Calif. Pub. Geol Sci.35: 67–158.Google Scholar
  158. —. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol Sci.83: 140 pp.Google Scholar
  159. Mädler, K. 1939. Die pliozäne Flora von Frankfurt am Main. Abh. Senskenb, naturf. Ges.446: 1–202.Google Scholar
  160. —. 1950. Gedanken über die Probleme der tertiärin Blätter. Palae-ontographica, Abt. B,91: 1–6.Google Scholar
  161. —. 1953. Über die Möglichkeiten einer planmässigen morpholo-gischen Analyse der dikotylen Blätter. Proc. 7th Internat. Bot. Cong., Stockholm,1950: 587–588.Google Scholar
  162. — & A. Straus. 1971. Ein System der blattformen mit spezieller anwendung fur die bestimmung Neogener blattreste (Miozän und Pliozän). Bot. Jb.,90: 562–574.Google Scholar
  163. Mai, D. H. 1963. Beiträge zur kenntnis der Tertiärflora von Seifhennersdorf (Sachsen). Jb. Staatl. Mus. Mineral. Geol.1963: 39–114.Google Scholar
  164. Manze, U. 1968. Die Nervaturdichte der Blätter als Hilfsmittel der Paläokli-matologie Sonderveroffentl. Geol. Inst. Univ. Köln,14: 1–103.Google Scholar
  165. Martin, J. T. & B. E. Juniper. 1970. The Cuticles of Plants. St. Martin’s Press, New York. 347 pp.Google Scholar
  166. Mason, H. L. 1947. Evolution of Certain Floristic Associations in western North America. Ecol. Monographs,17: 201–210.CrossRefGoogle Scholar
  167. Mersky, M. L. 1973. Lower Cretaceous (Potomac Group) angiosperm cuti-cles. Amer. Jour. Bot.60: 17–18 (abstract).CrossRefGoogle Scholar
  168. Metcalfe, C. R. & L. Chalk. 1950. Anatomy of the dicotyledons. Volumes I and II, Oxford University Press, London, 1500 pp.Google Scholar
  169. Meyerhoff, A. A. 1952. A study of the leaf venation of Betulaceae, with its application to paleobotany. Ph.D. Thesis, Stanford Univ., 247 pp.Google Scholar
  170. Miki, S. and S. Hikita. 1951. Probable chromosome number of fossilSequoia andMetasequoia found in Japan. Science113: 3–4.PubMedCrossRefGoogle Scholar
  171. Miller, N. A. & W. C. Ashby. 1968. Studying stomates with polish. Turtox News46: 322–324.Google Scholar
  172. Moore, R. & B. Ratcliffe. 1971. The record in the rocks. Audubon73: 13–29.Google Scholar
  173. Mouton, J. A. 1966. Sur la systematique foliaire en paleobotanique. Bull. de la Ser. bot. Fr.113: 492–502.Google Scholar
  174. —. 1967. Architecture de la nervation foliare. 92e Congres national des societetes savantes, Strasbourg et Colmar.III: 165–176.Google Scholar
  175. Muller, J. 1970. Palynological evidence on early differentiation of angio-sperms. Biol. Rev.,45: 417–450.CrossRefGoogle Scholar
  176. Newberry, J. S. 1898. The later extinct floras of North America. U. S. Geol. Survey, monographs,35: 1–295.Google Scholar
  177. North, C. 1956. A technique for measuring structural features of plant epidermis using cellulose acetate films. Nature176: 1186–1187.CrossRefGoogle Scholar
  178. Odell, M. E. 1932. The determination of fossil angiosperms by the character-istics of their vegetative organs. Ann. Bot.46: 941–963.Google Scholar
  179. Pant, D. D. 1965. On the ontogeny of stomata and other homologous structures. Plt. Sci. Ser.1: 1–24.Google Scholar
  180. — & B. Mehra. 1964. Ontogeny of stomata in some Ranuncula-ceae. Flora155: 179–188.Google Scholar
  181. Payne, W. W. 1968. The use of cellulose acetate film for the production of epidermal casts. Ward’s Bull.7(52): 6, 7.Google Scholar
  182. —. 1969. A quick method for clearing leaves. Ward’s Bulletin8(61): 4, 5.Google Scholar
  183. —. 1970. Helicocytic and allelocytic stomata: unrecognized patterns in the dicotyledonae. Amer. J. Bot.57: 140–147.CrossRefGoogle Scholar
  184. Pazourek, J. 1970. The effect of light intensity on the stomatal frequency in leaves ofIris hollandica hort., var. Wedgwood. Biol. Plant.12: 208–215.Google Scholar
  185. Peters, I. 1963. Die Flora der oberpfälzer Braunkohlen und ihre Ökologische und Stratigraphische Bedeutung. Palaeontographica Abt. B.112: 1–50.Google Scholar
  186. Philpott, J. 1956. Blade tissue organization of foliage leaves of some Carolina shrub-bog species as compared with their Appalachian mountain affini-ties. Bot. Gaz.118: 88–105.CrossRefGoogle Scholar
  187. Pierce, R. L. 1961. Lower Upper Cretaceous plant microfossils from Minne-sota. Minn. Geol. Sur. Bull.42, 86 pp.Google Scholar
  188. Potter, F. W. Jr. and D. L. Dilcher. 1971. Reevaluation ofEngelhardia of the southeastern United States. Indiana Acad. Sci., Proc,81: 94 (ab-stract).Google Scholar
  189. Pray, T. R. 1953. Morphological and histogenetic studies on the foliar venation of certain angiosperms. Ph.D. dissertation, University of Calif., Berkeley, 264 pp.Google Scholar
  190. —. 1963. Origin of vein endings in angiosperm leaves. Phytomorph.13: 60–81.Google Scholar
  191. Preece, T. F. & C. H. Dickinson. 1971. Ecology of leaf surface micro-organisms. Academic Press, London, 640 pp.Google Scholar
  192. Priestley, J. H. 1943. The cuticle in Angiosperms. Bot. Rev.9: 593–616.Google Scholar
  193. Read, R. W. & L. J. Hickey. 1972. A revised classification of fossil palm and palm-like leaves. Taxon21: 129–137.CrossRefGoogle Scholar
  194. Reid, E. M. & M. E. J. Chandler. 1933. The London Clay Flora. British Museum (Natural History), 560 pp.Google Scholar
  195. Riepe, R. A. & D. L. Dilcher. 1971. A comparison of modern and CretaceousSassafras leaves. Indiana Acad. Sci., Proc.,81: 91–92 (abstract).Google Scholar
  196. Roselt, G. & W. Schneider. 1969. Cuticulae dispersae, ihre Merkmale, Nomenklatur und Klassifikation. Paläont. Abh. B.3(1): 1–128.Google Scholar
  197. Rüffle, L. 1963. Die obermiozane (sarmatische) Flora vom Randecker Maar. Paläont. Abh.1: 139–296.Google Scholar
  198. —. 1964. Ökologische bewertung von kutikularmerkmalen Tertiär-zeitlicher Blätter. Wiss Z. Humboldt-Univ. Berlin, Math.-Nat. R.12: 25–46.Google Scholar
  199. —. 1965. Monimiaceen-Blätter im älteren Senon von Mitteleuropa. Geologie14: 78–105.Google Scholar
  200. —. 1968. Merkmalskomplexe bie älteren Angiospermen-Blättern und die kutikula vonCredneria zenker (Menispermaceae). Palaeonto-graphica Abt. B,123: 132–143.Google Scholar
  201. —. 1969. Die telomtheorie bei der deutung von Angiospermen-organen und ihrer herkunft. Pädagogische Hochsch. Potsdam, Wissen-schaf. Zeitsch. Math.-Naturwiss. Reihe,13: 253–272.Google Scholar
  202. — & E. Palamarev. 1965.Quercophyllum brezanii—eiene neue fossile art aus dem Paläogen Bulgariens. Bulgarian Acad. Sci.16: 149–154.Google Scholar
  203. Sampson, J. 1961. A method of replicating dry or moist surfaces for examination by light microscopy. Nature191: 932–933.PubMedCrossRefGoogle Scholar
  204. Sarvelle, P., J. R. Meyer, & A. Owings. 1961. A scotch tape method for counting or measuring stomata. Crop. Sci.1(1): 81–82.CrossRefGoogle Scholar
  205. Sax, K. & H. G. Sax. 1937. Stomata size and distribution in diploid and polyploid plants. Jour. Arnold. Arb.18: 164–172.Google Scholar
  206. Schneider, W. 1965. Blattreste aus der oberologozänen Braunkohle von Bitterfeld. Geologie14: 1236–1251.Google Scholar
  207. —. 1966. Beziehungen zwischen Pflanzeninhalt und petrograph-ischer Beschaffenheit von Weichbraunkohlen am Beispiel der miozänen Braunkohlen der Oberlausitz. Ber. detusch. Ges. geol. Wiss. A. Geol. Paläont.11: 615–633.Google Scholar
  208. -. 1969. Cuticuae dispersae aus dem 2. Lausitzwer Flöz (Miozän) und ihre fazielle Agussage. Freiberger Forschungshefte C 222 Paläont., 74 pp.Google Scholar
  209. —. 1972.Laurophyllum rugatum, Kvaček & Bůzek aus dem Miozän der Lausitz. Paläon. Abh. Abt. B,3: 855–859.Google Scholar
  210. Scott, R., E. S. Barghoorn, & E. B. Leopold. 1960. How old are the angiosperms? Am. Jour. Sci., Bradley volumes,258-A: 284–299.Google Scholar
  211. Seward, A. C. 1931. Plant life through the ages. The Macmillan Company, New York, 601 ppGoogle Scholar
  212. Shakryl, A. K. 1965. Epidermis of the Lauraceae for the diagnosis of some modern and fossil species (in Russian). Akad. Nauk, Grus. SSR, Suchum, Bot. Sad, Tiflis, 78 pp.Google Scholar
  213. —. 1972. Representation of the genusOcotea in the sarmatian deposits of Abkhazia (in Russian). Bull. Acad. Sci. Georgian SSR.68: 501–504.Google Scholar
  214. —. 1972. Representatives of the neotropical genusAniba in the Pliocene deposits of Duab (in Abkhazia) (in Russian). Bull. Acad. Sci. Georgian SSR68: 497–500.Google Scholar
  215. —. 1972. Environmental modifications of leaf epidermis and morphological features inVerbena canadenis. The Southwest. Nat.17: 221–228.CrossRefGoogle Scholar
  216. — & B. D. Dunn. 1968. Effect of environment on the cuticular features inKalanchoe fedschenkoi. Bull. Torrey Bot. Club.95: 464–473.CrossRefGoogle Scholar
  217. —. 1969. Environmental modification of leaf surface traits inDatura stramonium. Canadian Jour. Bot.47: 1211–1216.Google Scholar
  218. Sheffy, M. V. 1972. A study of the Myriaceae from Eocene sediments of southeastern North America. Ph.D. dissertation, Department of Plant Sciences, Indiana University, Bloomington, Indiana, 152 pp.Google Scholar
  219. Sims, A. L. & A. G. Lyon. 1963. A reversible duralumin microscope slide. Jour. Sci. Instr.40: 370.CrossRefGoogle Scholar
  220. Sinclair, C. B. & D. B. Dunn. 1961. Surface printing of plant leaves for phylogenetic studies. Stain Tech.36: 299–304.Google Scholar
  221. — & G. K. Sharma. 1971. Epidermal and cuticular studies of leaves. Jour. Tenn. Acad. Sci.46: 2–11.Google Scholar
  222. Sinnott, E. W. & I. W. Bailey. 1915: Investigations of the phylogeny of the angiosperms. 5. Foliar evidence as to the ancestry and early climatic environment of the angiosperms. Am. Jour. Bot.2: 1–22.CrossRefGoogle Scholar
  223. Solereder, H. 1899. Systematische anatoime der dicotyledonen. F. Enke, Stuttgart, 979 pp.Google Scholar
  224. -. 1908. Systematic anatomy of the dicotyledons. Trans. L. A. Boodle & F. E. Fritsch; revis. D. H. Scott, Oxford Press, 1182 pp.Google Scholar
  225. - & F. J. Meyer. 1929. Systematishe anatomie der monokotyle-donen. Berlin.Google Scholar
  226. Stace, C. A. 1965. Cuticular studies as an aid to plant taxonomy. Bull. Brit. Mus. Bot.4(1): 1–78.Google Scholar
  227. —. 1965. The significance of the leaf epidermis in the taxonomy of the Combretaceae. I. A general review of tribal, generic and specific characters. Jour. Linn. Soc, Bot.59: 229–252.Google Scholar
  228. —. 1969. The significance of the leaf epidermis in the taxonomy of the Combretaceae. II. The genusCombretum subgenusCombretum in Africa. Jour. Linn. Soc. Bot.62: 131–168.Google Scholar
  229. —. 1969. The significance of the leaf epidermis in the taxonomy of the Combretaceae. III. The genusCombretum in America. Brittonia21: 130–143.Google Scholar
  230. Stebbins, G. L. & G. S. Khush. 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and it’s bearing on their phylogeny. Am. Jour. Bot.48: 51–59.CrossRefGoogle Scholar
  231. Stebbins, Jr., G. L. 1950. Variation and Evolution in Plants. Columbia University Press, New York, 643 pp.Google Scholar
  232. Stebbins, G. L. & G. S. Khush. 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearings on their phylogeny. Am. J. Bot.48: 51–59.CrossRefGoogle Scholar
  233. Stehli, G. & G. Brünner. 1968. Pflanzensammeln-aber richtig. Kosmos, Franckh’sche Verlagshand., W. Keller & Co., Stuttgart, pp. 1–130.Google Scholar
  234. — & W. G. Fischer. 1964. Pflanzensammeln-aber richtig. Kosmos, Franckh’sche Verlagshandlung, W. Keller & Co., Stuttgart, 96 pp.Google Scholar
  235. Steubing, L. 1970. Soil Flora:Studies of the number and activity of microorganisms in Woodland soils. Chpt. 1 (p. 131–147) in Ecological Studies analysis and synthesis, vol. 1.Analysis of Temperate Eco-systems, ed. by D. E. Reichle, Springer-Verlag, N. Y. 304 pp.Google Scholar
  236. Stockmans, F. 1932. Sur des epidermes de dicotyledomees (Dewalquea gelindenensis Saporta et Marion etLitsea elatinervis Saporta et Marion) des Marnes de Gelinden (Paleocene), Bull. Mus. R. Hist. Nat. Belg.8: 1–10.Google Scholar
  237. Straus, A. 1930. Dikotyle Pflanzenreste aus dem Oberpliozan von Willer-shausen (Krein Osterode, Harz) I. Jahbr, Preuss. Geol. Landes. Berl.51(1): 302–336.Google Scholar
  238. Stürm, M. 1971. Die eozäne flora von Messel bei Darmstadt. I. Lauraceae. Paleontographica Abt. B.134: 1–60.Google Scholar
  239. Takhtajan, A. 1969. Flowering plants origin and dispersal. Translation by C. Jeffrey, Smithsonian Institution Press, City of Washington, 310 pp.Google Scholar
  240. Tanai, T. 1960. On the fossil beech leaves from the Ningyo-toge area, in Chugoku district, Japan. Trans. Proc. Palaeontol. Soc. Japan37: 193–200.Google Scholar
  241. —. 1972. Tertiary history of vegetation in Japan. Chpt. 14 in Floristics & Paleofloristics of Asia and Eastern North America. ed. by A. Graham. Elsevier Publ. Co. Amsterdam. 235–255.Google Scholar
  242. Tomlinson, P. B. 1974. Development of the stomatal complex as a taxo-nomic character in the monocotyledons. Taxon23: 109–128.CrossRefGoogle Scholar
  243. Tucker, J. M. 1974. Patterns of parallel evolution of leaf form in new world oaks. Taxon23: 129–154.CrossRefGoogle Scholar
  244. Turtox Service Leaflet. 1960. Micro-replicas. Turtox Ser. Leaflet no. 31, p. 1–4, Turtox ser. dept., Gen. Biol. Sup. House, Chicago, Illinois.Google Scholar
  245. Unger, F. 1850. Genera et species plantarum fossilium. Vindobonae, Apud Wilhelmum Braumüller, Wein, 627 pp.Google Scholar
  246. Uphof, J. C. Th. 1962. Plant hairs. Handbuch der pflanzenanatomie, bd. IV, teil 5, Gerbrüder Borntraeger, Berlin, 206 pp.Google Scholar
  247. Voight, E. 1936. Die Lackfilmmethode, ihre bedeutung und Anwendung in der Paläontologie, Sedimentpetrographie, und Bodenkunde. Z. dtsch, geol. Ges.88: 272–292.Google Scholar
  248. —. 1949. Der Block-Lackfilm Z. dtsch. geol. Ges.99(1947): 124–130.Google Scholar
  249. Von Ettinghausen, C. 1854a. über die Nervation der Blätter und blattartigen Organe bei den Euphorbiaceen, mit besonderer Rückischt auf die vorweltlichen Formen. Sitz. Ber. Kaiserl. Akad. Wiss., Math. Naturw. Cl.,12: 138–160.Google Scholar
  250. —. 1854b. Über die Nervation der Blätter der Papilionaceen. Sitz. Ber. Kaiserl. Akad. Wiss., Math. Naturw, CL.,12: 600–663.Google Scholar
  251. —. 1856. Über die Nervation der Blätter bei den Celastrineen. Sitz. Ber. Kaiserl. Akad. Wiss., Math. Naturw, Cl.,22: 269–271.Google Scholar
  252. —. 1857. Über die Nervation der Blätter bei den Celastrineen. Denkschr. Kaiserl. Akad. Wiss., Math. Naturw. Cl.,13: 43–83.Google Scholar
  253. —. 1858a. Über die Nervation der Bombaceen. Denkschr. Kaiserl. Akad. Wiss., Math. Naturw. Cl.,14: 49–62.Google Scholar
  254. —. 1858b. Die Blattskelete der Apetalen, line Vorarbeit zur Inter-pretation der fossilen Pflanzenreste. Denkschr. Kaiserl. Akad. Wiss., Math. Naturw. Cl.,15: 181–272.Google Scholar
  255. -. 1861. Die Blattskelete der Dikotyledonen mit besondere Rücksicht auf die Untersuchung und Bestimmung der fossilen Pflanz-enreste. Kön. Hof. und Staatsdruckerei, Wein, 308 pp.Google Scholar
  256. —. 1865. Beitrag zur Kenntnis der Nervation der Gramineen. Sitz. Ber. Kaiserl. Akad. Wiss., Math. Naturw. Cl.,52: 405–432.Google Scholar
  257. —. 1872. Über die Blattskelete der Loranthaceen. Denkschr. Kaiserl. Akad. Wiss., Math. Naturw. Cl.,32: 51–84.Google Scholar
  258. —. 1890. Über fossile Banksia-Arten und ihre Beziehung zu den lebenden. Sitzungsberich. Kais. Akad. Wiss. Wien. Math.-Natur.99(1): 1–16.Google Scholar
  259. Walker, N. E. & D. B. Dunn. 1967. Environmental modification of cuticular characteristics of Alaska pea plants. Trans. Missouri Acad. Sci.,1: 17–24.Google Scholar
  260. Walther, H. 1964. Paläonbotanische untersuchunge im tertiär von Seifhen-nersdorf. Jb. Staatl. Mus. Mineral. Geol.1964: 1–131.Google Scholar
  261. —. 1967. Ergänzungen zur flora von Seifhennersdorf (Sachsen). Abh. Staatl. Mus. Mineral. Geol.12: 259–277.Google Scholar
  262. —. 1968. Zur Nomenklatur vonAcer “trilobatun.” Monatsberichte Deutsh. Akad. Wiss. Berlin10: 630–638.Google Scholar
  263. —. 1970. Die GattungHedera L. im Tertiär von Salzhausen. Abh. Staatl. Mus. Mineral. Geol.16: 211–234.Google Scholar
  264. —. 1972. Studien über tertiäreAcer Mitteleuropas. Abh. Staatl. Mus. Mineral. Geol. Dresdan19: 1–309.Google Scholar
  265. Weber, R. 1972. Consideraciones metodologicas sobre la taxonomia de las hojas fossiles de las dicotiledoneas. Sobretiro de las Mem. Symp. I. Congresso Latinoan. Mex. Bot., Soc. Bot. Mex. p. 135–151.Google Scholar
  266. Weyland, H. 1957. Kritische Untersuchungen zur kutikularanalyse tertiärer Blätter III. Monocotylen der rheinischen Braunkohle. Palaeonto-graphica. Abt. B103: 34–74.Google Scholar
  267. —. 1959. Kritische Untersuchungen zur kutikularanalyse tertiärer Blätter V. Weiteres über monocotylen der rheinischen Braunkohle. Palaeontographica, Abt. B106: 1–10.Google Scholar
  268. - & K. Kilpper. 1963. Kritische Untersuchungen zur kutikular-analyse tertiärer Blätter VI. Weistere Dicotyledonen aus der rhein-ischen Braunkohle. Palaeontographica, Abt. B 93–116.Google Scholar
  269. — & Berendt, W. 1966. Die Stacheln tragende Palme der Nieder-rheinischen Braunkohle. Palaeontographica, Abt. B118: 74–92.Google Scholar
  270. —. 1967. Kritische Untersuchungen zur Kutikutaranalyse tertiärer Blätter VII. Nachträge zu früheren Arbeiten über Epidermen aus der niederrheinischen Branukohle und neue Arten. Palaeontographica, Abt. B120: 151–168.Google Scholar
  271. Wolfe, J. A. 1959. Tertiary Juglandaceae of western North America. Masters thesis in paleontology in the Graduate Division of the University of California, Berkeley, 110 pp.Google Scholar
  272. -. 1964. Miocene floras from Fingerrock wash southeastern Nevada. U.S. Geol. Surv., Profess. Papers, 454-N: N1N36.Google Scholar
  273. -. 1966. Tertiary plants from the Cook Inlet region, Alaska. U.S. Geol. Surv., Profess. Papers, 398-b: B1-B32.Google Scholar
  274. —. 1968. Paleogene biostratigraphy of nonmarine rocks in King County, Washington. U.S. Geol. Surv., Profess. Papers,571: 1–33.Google Scholar
  275. -. 1969. Paleogene floras from the Gulf of Alaska region. U.S. Geol. Survey, open file report, 111 pp.Google Scholar
  276. —. 1971. Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeongeography, Plaeoclimatol, Palaeoecol.,9: 27–57.CrossRefGoogle Scholar
  277. —. 1972a. Significance of comparative foliar morphology to paleo-botany and neobotany. Amer. Jour. Bot.59: 664, (abstract).Google Scholar
  278. —. 1972b. Phyletic significance of Lower Cretaceous dicotyle-donous leaves from the Patuxent Formation, Virginia. Amer. Jour. Bot.59: 664, (abstract).Google Scholar
  279. —. 1972c. An interpretation of Alaskan Tertiary floras. Chpt. 13.In: Floristics & Paleofloristics of Asia & Eastern North America. ed. by A. Graham. Elsevier Pub. Co., Amsterdam 210–233.Google Scholar
  280. — & E. S. Barghoorn. 1960. Generic change in Tertiary floras in relation to age. Amer. Jour. Sci., Bradley Volume,258-A: 388–399.Google Scholar
  281. - & D. M. Hopkins. 1967. Climatic changes recorded by Tertiary land floras in northwestern North America.In: K. Hatai (ed.), Tertiary Correlations and Climatic Changes in the Pacific—Symp. Pacific Sci. Congr., 11th, Tokyo, Aug.–Sept. 1966,25: 67–76.Google Scholar

References Added in Proof

  1. Napp-Zinn, K. 1973. Anatomie des Blattes, II Blattanatomie der Angiospermen, A. topographische Anatomie des Angiospermenblattes, 1. Lieferung, Handbuch der Pflangenatomie, Bd. VIII, teil 2A, Gebrüder Borntraeger, Stuttgart, 764 pp.Google Scholar
  2. Wolfe, J. 1973. Fossil forms of Amentiferae, Brittonia25: 334–355.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1974

Authors and Affiliations

  • David L. Dilcher
    • 1
  1. 1.Department of Plant SciencesIndiana UniversityBloomington

Personalised recommendations