Skip to main content
Log in

Auxins

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

Comprehensive Works Published in 1950 and Later: Books on Auxin

  1. Audus, L. J. Plant growth substances. 465 pp. 1953.

  2. Leopold, A. Auxins and plant growth. 354 pp. 1955.

  3. Thimann, K. V. L’origine et les fonctions des auxins. 123 pp. 1956.

Comprehensive Works Published in 1950 and Later: Symposia on Auxin

  1. Porter, H. K. [ed.] The biological action of growth substances. Symp. Soc. Biol.11: 1957.

  2. Skoog, F. [ed.] Plant growth substances. 1951. [Proceedings of a symposium held in celebration of the 100th anniversary of the founding of the University of Wisconsin].

  3. Tukey, H. B. [ed.] Plant regulators in agriculture. 1954. [Contains 16 articles by specialists in their respective fields].

  4. Wain, R. L., andF. Wightman. [ed.] The chemistry and mode of action of plant growth substances. [Proceedings of a symposium held at Wye College University of London, July, 1955]. 1956.

Comprehensive Works Published in 1950 and Later: Chapters on Auxin

  1. Bonner, J. The plant growth substances.In: Plant biochemistry. Chap. 29. 1950.

  2. Thimann, K. V., andA. C. Leopold. Plant growth hormones.In: The Hormones. Vol. III. Chap. 1. 1955.

  3. Van Overbeek, J. Plant hormones and other regulatory factors.In: Frear, D.E.H. [ed.] Agricultural chemistry. Vol. 1. Chap. 13. 1950.

Comprehensive Works Published in 1950 and Later: Reviews on Various Aspects of Auxins

  1. Åberg, B. Auxin relations in roots. Ann. Rev. Plant Physiol.8: 153. 1957.

    Article  Google Scholar 

  2. Bentley, J. A. The natural auxins and inhibitors. Ann. Rev. Plant Physiol.9: 47. 1958.

    Article  CAS  Google Scholar 

  3. Blackman, G. E., W. G. Templeman, andD. J. Halliday. Herbicides and selective phytotoxicity. Ann. Rev. Plant Physiol.2: 199. 1951.

    Article  CAS  Google Scholar 

  4. Bonner, J., andR. S. Bandurski. Studies of the physiology, pharmacology, and biochemistry of the auxins. Ann. Rev. Plant Physiol.3: 59. 1952.

    Article  Google Scholar 

  5. Brauner, L. Tropisms and nastic movements. Ann. Rev. Plant Physiol.5: 163. 1954.

    Article  CAS  Google Scholar 

  6. Crafts, A. S. Herbicides. Ann. Rev. Plant Physiol.4: 253. 1953.

    Article  Google Scholar 

  7. Gordon, S. A. Occurrence, formation, and inactivation of auxins. Ann. Rev. Plant Physiol.5: 341. 1954.

    Article  CAS  Google Scholar 

  8. Larsen, P. Formation, occurrence, and inactivation of growth substances. Ann. Rev. Plant Physiol.2: 169. 1951.

    Article  CAS  Google Scholar 

  9. Mitchell, J. W., andP. C. Marth. Growth-regulating substances in horticulture. Ann. Rev. Plant Physiol.1: 125. 1950.

    Article  Google Scholar 

  10. Muir, R. M., andC. Hansch. Chemical constitution as related to growth regulator action. Ann. Rev. Plant Physiol.6: 157. 1955.

    Article  CAS  Google Scholar 

  11. Nitsch, J. P. Plant hormones in the development of fruits. Quart. Rev. Biol.27: 33. 1952.

    Article  PubMed  CAS  Google Scholar 

  12. Templeman, W. G. The uses of plant growth substances. Ann. Appl. Biol.42: 162. 1955.

    Article  CAS  Google Scholar 

  13. Thimann, K. V. Growth and growth hormones in plants. Amer. Jour. Bot.44: 49. 1957.

    Article  CAS  Google Scholar 

  14. van Overbeek, J. Agricultural applications of growth regulators and their physiological basis. Ann. Rev. Plant Physiol.3: 87. 1952.

    Article  Google Scholar 

  15. —. Absorption and translocation of plant regulators. Ann Rev. Plant Physiol.7: 355. 1956.

    Article  Google Scholar 

  16. Veldstra, H. The relation of chemical structure to biological activity in growth substances. Ann. Rev. Plant Physiol.4: 151. 1953.

    Article  Google Scholar 

Specific References and Older Works

  1. Abbott, D. L. Recent applications of growth substances in fruit growing. Ann. Appl. Biol.41: 215. 1954.

    Article  CAS  Google Scholar 

  2. Alderman, D. C. Alpha-naphthylacetamide: a chemical fruit thinner. Proc. Amer. Soc. Hort. Sci.66: 57. 1955.

    CAS  Google Scholar 

  3. AndreAe, W. A. andN. E. Good. The formation of indoleacetylaspartic acid in pea seedlings. Plant Physiol.30: 380. 1955.

    Article  PubMed  CAS  Google Scholar 

  4. ——. Studies on 3-indoleacetic acid metabolism. IV. Plant Physiol.32: 566. 1957.

    PubMed  CAS  Google Scholar 

  5. — andM. W. H. van Ysselstein. Studies on indoleacetic acid metabolism. III. Plant Physiol.31: 235. 1956.

    PubMed  CAS  Google Scholar 

  6. Anon. Profitability of 2,4-D. Jour. Agr. & Food Chem.3: 30. 1955.

    Google Scholar 

  7. -. Jour. Agr. & Food Chem.4: 739. 1956.

  8. Ashton, F. M. Absorption and translocation of radioactive 2,4-D in sugarcane and bean plants. Weeds.6 (3): 257. 1958.

    Article  CAS  Google Scholar 

  9. Audus, L. J., andA. Garrard. Studies on the growth and respiration of roots. I. Jour. Exp. Bot.4: 330. 1953.

    Article  CAS  Google Scholar 

  10. — andR. Thresh. The effects of synthetic growth-regulator treatments on the leaves of free endogenous growth substances in plants. Ann. Bot.20: 439. 1956.

    CAS  Google Scholar 

  11. Bandurski, R. S. Respiration and growth. Tappi.40: 217. 1957.

    CAS  Google Scholar 

  12. Batjer, L. P. Plant regulators to prevent pre-harvest fruit drop, delay foliation and blossoming, and thin blossoms and young fruits.In: Tukey, H. B. [ed.] Plant regulators in agriculture. 1954. [p. 117].

  13. —,H. W. Siegelman, B. L. Rogers, andF. Gerhardt. Results of four years’ tests of the effect of 2,4,5-trichlorophenoxypropionic acid on maturity and fruit drop of apples in the northwest. Proc. Amer. Soc. Hort. Sci.64: 215. 1954.

    CAS  Google Scholar 

  14. Bennet-Clark, T. A. The kinetics of auxin-induced growth.In: Wain, R. L., and F. Wightman [ed.] The chemistry and mode of action of plant growth substances. 1956. [p. 310].

  15. —,M. S. Tambiah andN. P. Kefford. Estimation of plant growth substances by partition chromatography. Nature169: 452. 1952.

    Article  PubMed  CAS  Google Scholar 

  16. — andN. P. Kefford. Chromatography of the growth substances in plant extracts. Nature171: 645. 1953.

    Article  PubMed  CAS  Google Scholar 

  17. Bentley, J. A. Growth-regulating effect of certain organic compounds. Nature165: 449. 1950.

    Article  CAS  Google Scholar 

  18. — andA. S. Bickle. Studies on plant growth hormones. II. Further biological properties of 3-indolylacetonitrile. Jour. Exp. Bot.3: 406. 1952.

    Article  CAS  Google Scholar 

  19. — andS. Housley. Studies on plant growth hormones. I. Biological activities of 3-indolylacetaldehyde and 3-indolylacetonitrile. Jour. Exp. Bot.3: 393. 1952.

    Article  CAS  Google Scholar 

  20. Bonner, J. Limiting factors and growth inhibitors in the growth of theAvena coleoptile. Amer. Jour. Bot.36: 323. 1949.

    Article  CAS  Google Scholar 

  21. -. The hormonal control of plant growth. Harvey Lectures. 1952–53.

  22. — Chemical kinetics of growth. Austral. Jour. Sci.19: 127. 1957.

    Google Scholar 

  23. -, andR. J. Foster. The kinetics of auxin-induced growth.In: Wain, R. L., and F. Wightman, [ed.] 1956. [p. 295].

  24. -,L. Ordin andR. Cleland. Auxin-induced water uptake.In: Wain, R. L., and F. Wightman, [ed.] The chemistry and mode of action of plant growth substances. 1956. [p. 260].

  25. Bonner, W. D. Soluble oxidases and their functions. Ann. Rev. Plant Physiol.8: 427. 1957.

    Article  CAS  Google Scholar 

  26. Bradley, M. V., andJ. C. Crane. Effect of auxins on development of apricot seeds and seedlings. Amer. Jour. Bot.44: 164. 1957.

    Article  CAS  Google Scholar 

  27. ——. The effect of 2,4,5-trichlorophenoxyacetic acid on cell and nuclear size and endopolyploidy in parenchyma of apricot fruits. Amer. Jour. Bot.42: 273. 1955.

    Article  CAS  Google Scholar 

  28. Brauner, L. Untersuchungen über die Photolyse des Heteroauxins. I. Zeits. Bot.41: 291. 1953.

    CAS  Google Scholar 

  29. Brian, P. W. The effect of some microbial metabolic products on plant growth. Symp. Soc. Exp. Biol.11: 166. 1957.

    Google Scholar 

  30. —,H. G. Hemming, andM. Radley. A physiological comparison of gibberellic acid with some auxins. Physiol. Plant.8: 899. 1955.

    Article  CAS  Google Scholar 

  31. —. A relation between the effects of gibberellic acid and indolylacetic acid on plant cell extension. Nature179: 417. 1957.

    Article  CAS  Google Scholar 

  32. Briggs, W. R., G. Morel, T. A. Steeves, I. M. Sussex, andR. H. Wetmore. Enzymatic auxin inactivation by extracts of the fern,Osmunda cinnamomea L. Plant Physiol.30: 143, 148. 1955.

    PubMed  CAS  Google Scholar 

  33. — andP. M. Ray. An auxin inactivation system involving tyrosinase. Plant Physiol.31: 165. 1956.

    PubMed  CAS  Google Scholar 

  34. —,R. D. Tocher, andJ. F. Wilson. Phototropic auxin redistribution in corn coleoptiles. Science126: 210. 1957.

    Article  PubMed  CAS  Google Scholar 

  35. Bringhurst, R. S., V. Voth andJ. C. Crane. Blackberry yields increased. Calif. Agr.10 (4): 5. 1956.

    Google Scholar 

  36. Brodell, A. P., P. E. Strickler, andH. C. Phillips. Extent and cost of spraying and dusting on farms. 1952. U. S. Dept. Agr., Stat. Bull. 156. 1955.

  37. Bull, H. B. Physical biochemistry. [Sec. Ed.] 1951.

  38. Burström, H. Auxin and the mechanism of root growth. Symp. Soc. Exp. Biol.11: 44. 1957.

    Google Scholar 

  39. Bryan, W. H., andE. H. Newcomb. Stimulation of pectin methylesterase activity of cultured tobacco pith by indoleacetic acid. Physiol. Plant.7: 290. 1954.

    Article  CAS  Google Scholar 

  40. Carlier, A., andK. Buffel. Polysaccharide changes in the cell walls of water absorbing potato tuber tissue in relation to auxin action. Acta Bot. Neerl.4: 551. 1955.

    Google Scholar 

  41. Cartwright, P. M., J. T. Sykes, andR. L. Wain. The distribution of natural hormones in germinating seeds and seedling plants.In: Wain, R. L., F. Wightman, [ed.]. The chemistry and mode of action of plant growth substances. 1956. [p. 32].

  42. Chadwick, L. C., R. R. Miller, andD. Erskine. The prevention of fruit formation on some ornamental trees. Proc. Amer. Soc. Hort. Sci.58: 308. 1951.

    CAS  Google Scholar 

  43. Cleland, R. E. The hormonal control of cell wall properties. Thesis, Cal. Inst. Tech. 1957.

  44. Cooil, B. J. andJ. Bonner. The nature of growth inhibiton by calcium in theAvena coleoptile. Planta48: 696. 1957.

    Article  CAS  Google Scholar 

  45. Cooper, W. C. Periodicity of growth and dormancy in citrus-A review with some observations of conditions in the lower Rio Grande valley of Texas. Jour. Rio Grande Valley Hort. Soc.11: 3. 1957.

    Google Scholar 

  46. Cormack, R. G. H. On the growth of root hairs. Science119: 615. 1954.

    Article  PubMed  Google Scholar 

  47. Crafts, A. S. Translocation of herbicides. Hilgardia.26: 287. 1956.

    CAS  Google Scholar 

  48. Crane, J. C. Ovary-wall development as influenced by growth-regulators inducing parthenocarpy in the Calimyrna fig. Bot. Gaz.114: 102. 1952.

    Article  CAS  Google Scholar 

  49. —. Frost resistance and reduction in drop of injured apricot fruits effected by 2,4,5-trichlorophenoxyacetic acid. Proc. Amer. Soc. Hort. Sci.64: 225. 1954.

    CAS  Google Scholar 

  50. —. The effectiveness of 2,4,5-trichlorophenoxyacetic acid in reducing drop and promoting growth of frosted apricot fruits. Science119: 383. 1954.

    Article  PubMed  CAS  Google Scholar 

  51. —. Growth regulators on apricots. Cal. Agr.10 (4): 7. 1956.

    Google Scholar 

  52. —. The comparative effectiveness of several growth regulators for controlling pre-harvest drop, increasing size and hastening maturity of Stewart apricots. Proc. Amer. Soc. Hort. Sci.67: 153. 1956.

    CAS  Google Scholar 

  53. — andR. Blondeau. Controlled growth of fig fruits by synthetic hormone application. Proc. Amer. Soc. Hort. Sci.54: 102. 1949.

    CAS  Google Scholar 

  54. — andR. M. Brooks. Growth of apricot fruits as influenced by 2,4,5-trichlorophenoxyacetic acid application. Proc. Amer. Soc. Hort. Sci.59: 218. 1952.

    Google Scholar 

  55. Currier, H. B. Callose substance in plant cells. Amer. Jour. Bot.44: 478. 1957.

    Article  Google Scholar 

  56. Darwin, C. The power of movement in plants. 592 pp. 1880.

  57. Das, N. K., K. Patau, andF. Skoog. Initiation of mitosis and cell division by kinetin and indoleacetic acid in excised tobacco pith tissue. Physiol. Plant.9: 640. 1956.

    Article  CAS  Google Scholar 

  58. Davis, D., andA. E. Dimond. Inducing disease resistance with plant growth regulators. Phytopath.43: 137. 1953.

    CAS  Google Scholar 

  59. Davison, R. M. Effect of various growth-regulating substances on fruit drop and storage life of apples. New Zeal. Jour. Sci. & Tech. A.38: 45. 1956.

    Google Scholar 

  60. Elliott, J. G. MCPA for the control of weeds in spring oats. Agriculture [London]62: 574. 1956.

    CAS  Google Scholar 

  61. Erickson, L. C. Lemon storage. Cal. Agr. Dec, 1952.

  62. Fawcett, C. H., H. F. Taylor, R. L. Wain, andF. Wightman. The degradation of certain phenoxy acids, amides, and nitriles within plant tissues.In: R. L. Wain and F. Wightman [ed.] 1956. [p. 187].

  63. —,R. L. Wain, andF. Wightman. Studies on plant growthregulating substances. VIII. The growth-promoting activity of certain aryloxy-and arylthio-alkane carboxylic acids. Ann. Appl. Biol.43: 342. 1955.

    Article  CAS  Google Scholar 

  64. ———. Plant growth-regulating activity in certain carboxylic acids not possessing a ring structure. Nature178: 972. 1956.

    Article  CAS  Google Scholar 

  65. Fiester, D. R. Revision de literatura sobre propagacion asexual de cafe por estacas. Turrialba7: 57. 1957.

    Google Scholar 

  66. French, R. C. andH. Beevers. Respiratory and growth responses induced by growth regulators on allied compounds. Amer. Jour. Bot.40: 660. 1953.

    Article  CAS  Google Scholar 

  67. Frey-Wyssling, A. Plant cytology and the electron microscope. Endeavour14 (53): 34. 1955.

    CAS  Google Scholar 

  68. —. A macromolecules in cell structure. Nature179: 941. 1957.

    Article  PubMed  CAS  Google Scholar 

  69. Galston, A. W. Some metabolic consequences of the administration of indoleacetic acid to plant cells.In: Wain, R. L. and F. Wightman [ed.] The chemistry and mode of action of plant growth substances. 1956. [p. 219].

  70. —. Studies on indoleacetic acid oxidase and its inhibiton on light-grown peas. Plant Physiol.32 (Supple.): 21. 1957.

    Google Scholar 

  71. — andL. Y. Dalberg. The adaptive formation and physiological significance of indoleacetic acid oxidase. Amer. Jour. Bot.41: 373. 1954.

    Article  CAS  Google Scholar 

  72. — andS. M. Siegel. The induced formation of a new peroxidase by the plant growth hormone, indoleacetic acid. Jour. Cell. & Comp. Physiol.44: 343. 1954.

    Google Scholar 

  73. Gardner, F. E., andP. C. Marth. Parthenocarpic fruits induced by spraying with growth-promoting compounds. Bot. Gaz.99: 184. 1937.

    Article  Google Scholar 

  74. —— andL. P. Batjer. Spraying with plant growth substances to prevent apple fruit dropping. Science90: 208. 1939.

    Article  PubMed  CAS  Google Scholar 

  75. Gautheret, R. J. The nutrition of plant tissue cultures. Ann. Rev. Plant Physiol.6: 433. 1955.

    Article  CAS  Google Scholar 

  76. Geissbühler, H. andF. Skoog. Comments on the application of plant tissue cultivation to propagation of forest trees. Tappi40: 257. 1957.

    Google Scholar 

  77. Goldacre, P. L. The photochemical inactivation of indoleacetic acid sensitized by non-protein components of plant tissues. Austral. Jour. Biol. Sci.7: 225. 1954.

    CAS  Google Scholar 

  78. Good, N. E. andW. A. Andreae. Studies on the metabolism of aromatic acids by plants. Plant Physiol.31 (Supp.): xxvii. 1956.

    Google Scholar 

  79. —— andM. W. H. van Ysselstein. Studies on 3-indoleacetic acid metabolism. II. Some products of the metabolism of exogenous indoleacetic acid in plant tissues. Plant Physiol.31: 231. 1956.

    PubMed  CAS  Google Scholar 

  80. Gordon, S. A. Auxin biosynthesis—A cytoplasmic locus of radiation damage.In: Oliver and Boyd [ed.] Progress in radiobiology. 1956. [p. 44].

  81. —. The effects of ionizing radiation on plants: biochemical and physiological aspects. Quart Rev. Biol.32: 1. 1957.

    Article  Google Scholar 

  82. -. The biogenesis of natural auxins.In: Wain R. L., and F. Wightman [ed.]. 1956. [p. 65].

  83. —. Intracellular localization of the tryptophan-indoleacetate enzyme system. Plant Physiol.33: 23. 1958.

    PubMed  CAS  Google Scholar 

  84. -. Lateral distribution of auxin. Symposium: Recent investigations on tropisms. Plant Physiol. Meetings, Stanford. 1957.

  85. — andR. A. Moss. The activity of S-(carboxymethyl)-dimethyldithiocarbamate as an auxin. Physiol. Plant.11: 208. 1958.

    Article  CAS  Google Scholar 

  86. — andF. Sanchez. The biosynthesis of auxin in the vegetative pineapple. I. Nature of the active auxin. Arch. Biochem.20: 356. 1949.

    PubMed  CAS  Google Scholar 

  87. ——. The biosynthesis of auxin in the vegetative pineapple. II. The precursors of indoleacetic acid. Arch. Biochem.20: 367. 1949.

    PubMed  CAS  Google Scholar 

  88. — andR. P. Weber. Studies on the mechanism of phytohormone damage by ionizing radiation. I. The radio sensitivity of indoleacetic acid. Plant Physiol.30: 200. 1955.

    PubMed  CAS  Google Scholar 

  89. Greenberg, J. B., andA. W. Galston. Studies on the role of indole in the biosynthesis of tryptophan and indoleacetic acid. Plant Physiol. 31 (Suppl.): xxvi. 1956.

    Google Scholar 

  90. Gregory, F. G., andJ. A. Veale. A reassessment of the problem of apical dominance. Symp. Soc. Exp. Biol.11: 1. 1957.

    Google Scholar 

  91. Gunther, F. A., R. C. Blinn, G. E. Carman andR. L. Metcalf. Mechanisms of insecticidal action. The structural topography theory and DDT type compounds. Arch. Biochem. & Biophys.50: 504. 1954.

    Article  CAS  Google Scholar 

  92. Gustafson, F. G. Inducement of fruit development by growth-promoting chemicals. Proc. Nat. Acad. Sci.22: 628. 1936.

    Article  PubMed  CAS  Google Scholar 

  93. —. Auxin distribution in fruits and its significance in fruit development. Amer. Jour. Bot.26: 189. 1939.

    Article  CAS  Google Scholar 

  94. —. The cause of natural parthenocarpy. Amer. Jour. Bot.26: 135. 1939.

    Article  Google Scholar 

  95. Haagen-Smit, A. J., W. B. Dandliker, S. H. Wittwer, andA. E. Murneek. Isolation of 3-indoleacetic acid from immature corn kernels. Amer. Jour. Bot.33: 118. 1946.

    Article  CAS  Google Scholar 

  96. —,W. D. Leech, andW. R. Bergren. The estimation, isolation, and identification of auxins in plant materials. Amer. Jour. Bot.29: 500. 1942.

    Article  CAS  Google Scholar 

  97. Haber, A., andF. Skoog. Science. [In press].

  98. Hartmann, H. T. Spray thinning of olives with naphthaleneacetic acid. Proc. Amer. Soc. Hort. Sci.59: 187. Also Cal. Agr.6 (5): 7. 1952.

  99. Hay, J. R. The effect of 2,4-D and 2,3,5-triiodobenzoic acid on the transport of indoleacetic acid. Plant Physiol.31: 118. 1956.

    PubMed  CAS  Google Scholar 

  100. — andK. V. Thimann. The fate of 2,4-dichlorophenoxyacetic acid in bean seedlings. Plant Physiol.31: 446. 1956.

    PubMed  CAS  Google Scholar 

  101. Hayashi, T., andY. Murakami. The biochemistry of Bakanae fungus. Part 32. Jour. Agr. Chem. Soc. Japan28: 543. 1954.

    CAS  Google Scholar 

  102. Hechter, O. Concerning possible mechanisms of hormone action. Vitamins and Hormones13: 293. 1955.

    PubMed  CAS  Google Scholar 

  103. Henbest, H. B., E. R. H. Jones, andG. F. Smith. Isolation of a new plant-growth hormone, 3-indolylacetonitrile. Jour. Chem. Soc. [London]1953: 3796. 1953.

    Google Scholar 

  104. Heyn, A. N. J. Der Mechanismus der Zellstreckung. Rec. Trav. Bot. Néerl.28: 113. 1931.

    Google Scholar 

  105. — andJ. van Overbeek. Weiteres Versuchsmaterial zur plastischen und elastischen Dehnbarkeit der Zellmembran. Kon. Akad. Wet. Amst., Proc.34 (8): 1190. 1931.

    Google Scholar 

  106. Hield, H. Z., andW. S. Stewart. 2,4-D and 2,4,5-T. as fruit-sizing sprays for oranges and grapefruit. Citrus Leaves36 (2): 10. 1956.

    Google Scholar 

  107. Hillman, W. S. Control of pea internode section growth by photoperiodically active radiation, growth substances and sucrose. Plant Physiol.32 (Suppl.): 48. 1957.

    Google Scholar 

  108. Hodge, A. J., E. M. Martin, andR. K. Morton. The structure of some cytoplasmic components of plant cells in relation to the biochemical properties of isolated particles. Jour. Biophys. & Biochem. Cytol.3: 61. 1957.

    CAS  Google Scholar 

  109. Houwink, A. L. andP. A. Roelofsen. Fibrillar architecture of growing plant cell walls. Acta Bot. Neerl.3: 385. 1954.

    Google Scholar 

  110. Huggins, M. L. Hydrogen bonding in high polymers and inclusion compounds. Jour. Chem. Educ.34: 480. 1957.

    Article  CAS  Google Scholar 

  111. Ingebretsen, K., R. S. Basket, W. A. Harvey andM. D. Miller. Weeds in drained rice fields. Cal. Agr.11 (7): 5. 1957.

    Google Scholar 

  112. Jacobs, W. P. The role of auxin in differentiation of xylem around a wound. Amer. Jour. Bot.39: 301. 1952.

    Article  CAS  Google Scholar 

  113. —. Acropetal auxin transport and xylem regeneration. Amer. Nat.88: 327. 1954.

    Article  Google Scholar 

  114. —. Internal factors controlling cell differentiation in the flowerering plants. Amer. Nat.90: 163. 1956.

    Article  Google Scholar 

  115. -, andI. B. Morrow. Quantitative study of xylem development in coleus shoot tips. Abst. Bot. Soc. Amer., Storrs Conn. Meet. August, 1956.

  116. Jensen, W. A. Measurements and histochemical localization of IAAinduced peroxidase activity in the root tip ofVicia Faba. Jour Cell Comp. Physiol.44: 343. 1954. [Abst.]

    Google Scholar 

  117. Jones, E. R. H., H. B. Henbest, G. F. Smith, andJ. A. Bentley. 3-Indoleacetonitrile: a naturally occurring plant growth hormone. Nature169: 485. 1952.

    Article  PubMed  CAS  Google Scholar 

  118. Jönsson, Å. Chemical structure and growth activity of auxins and antiauxins. Handb. Pflanzenphpiologie. Vol. 14. [In press].

  119. Kato, Y. Responses of plant cells to gibberellin. Bot. Gaz.117: 16. 1955; also Physiol. Plant.11: 10. 1958.

    Article  CAS  Google Scholar 

  120. Kefford, N. P. The growth substances separated from plant extracts by chromatography. I. Jour. Exp. Bot.6: 129. 1955.

    Article  CAS  Google Scholar 

  121. — The growth substances separated from plant extracts by chromatography. II. The coleoptile and root elongation properties of the growth substances in plant extracts. Jour. Exp. Bot.6: 245. 1955.

    Article  CAS  Google Scholar 

  122. Kelley, V. W. Time of application of naphthaleneacetic acid for fruit thinning of the peach in relation to the June drop. Proc. Amer. Soc. Hort. Sci.66: 70. 1955.

    Google Scholar 

  123. Kenten, R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem. Jour.59: 110. 1955.

    CAS  Google Scholar 

  124. Ketellapper, H. J. The mechanism of the action of IAA on the water absorption byAvena coleoptile sections. Acta Bot. Neerl.2: 387. 1953.

    CAS  Google Scholar 

  125. Klein, R. M., andH. H. Vogel. Necessity of indoleacetic acid for the duplication of crown-gall tumor cells. Plant Physiol.31: 17. 1956.

    PubMed  CAS  Google Scholar 

  126. Klotz, I. M., andJ. Ayers. The hydrogen ion equilibria of a single group attached to serum albumen: some implications as to the surface characteristics of protein molecules. Jour. Amer. Chem. Soc.79: 4078. 1957. See also Science128: 815. 1958.

    Article  CAS  Google Scholar 

  127. Kobayashi, S., I. Hatakeyama, andJ. Ashida. Effect of auxin upon the water uptake ofAvena coleoptile. Bot. Mag. [Tokyo]69 (811): 16. 1956.

    CAS  Google Scholar 

  128. Kögl, F., A. J. Haagen-Smit, andH. Erxleben. Über ein neues Auxin (“Heteroauxin”) aus Harn. Zeits. Physiol. Chem.228: 90. 1934.

    Google Scholar 

  129. Kuraishi, S., andT. Hashimoto. Promotion of leaf growth and acceleration of stem elongation by gibberellin. Bot. Mag. [Tokyo]70: 86. 1957.

    CAS  Google Scholar 

  130. Larsen, P. 3-Indole acetaldehyde as a growth hormone in higher plants. Dansk Bot. Arkiv11 (9): 1. 1944.

    Google Scholar 

  131. Laties, G. C. Respiration and cellular work and the regulation of the respiration rate in plants. Sur. Biol. Progr.3: 215. 1957.

    CAS  Google Scholar 

  132. Leaper, J. M. F., andJ. R. Bishop. Relation of halogen position to physiological properties in the mono-, di-, and trichlorophenoxyacetic acids. Bot. Gaz.112: 250. 1951.

    Article  CAS  Google Scholar 

  133. Lehninger, A. L., andB. L. Ray. Action of thyroxin on mitochondria. Science125: 748. 1957.

    Google Scholar 

  134. Libbert, E. Die Hydrolyse des Korrelationshemmstoffe zu Auxin. Planta46: 256. 1955.

    Article  CAS  Google Scholar 

  135. Lippert, L. F., L. Rappaport, andH. Timm. Breaking the rest period of white potatoes with gibberellic acid. Abs. 54th Ann. Meet. Amer. Soc. Hort. Sci.:50. 1957; also Potato Jour.34: 254. 1957.

  136. Lockhart, J. A. Studies on the organ of production of the natural gibberellin factor in higher plants. Plant Physiol.32: 204. 1957.

    PubMed  CAS  Google Scholar 

  137. Luckwill, L. C. Studies of fruit development in relation to plant hormones. I. Jour. Hort. Sci.28: 14. 1953.

    CAS  Google Scholar 

  138. -. Parthenocarpy and fruit development in relation to plant regulators.In: Tukey, H. B. [ed.] Plant regulators in agriculture. 1954. [p. 81].

  139. —. Studies of fruit development in relation to plant hormones. II. Jour. Hort. Sci.32: 18. 1957.

    CAS  Google Scholar 

  140. —. The chemical thinning of apples in Britain. Agr. Rev.3 (4): 19. 1957.

    Google Scholar 

  141. -. Hormonal aspects of fruit development in higher plants. Exp. Biol.11: 1957.

  142. — andL. E. Powell. Absence of indoleacetic acid in the apple. Science123: 225. 1956.

    Article  PubMed  Google Scholar 

  143. Lund, H. A. The biosynthesis of indoleacetic acid in the styles and ovaries of tobacco preliminary to the setting of fruit. Plant Physiol.31: 334. 1956.

    Article  PubMed  CAS  Google Scholar 

  144. —. Growth hormones in the styles and ovaries of tobacco responsible for fruit development. Amer. Jour. Bot.43: 562. 1956.

    Article  Google Scholar 

  145. Manning, D. T., andA. W. Galston. On the nature of the enzymatically catalyzed oxidation products of indoleacetic acid. Plant Physiol.30: 225. 1955.

    PubMed  CAS  Google Scholar 

  146. Marth, P. C., W. V. Audia, andJ. W. Mitchell. Effects of gibberellic acid on growth and development of plants of various genera and species. Bot. Gaz.118: 106. 1956.

    Article  CAS  Google Scholar 

  147. Mason, H. S. Mechanisms of oxygen metabolism. Science125: 1185. 1957.

    Article  PubMed  CAS  Google Scholar 

  148. Maxie, E. C., andJ. C. Crane. Some metabolic effects of 2,4,5-trichlorophenoxyacetic acid on Tilton apricot fruits. Proc. Amer. Soc. Hort. Sci.68: 113. 1956.

    CAS  Google Scholar 

  149. Mer, C. L. A re-examination of the supposed effect of riboflavin on growth. Plant Physiol.32: 175. 1957.

    PubMed  CAS  Google Scholar 

  150. Mericle, L. W., andW. G. Whaley. Cell-wall structure in apical meristems. Bot. Gaz.114: 382. 1953.

    Article  CAS  Google Scholar 

  151. Moore, J. F. N-1-Naphthyl phthalamic acid, N-m-tolyl phthalamic acid and other growth regulators applied as whole plant sprays to fieldgrown tomatoes. Proc. Amer. Soc. Hort. Sci.70: 350. 1957.

    CAS  Google Scholar 

  152. Mostafa, M. A., andS. K. Gayed. Effect of herbicide 2,4-D on chocolate-spot disease. Nature178: 502. 1956.

    Article  CAS  Google Scholar 

  153. Mueller, G. C. A discussion of the mechanism of action of steroid hormones. Cancer Res.17: 490. 1957.

    PubMed  CAS  Google Scholar 

  154. Muir, R. M. Growth hormones as related to the setting and development of fruit inNicotiana tabacum. Amer. Jour. Bot.29: 716. 1942.

    Article  CAS  Google Scholar 

  155. —,C. H. Hansch, andA. H. Gallup. Growth-regulation by organic compounds. Plant Physiol.24: 359. 1949.

    PubMed  CAS  Google Scholar 

  156. ——. The relationship of structure and plant growth activity of substituted benzoic and phenoxyacetic acids. Plant Physiol.26: 369. 1951.

    PubMed  CAS  Google Scholar 

  157. ——. On the mechanism of action of growth regulators. Plant Physiol.28: 218. 1953.

    Article  PubMed  CAS  Google Scholar 

  158. Mullins, L. J. Structure-toxicity in hexachlorocyclo hexane isomers. Science122: 118. 1955.

    Article  PubMed  CAS  Google Scholar 

  159. Nason, A. Effect of zinc deficiency on the synthesis of tryptophan byNeurospora extracts. Science112: 111. 1950.

    Article  PubMed  CAS  Google Scholar 

  160. Newcomb, E. H. Effect of auxin on ascorbic oxidase activity in tobacco pith cells. Proc. Soc. Exp. Biol. & Med.76: 504. 1951.

    CAS  Google Scholar 

  161. — andK. S. Siegesmund. Alterations in the fine structure of the primary wall and cytoplasmic surface induced by indoleacetic acid in cultured parenchyma cells. Plant Physiol.32 (Suppl.): 19. 1957.

    Google Scholar 

  162. Niedergang-Kamien, E., andA. C. Leopold. Inhibitors of polar auxin transport. Physiol. Plant.10: 29. 1957.

    Article  CAS  Google Scholar 

  163. Nitsch, J. P. The physiology of fruit growth. Ann. Rev. Plant Physiol.4: 199. 1953.

    Article  Google Scholar 

  164. — andC. Nitsch. The separation of natural plant growth substances by paper chromatography. Beitr. Biol. Pfl.31: 387. 1955.

    CAS  Google Scholar 

  165. ——,C. S. Pratt, andN. J. Shaulis. Auxins in the concord and concord seedless grapes in relation to berry development and drop. Plant Physiol.32 (Suppl.): 20: 1957.

    Google Scholar 

  166. - andR. H. Wetmore. The microdetermination of “free” Ltryptophane in the seedling ofLupinus albus. Science116: 256.

  167. Olmo, H. P. Correlations between seed and berry development in some seeded varieties ofVitis vinifera. Proc. Amer. Soc. Hort. Sci.48: 291. 1946.

    Google Scholar 

  168. Ordin, L., T. H. Applewhite, andJ. Bonner. Auxin-induced water uptake byAvena coleoptile sections. Plant Physiol.31: 1. 1956.

    Google Scholar 

  169. — andJ. Bonner. Permeability ofAvena coleoptile sections to water measured by diffusion of deuterium hydroxide. Plant Physiol.31: 53. 1956.

    PubMed  CAS  Google Scholar 

  170. —,R. Cleland, andJ. Bonner. Methyl esterification of cell wall constituents under the influence of auxin. Plant Physiol.32: 216. 1957.

    PubMed  CAS  Google Scholar 

  171. Osborne, D. J. A synergistic interaction between 3-indoleacetonitrile and 3-indolylacetic acid. Nature170: 210. 1952.

    Article  PubMed  CAS  Google Scholar 

  172. —,G. E. Blackman, S. Novoa, F. Sudzuki, andR. G. Powell. The physiological activity of 2:6-substituted phenoxyacetic acids. Jour. Exp. Bot.6: 392. 1955.

    Article  CAS  Google Scholar 

  173. Paleg, L. G., andS. A. Gordon. Phenol-mediated conversion of tryptophan to IAA. Plant Physiol.31 (Suppl.): xxvi. 1956.

    Google Scholar 

  174. Payne, M. G., J. L. Fults, R. Hay, N. Landblom, andL. A. Schaal. The effect of storage on color and sprouting of red McClure potatoes after 2,4-D treatment. Amer. Potato Jour.28: 455. 1951.

    Google Scholar 

  175. ———, andC. H. Livingston. Protein content and specific gravity of red McClure potatoes increased by 2,4-D treatment. Amer. Potato Jour.30 (2): 46. 1953.

    CAS  Google Scholar 

  176. Perlis, I. B., andJ. F. Nance. Indoleacetic acid and the utilization of radioactive pyruvate and acetate by wheat roots. Plant Physiol.31: 451. 1956.

    PubMed  CAS  Google Scholar 

  177. Peters, R. A. Hormones and the cytoskeleton. Nature177: 426. 1956.

    Article  PubMed  CAS  Google Scholar 

  178. Phinney, B. O. Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc. Nat. Acad. Sci.42: 185. 1956.

    Article  PubMed  CAS  Google Scholar 

  179. —,C. A. West, M. Ritzel, andP. M. Neely. Evidence for “gibberellin-like” substances from flowering plants. Proc. Nat. Acad. Wet.43: 398. 1957.

    Article  CAS  Google Scholar 

  180. Pilet, P. E., andA. W. Galston. Auxin destruction, peroxidase activity and peroxide genesis in the roots ofLens culinaris. Physiol. Plant. 8: 888. 1955.

    Article  CAS  Google Scholar 

  181. Racusen, D. Formation of indole-3-aldehyde by indoleacetic oxidase. Arch. Biochem. & Biophys.58: 508. 1955.

    Article  CAS  Google Scholar 

  182. Rappaport, L. Growth-regulating metabolites. Cal. Agr. Dec. 1956.

  183. Ray, P. M., andK. V. Thimann. Steps in the oxidation of indoleacetic acid. Science122: 187. 1955.

    Article  PubMed  CAS  Google Scholar 

  184. Redemann, C. T., S. H. Wittwer, andH. M. Sell. Arch. Biochem. & Biophys.32: 80. 1951.

    Article  CAS  Google Scholar 

  185. Reinhold, L., andR. G. Powell. A stimulatory action of indole-3-acetic acid on the uptake of amino-acids by plant cells. Nature177: 658. 1956.

    Article  CAS  Google Scholar 

  186. Ripley, P. O. Weed control in Western Canada. Emp. Jour. Exp. Agr.22: 261. 1954.

    Google Scholar 

  187. Ritzel, M. B. The distribution and time of occurrence of gibberellinlike substances from flowering plants. Plant Physiol.32 (Suppl.): xxxi. 1957.

    Google Scholar 

  188. Rood, P., andC. L. Hamner. The use of 4-phthalimido-2,6-dimethyl pyrimidine as a plant growth regulator. Proc. Amer. Soc. Hort. Sci.63: 495. 1954.

    CAS  Google Scholar 

  189. Row, V. V. The effect of spraying MCPA to suppressCyperus rotundus on the yield of wheat crop grown in an infected field. Proc. Indian Acad. Sci. B.41 (2): 65. 1955.

    Google Scholar 

  190. Sachs, J. Vorlesungen über Pflanzen-Physiologie. 991. pp. 1882.

  191. Scholl, A. W., andD. R. Cartwright. Bibliography of synthetic plant growth substances. 1955.

  192. Schroeder, C. A., andC. Spector. The effect of gibberellic acid and indoleacetic acid on the cellular proliferation of fruit tissue. Science126: 701. 1957.

    Article  PubMed  CAS  Google Scholar 

  193. Scott, F. M., K. C. Hamner, E. Baker andE. Bowler. Electron microscope studies of cell wall growth in the onion root. Amer. Jour. Bot.43: 313. 1956.

    Article  Google Scholar 

  194. Segueira, L., andT. A. Steeves. Auxin inactivation and its relation to leaf drop caused by the fungusOmphalia flavida. Plant Physiol.29: 11. 1954.

    Article  Google Scholar 

  195. Sell, H. M., S. H. Wittwer, T. L. Rebstock, andC. T. Redemann. Comparative stimulation of parthenocarpy in the tomato by various indole compounds. Plant Physiol.28: 481. 1953.

    Article  PubMed  CAS  Google Scholar 

  196. Setterfield, G., andS. T. Bayley. Studies on the mechanism of deposition and extension of primary cell walls. Canad. Jour. Bot.35: 435. 1957.

    Article  Google Scholar 

  197. Sharma, A. K., andA. Datta. Induction of chromosome division by ascorbic acid treatment. Phyton [Argentina]6 (2): 71. 1956.

    CAS  Google Scholar 

  198. Shaw, W. C., andW. A. Gentner. The selective herbicidal properties of several variously substituted phenoxyalkylcarboxylic acids. Weeds5: 75. 1957.

    Article  CAS  Google Scholar 

  199. Siegel, S. M. The biochemistry of lignin formation. Physiol. Plant.8: 20. 1955.

    Article  CAS  Google Scholar 

  200. —. Non-enzymic macro molecules as matrices in biological synthesis. Jour. Amer. Chem. Soc.79: 1628. 1957.

    Article  CAS  Google Scholar 

  201. — andA. W. Galston. Peroxide genesis in plant tissues and its relation to indoleacetic acid destruction. Arch. Biochem.54: 102. 1955.

    Article  PubMed  CAS  Google Scholar 

  202. Simmonds, N. W. The development of the banana fruit. Jour. Exp. Bot.4: 87. 1953.

    Article  CAS  Google Scholar 

  203. Skoog, F. Relationships between zinc and auxin in the growth of higher plants. Amer. Jour. Bot.27: 939. 1940.

    Article  CAS  Google Scholar 

  204. —. Growth factors, polarity and morphogenesis. Année Biol.31: 201. 1955.

    Google Scholar 

  205. — andC. O. Miller. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol.11: 118. 1957.

    Google Scholar 

  206. Söding, H., andE. Raadts. Chromatographische Undersuchungen über die Wuchsstoffe und Hemmstoffe der Haferkoleoptile.In: Wain, R. L., and F. Wightman [ed.]. The chemistry and mode of action of plant growth substances. 1956. [p. 52].

  207. Steenson, T. I. andN. Walker. The pathway of breakdown of 2:4-dichloro and 4-chloro-2-methylphenoxyacetic acid by bacteria. Jour. Gen. Microbiol.16: 146. 1957.

    CAS  Google Scholar 

  208. Stern, H. On the intracellular environment. Science121: 144. 1955.

    Article  PubMed  CAS  Google Scholar 

  209. —. The physiology of cell division. Ann. Rev. Plant Physiol.7: 91. 1956.

    Article  CAS  Google Scholar 

  210. Stewart, W. S., L. A. Riehl, andL. C. Erickson. Effects on citrus of 2,4-D used as an amendment to oil sprays. Jour. Econ. Entomol.45: 658. 1952.

    CAS  Google Scholar 

  211. —,J. E. Palmer, andH. Z. Hield. Packing house experiments on the use of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid to increase storage life in lemons. Proc. Amer. Soc. Hort. Sci.59: 327. 1952.

    CAS  Google Scholar 

  212. -,D. Halsey, andF. Chinc. Effect of the potassium salt of gibberellic acid on peduncle and cap stem growth of Thompson seedless grapes. Abs. Amer. Soc. Hort. Sci. 54th Ann. Meet., Paper 381. 1957.

  213. Stoutemyer, V. T. Encouragement of roots by plant regulators:In: H. B. Tukey [ed.]. Plant regulators in agriculture. 1954. [p. 44].

  214. Stumpf, P. K., andG. A. Barber. Fat metabolism in higher plants. VII. Plant Physiol.31: 304. 1956.

    CAS  Google Scholar 

  215. Stutz, R. E. Products of the indole-3-acetic acid oxidase fromLupinus albus L. I. Formation of indole-3-carboxaldehyde. Quart. Rep. Argonne Nat. Lab., Biol. & Med. Res. Div. July–August, 1956.

  216. Swanson, C. R., S. B. Hendricks, V. K. Toole, andC. E. Hagen. Effect of 2,4-dichlorophenoxyacetic acid and other growth regulators on the formation of a red pigment in Jerusalem artichoke tuber tissue. Plant Physiol.31: 315. 1956.

    Article  PubMed  CAS  Google Scholar 

  217. Swarbrick, T. Growth-promoting substances in horticulture. Nature161: 656. 1948.

    Google Scholar 

  218. Synerholm, M. E., andP. W. Zimmerman. Preparation of a series of (2, 4-dichlorophenoxy)-aliphatic acids. Contr. Boyce Thompson Inst.14: 369. 1947.

    CAS  Google Scholar 

  219. Syring, R. H. Bright yule holly. Wall Street Jour., Pacific Coast Ed. Dec. 10, 1951: 8.

  220. Szent-György, A. Bioenergetics. Science124: 873. 1956.

    Article  Google Scholar 

  221. Tagawa, T., andJ. Bonner. Mechanical properties of the Avena coleoptile as related to auxin and to ionic interactions. Plant Physiol.32: 207. 1957.

    PubMed  CAS  Google Scholar 

  222. Tambiah, M. S. The isolation and estimation of plant hormones using paper chromatography. Thesis, King’s College, Univ. London. 1951.

  223. Templeman, W. G. The present position of herbicides in British agriculture. Brit. Weed Contr. Conf. Proc. Vol 1: 3. 1954.

  224. Terpstra, W. Chromatograpic identification of the growth substance extracted fromAvena coleoptile tips. Proc. Kon. Akad. Wet.56: 208. 1953.

    Google Scholar 

  225. Teubner, F. G. Identification of the auxin present in apple endosperm. Science118: 418. 1953.

    Article  PubMed  CAS  Google Scholar 

  226. -, andA. E. Murneek. Embryo abortion as a mechanism of hormone thinning of fruit Univ. Missouri Agr. Exp. Sta., Res. Bull. 590. 1955.

  227. Thimann, K. V. Hydrolysis of indoleacetonitrile in plants. Arch. Biochem. & Biophys.44: 242. 1953.

    Article  CAS  Google Scholar 

  228. — andF. Skoog. On the inhibiton of bud development and other functions of growth substances onVicia faba. Proc. Roy. Soc. B.114: 317. 1934.

    CAS  Google Scholar 

  229. — andE. W. Samuel. The permeability of potato tissue to water. Proc. Nat. Acad. Sci.41: 1029. 1955.

    Article  PubMed  CAS  Google Scholar 

  230. Tonhazy, N. E., andM. J. Pelczar. Oxidation of indoleacetic acid by an extracellular enzyme fromPolyporus versicolor and a similar oxidation catalyzed by nitrate. Science120: 141. 1954.

    Article  PubMed  CAS  Google Scholar 

  231. Torrey, J. G. Physiology of root elongation. Ann. Rev. Plant Physiol.7: 237. 1956.

    Article  CAS  Google Scholar 

  232. U. S. Tariff Commission. Synthetic organic chemicals, U. S. Production. June, 1954.

  233. van der Kerk, G. J. M., M. H. van Raalte, A. K. Sijpesteijn andR. van der Veen. A new type of plant growth-regulating substances. Nature176: 308. 1955.

    Article  Google Scholar 

  234. van Overbeek, J. Phototropism. Bot. Rev.5: 655. 1939.

    Google Scholar 

  235. —. Auxin in marine algae. Plant Physiol.15: 291. 1940.

    PubMed  CAS  Google Scholar 

  236. —. Auxin, water uptake and osmotic pressure in potato tissue. Amer. Jour. Bot.31: 265. 1944.

    Article  Google Scholar 

  237. —. Use of synthetic hormones as weed killers in tropical agriculture. Econ. Bot.1: 446. 1947.

    Google Scholar 

  238. -. Use of growth substances in tropical agriculture.In: F. Skoog [ed.] Plant growth substances. 1951. [p. 225].

  239. -. Plant regulators for weed control in the tropics.In: H. B. Tukey [ed.]. Plant regulators in agriculture. 1954. [p. 202].

  240. — andR. Blondeau. Mode of action of phytotoxic oils. Weeds3: 55. 1954.

    Article  Google Scholar 

  241. —,R. Blondeau andV. Horne. Maleimides as auxin antagonists. Amer. Jour. Bot.42: 205. 1955.

    Article  Google Scholar 

  242. —,M. E. Conklin, andA. F. Blakeslee. Chemical stimulation of ovule development and its possible relation to parthenogenesis. Amer. Jour. Bot.28: 647. 1941.

    Article  Google Scholar 

  243. — andH. J. Cruzado. Note on flower formation in the pineapple induced by low night temperatures. Plant Physiol.23: 282. 1948.

    PubMed  CAS  Google Scholar 

  244. —,G. Davila andE. S. de Vazquez. A rapid extraction method for free auxin and its application in geotropic reactions of bean seedlings and sugar cane nodes. Bot. Gaz.106: 440. 1945.

    Article  Google Scholar 

  245. —,D. W. Racusen, M. Tagami, andW. J. Hughes. Simultaneous analysis of auxin and gibberellin. Plant Physiol.32 (Suppl.): xxxii. 1957.

    Google Scholar 

  246. —,E. S. de Vazquez, andS. A. Gordon Free and bound auxin in the vegetative pineapple plant. Amer. Jour. Bot.34: 266. 1947.

    Article  Google Scholar 

  247. -, andI. Velez. Erradicacion de malas yerbas en Puerto Rico con 2,4-D. Inst. Agr. Trop., Univ. Puerto Rico, Bull. 1. 1946.

  248. van Raalte, M. H. On the synergism of indole and indoleacetic acid in root production. Annales Bogoriensis1: 167. 1954.

    Google Scholar 

  249. —,A. Kaars Sijpesteijn, G. J. M. van der Kerk, A. J. P. Oort, andC. W. Pluygers. Investigations on plant chemotherapy. Meded. Landbouwhogesch. Gent.20: 543. 1955.

    Google Scholar 

  250. Veldstra, H. Synergism and potentiation. Pharmacol. Rev. 8: 339. 1956.

    PubMed  CAS  Google Scholar 

  251. -. On form and function of plant growth substances.In: Wain, R. L., and F. Weightman [ed.]. The chemistry and mode of action of plant growth substances: 117. 1956.

  252. —, andH. L. Booij. Researches on plant growth regulators. XVII. Structure and activity. On the mechanism of action. III. Biochem. & Biophys. Acta.3: 278. 1949.

    Article  CAS  Google Scholar 

  253. Wain, R. L. A new approach to selective weed control. Ann. Appl. Biol.42: 151. 1955.

    Article  CAS  Google Scholar 

  254. Walker, N., andT. Steenson. Decomposition of chlorophenoxy acids in soil. Ann Rep. Rothamsted Station: 66. 1955.

  255. Weaver, R. J. Plant regulators in grape production. Cal. Agr. Exp. Sta., Bull. 752. 1956.

  256. -, andH. P. Olmo. Response of certain varieties ofVitis vinifera grapes to gibberellic acid. Abs. Amer. Soc. Hort. Sci. 54th Ann. Meet. Paper 382. 1957.

  257. Weintraub, R. Studies on the action of exogenous plant growth regulators. Proc. VII Int. Bot. Congr. [Stockholm]: 783. 1950.

  258. —,J. Brown, M. Field andJ. Rohan. Metabolism of 2,4-di-chlorophenoxyacetic acid. I. Plant Physiol.27: 293. 1952.

    CAS  Google Scholar 

  259. —— andJ. A. Throne. Relation between molecular structure and physiological activity of plant growth regulators. Jour. Agr. & Food Chem.2: 996. 1954.

    Article  CAS  Google Scholar 

  260. -,J. H. Reinhart andR. A. Scherff. Role of entry, translocation, metabolism in specificity of 2,4-D and related compounds. Conf. Radioisotopes in Agric. Atomic Energ. Rpt. #TID-7512. 203. 1956.

  261. -,J. N. Yeatman, J. W. Brown, J. A. Thorne, J. D. Skoss andJ. R. Conover. Studies on entry of 2,4-D into leaves Proc. VIII Northeastern Weed Control Conf: 5. 1954.

  262. Wells, P. Uronic acid metabolism in auxin-induced pith cells. Science [In press].

  263. Went, F. W. Over Stoffen, die den groei in het coleoptiel vanAvena sativa versnellen. Kon. Akad. Wet. Amst.35: 723. 1926.

    Google Scholar 

  264. —. Wuchsstoff und Wachstum. Rec. Trav. Bot. Néerl.25: 1. 1928.

    Google Scholar 

  265. —. Auxin, the plant growth-hormone. Bot. Rev.1: 162. 1935.

    CAS  Google Scholar 

  266. —. Auxin, the plant-growth hormone. II. Bot. Rev.11: 487. 1945.

    CAS  Google Scholar 

  267. -, andK. V. Thimann. Phytohormones. 1937.

  268. West, C. A., andB. O. Phinney. Purification and properties of gibberellin-like substances from flowering plants. Plant Physiol.32 (Suppl.): xxxii. 1957.

    Google Scholar 

  269. Wetmore, R. H. Differentiation of xylem in plants. Science121: 626. 1955.

    Google Scholar 

  270. Whaley, W. G., andJ. Kephart. The effects of indoleacetic acid and gibberellin acid on growth of isolated cut tip segments of inbred maize. Plant Phys.32 (Suppl.): 33. 1957.

    Google Scholar 

  271. Wieser, W. Effect on Meloidogyne hapla of excised tomato roots treated with alpha-methoxyphenylacetic acid. Science123: 374. 1956.

    Article  PubMed  CAS  Google Scholar 

  272. Wildman, S. G., andJ. Bonner. Observations on the chemical nature and formation of auxin in theAvena coleoptile. Amer. Jour. Bot.35: 740. 1948.

    Article  CAS  Google Scholar 

  273. Willard, C. J. Plant regulators for weed control in field crops.In: H. B. Tukey [ed.]. Plant regulators in agriculture:184. 1954.

  274. Wittwer, S. H. Control of flowering and fruit setting by plant regulators.In: H. B. Tukey [ed.]. Plant regulators in agriculture:62. 1954.

  275. —,M. J. Bukovac andB. H. Grigsby. Gibberellin and higher plants. VI. Mich. Agr. Exp. Sta., Quart. Bull.40: 203. 1957.

    CAS  Google Scholar 

  276. —,H. M. Sell andL. E. Weiler. Some effects of gibberellin on flowering and fruit setting. Plant Physiol.32: 39. 1957.

    PubMed  CAS  Google Scholar 

  277. —, andF. G. Teubner. The effects of temperature and nitrogen nutrition on flower formation in the tomato. Amer. Jour. Bot.44: 125. 1957.

    Article  CAS  Google Scholar 

  278. Woodford, E. K., andL. Kasasian. The control of weeds in cereal crops in Europe by chemical methods. Field Crop Abs.9 (1): 1. 1956.

    Google Scholar 

  279. Yamaki, T., andK. Nakamura. Formation of indoleacetic acid in maize embryo. Sci. Pap., Coll. Gen. Ed., Univ. Tokyo2 (1): 81. 1952.

    CAS  Google Scholar 

  280. Yasuda, G. K., M. G. Payne andJ. K. Fults. Effect of 2,4-dichlorophenoxyacetic acid and maleic hydrazide on potato proteins as shown by paper electrophoresis176: 1029. 1955.

    CAS  Google Scholar 

  281. Zimmerman, P. W. Formative influences of growth substances on plants. Cold Spring Harbor Symp. Quant. Biol.10: 152. 1942.

    CAS  Google Scholar 

  282. — andF. Wilcoxon. Several chemical growth substances which cause initiation of roots and other responses in plants. Contr. Boyce Thomps. Inst.7: 209. 1935.

    CAS  Google Scholar 

  283. — andA. E. Hitchcock. Substituted phenoxy and benzoic acid growth substances and the relation of structure to physiological activity. Contr. Boyce Thomps. Inst.12: 321. 1942.

    CAS  Google Scholar 

  284. Zwar, J. A., andA. H. G. C. Rijven. Inhibition of transport of indole-3-acetic acid in the etiolated hypocotyl ofPhaseolus vulgaris. Austral. Jour. Sci.9: 528. 1956.

    CAS  Google Scholar 

  285. Melnikov, N. N., R. Kh. Turestskaya, Yu. A. Baskakov, A. N. Boyarkin, andM. S. Kuznetsova. The structure and the physiological activity of substituted phenylacetic and naphthylacetic acids. Doklady Akad. Nauk. S.S.S.R.89: 953. 1953.

    CAS  Google Scholar 

  286. Pybus, M. B., R. L. Wain, andF. Wightman. New plant growthsubstances with selective herbicidal activity. Nature182: 1094. 1958.

    Article  PubMed  CAS  Google Scholar 

  287. Heacock, R. A., R. L. Wain andF. Wightman. Studies on plant growth-regulating substances. XII. Polycyclic acids. Ann. Appl. Biol.46: 352. 1958.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Material in this article was delivered as a series of lectures for the University of Nebraska during April, 1957

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Overbeek, J. Auxins. Bot. Rev 25, 269–350 (1959). https://doi.org/10.1007/BF02860041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860041

Keywords

Navigation