Skip to main content
Log in

Carbon dioxide exchange of plants in natural environments

  • Published:
The Botanical Review Aims and scope Submit manuscript

Summary

It is now possible to measure, with considerable precision and accuracy, the gas exchange characteristics of plants in natural environments. Controlled experiments can be made in the field on the influence of environmental variables on the gas exchange rates of plants growing in and conditioned to the limitations of native habitats. Information can now be derived on the ecological significance of the varied photosynthetic strategies of plants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adams, M. S., &B. R. Strain. 1968. Photosynthesis in stems and leaves ofCercidium floridum: spring and summer diurnal field response and relation to temperature.Oecologia Plantarum3: 285–297.

    Google Scholar 

  • Baumgartner, A. 1969. Meteorological approach to the exchange of CO2 between the atmosphere and vegetation, particularly forest stands.Photosynthetica3: 127–149.

    CAS  Google Scholar 

  • Billings, W. D., E. Clebsch, &H. Mooney. 1966. Photosynthesis and respiration rates of Rocky Mountain alpine plants under field conditions.Amer. Mid. Naturalist75: 34–44.

    Article  Google Scholar 

  • Björkman, O., E. Gauhl, &M. N. Nobs. 1969. Comparative studies ofAtriplex species with and without β-carboxylation photosynthesis and their first-generation hybrid.Carnegie Inst. Yearbook68: 620–633.

    Google Scholar 

  • Björkman, O., R. Pearcy, A. Harrison, &H. Mooney. 1971. Photosynthetic adaptation to high temperatures: A field study in Death Valley, California.Science.175: 786–789.

    Article  Google Scholar 

  • Björkman, O., R. Pearcy, &M. Nobs. 1970. Hybrids betweenAtriplex species with and without β-carboxylation photosynthesis. Photosynthetic characteristics.Carnegie Inst. Yearbook69: 640–647.

    Google Scholar 

  • Bosian, G. 1953. Über die Vollautomatisierung der CO2—Assimilations-bestimmungen.Ber. Dtsch. bot. Ges.66: Gen. Vers. 35–36.

    Google Scholar 

  • — 1955. Über die Vollautomatisierung der CO2Assimilations-bestimmung und zur Methodik des Küvetten plimas.Planta 45: 470–492.

    Article  CAS  Google Scholar 

  • — 1958. Die vollautomatische Regulierung der relativen Feuchtigkeit in der Assimilationküvette für Standortsversuche. (Modellvorführung).Ber. Dtsch. bot. Ges. 71: Gen. Vers. 26–27.

    Google Scholar 

  • — 1965. Control of conditions in the plant chamber: fully automatic regulation of wind velocity, temperature and relative humidity to conform to microclimatic field conditions.In: Eckardt, F. E. (Ed.),Methodology of Plant Eco-Physiology. pp. 233–238. UNESCO, Paris.

    Google Scholar 

  • Brandt, C. S., &W. W. Heck. 1968. Effects of air pollutants on vegetation.In: Stern, A. C. (Ed.),Air Pollution, Vol. I 2nd. ed. Acad. Press, New York. pp. 401–443.

    Google Scholar 

  • Bull, T. A. 1969. Photosynthetic efficiencies and photorespiration in Calvin cycle and C4-dicarboxylic acid plants. Crop. Sci.9: 726–729.

    Article  CAS  Google Scholar 

  • Clark, J. 1954. The immediate effect of severing on the photosynthetic rate of Norway spruce branches.Plant Physiol.22: 561–571.

    Google Scholar 

  • Crookston, R. K., &D. N. Moss. 1970. The relation of carbon dioxide compensation and chlorenchymatous vascular bundle sheaths in leaves of dicots.Plant Physiol.46: 564–567.

    PubMed  CAS  Google Scholar 

  • Denmead, O. T. 1970. Transfer processes between vegetation air: measurement, interpretation and modelling. In:Prediction and Measurement of Photosynthetic Productivity. Wageningen. pp. 149–164.

  • Downton, W. J. S., &E. B. Tregunna. 1968. Carbon dioxide compensation—its relation to photosynthetic carboxylation reactions, systematics of the Gramineae, and leaf anatomy.Canad. J. Bot.46: 207–215.

    CAS  Google Scholar 

  • Downton, J., J. Berry, &E. B. Tregunna. 1969. Photosynthesis: temperate and tropical characteristics within a single grass genus.Science163: 78–79.

    Article  PubMed  CAS  Google Scholar 

  • Dugger, W. M., Jr., J. Koukol, &R. L. Palmer. 1966. Physiological and biochemical effects of atmospheric oxidants on plants.J. Air Pollution Control Assoc.16 (9): 467–471.

    CAS  Google Scholar 

  • Eckardt, F. E. 1966. Le principe de la soufflerie aérodynamique climatisée appliquée à l’étude des échanges gazeux de la couverture végétale.Oecol. Plant.1: 369–399.

    Google Scholar 

  • Egle, K., &A. Ernst. 1949. Die Verwendung des Ultrarotabsorptions-schreibers für die vollautomatische und fortlaufende CO2Analyse bei Assimilations — und Atmungmessungen an Pflanzen.Zeitschr. f. Naturforschg.46: 351–360.

    Google Scholar 

  • Egle, K. 1960. Die Photosynthese der grüner Pflanzen. Methoden der Photosynthesemessung Landpflanzen.In:Handbuch der Pflanzen physiologie. V/1: 115–163. W. Ruhland (Ed.). Springer Verlag, Berlin.

    Google Scholar 

  • Fritts, H. C. 1966. Growth-rings of trees: Their correlation with climate.Science 154: 973–979.

    Article  PubMed  CAS  Google Scholar 

  • Hanes, T. L. 1965. Ecological studies on two closely related chaparral shrubs in southern California.Ecolog. Monogr.35: 215–235.

    Google Scholar 

  • Hatch, M. D., &C. R. Slack. 1966. Photosynthesis by sugar cane leaves. A new carboxylation reaction and the pathway of sugar formation.Biochem. J.101: 103–111.

    PubMed  CAS  Google Scholar 

  • Heggestad, H. E. 1968. Diseases of crops and ornamental plants incited by air pollutants.Phytopathology58: 1089–1097.

    Google Scholar 

  • Heinicke, A. J., &M. B. Hoffman. 1933. An apparatus for determining the absorption of carbon dioxide by leaves under natural conditions.Science77: 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Heinicke, A. J., &N. F. Childers. 1937. The daily rate of photosynthesis during the growing season of 1935 of a young apple tree of bearing age.Cornell Univ. Agr. Exp. Sta. Mem.201. 52 p.

  • Hellmuth, E. 1967. A method of determining true values for photosynthesis and respiration under field conditions.Flora157: 265–286.

    Google Scholar 

  • Helms, J. A. 1965. Diurnal and seasonal patterns of net assimilation in Douglas fir,Pseudotsuga menziisii (Mirb.) Franco, as influenced by environment.Ecology46: 698–708.

    Article  Google Scholar 

  • Henrici, M. 1918. Chlorophyllgehalt und Kohlensäurassililation bei Alpen — und Ebenenpflanzen.Ver. naturforsch. Ges. Basel30: 43–136.

    Google Scholar 

  • Hill, D. W., &T. Powell. 1968.Non-dispersive Infra-red Gas Analysis in Science, Medicine and Industry. Plenum Press, New York.

    Google Scholar 

  • Holdheide, W., B. Huber, &O. Stocker. 1936. Eine Feldmethode zur Bestimmung der momentanen Assimilationsgrosse von Landpflanzen.Ber. Deutsch. Bot. Ges.54: 168–187.

    CAS  Google Scholar 

  • Huber, B. 1950. Registrierung des CO2-stromes über Pflanzengesellschaften mittels Ultrarotabsorptionschrieber.Ber. Deutsch. Bot. Ges.63: 52–63.

    Google Scholar 

  • Inoue, E., N. Tani, &K. Imai. 1958. The aerodynamic measurement of photosynthesis over the wheat yield.J. Agr. Meteorology, Tokyo13: 121–125.

    Google Scholar 

  • Jarvis, P. G. 1970. Characteristics of the photosynthetic apparatus derived from its response to natural complexes of environmental factors. In:Prediction and Measurement of Photosynthetic Productivity, pp. 353–367. Centre for Agricultural Publishing and Documentation. Wageningen.

    Google Scholar 

  • Johnson, H. S., &M. D. Hatch. 1968. Distribution of the C4-dicarboxylic acid pathway of photosynthesis and its occurrence in dicotyledonous plants.Phytochemistry7: 375–380.

    Article  CAS  Google Scholar 

  • Koch, W., &T. Keller. 1961. Der Einfluss von Alterung und Abschneiden auf den CO2-Gaswechsel von Pappelblättern.Ber. Deutsch bot. Ges.74: 64–74.

    CAS  Google Scholar 

  • Koller, D., &Y. Samish. 1964. A null-point compensating system for simultaneous and continuous measurement of net photosynthesis and transpiration by controlled gas-stream analysis.Bot. Gaz.125: 81–88.

    Article  CAS  Google Scholar 

  • Kortschak, H. D., C. E. Hartt, &G. O. Burr. 1965. Carbon dioxide fixation in sugar-cane leaves.Plant Physiol.40: 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Kostytschew, S., K. Bazyrina, &W. Tschesnokov. 1928. Untersuchungen über die Photosynthese der Laubblätter unter natürlicher Verhältnissen.Planta5: 696–724.

    Article  Google Scholar 

  • Kostytschew, S., W. Tschesnokov, &K. Bazyrina. 1930. Untersuchungen über den Tagesverlauf der Photosynthese an der Küste del Eismeeres.Planta11: 160–168.

    Article  Google Scholar 

  • Kostytschew, S., &H. Kardo-Syssoiewa. 1930. Untersuchungen über den Tagesverlauf du Photosynthese in Zentralasien.Planta11: 117–143.

    Article  Google Scholar 

  • Kostytschew, S., &V. Berg. 1930. Untersuchungen über den Tagesverlauf der Photosynthese in Transkaukasien.Planta11: 144–159.

    Article  Google Scholar 

  • Lange, O. L. 1962. Eine “Klapp-Küvette” zur CO2-Gaswechselregistrierung an Blättern von Freilandpflanzen mit dem URAS.Ber. Deutsch bot. Ges.75: 41–50.

    CAS  Google Scholar 

  • Lange, O. L., W. Koch, &E. D. Schulze. 1969. CO2-Gaswechsel und Wasser haushalt von Pflanzen in der Negev-Wüste am Ende der Trockenzeit.Ber. Deutsch. bot. Ges.82: 39–61.

    CAS  Google Scholar 

  • Lange, O., E. D. Schulze, &W. Koch. 1970. Evaluation of photosynthesis measurements taken in the field.In:Prediction and Measurement of Photosynthetic Productivity 339–352. Centre for Agricultural Publishing and Documentation. Wageningen.

    Google Scholar 

  • Larcher, W. 1963a. Die Eignung abgeschnitterer Zweige und Blätter zur Bestimmung des Assimilationsvermögens.Planta60: 1–18.

    Article  CAS  Google Scholar 

  • — 1963b. Die Leistungsfähigkeit der CO2—Assimilation höher Pflanzen unter Laborbedingungen und am natürlichen Standort.Mitt. florist.-soz. Ange. 10: 20–33.

    Google Scholar 

  • — 1969. The effect of environmental and physiological variables on the carbon dioxide gas exchange of trees.Photosynthetica 3: 167–198.

    CAS  Google Scholar 

  • Lee, R. 1966. Effects of tent type enclosures on the microclimate and vaporization of plant cover.Oecol. Plant.1: 301–326.

    Google Scholar 

  • Lemon, E. R. 1960. Photosynthesis under field conditions. II. An aerodynamic method for determining the turbulent carbon dioxide exchange between the atmosphere and a corn field.Agron. J.52: 697–703.

    Article  Google Scholar 

  • Menz, K. M., D. N. Moss, &P. Connell. 1969. Screening for photosynthetic efficiency.Crop Sci.9: 692–694.

    Article  Google Scholar 

  • McLean, F. T. 1920. Field studies of the carbon dioxide absorption of coco-nut leaves.Annals of Botany34: 367–389.

    CAS  Google Scholar 

  • Miller, P. R. 1969. Air pollution and the forests of California.California Air Environment1 (4): 1–3.

    Google Scholar 

  • Miller, P. R., J. R. Parmeter, Jr., B. H. Flick, &C. W. Martinez. 1969. Ozone dosage response of ponderosa pine seedlings.J. Air Poll. Contr. Assoc.19: 435–438.

    CAS  Google Scholar 

  • Monsi, M. 1968. Mathematical models of plant communities.In:Functioning of Terrestrial Ecosystems at the Primary Production Level. pp. 131–149. F. Eckardt (Ed.). UNESCO, Paris.

    Google Scholar 

  • Monteith, J. L., &G. Szeicz. 1960. The carbon dioxide flux over a field of sugar beet.Quart. J. Roy. Met. Soc.86: 205–214.

    Article  Google Scholar 

  • Mooney, H. A., &M. West. 1964. Photosynthetic acclimation of plants of diverse origin.Amer. J. Bot.51: 825–827.

    Article  Google Scholar 

  • Mooney, H. A., R. D. Wright, &B. R. Strain. 1964. The gas exchange capacity of plants in relation to vegetation zonation in the White Mountains of California.Amer. Midland Naturalist72: 281–297.

    Article  CAS  Google Scholar 

  • Mooney, H. A., M. West, &R. Brayton. 1966. Field measurements of the metabolic responses of bristlecone pine and big sagebrush in the White Mountains of California.Bot. Gaz.127: 105–113.

    Article  Google Scholar 

  • Mooney, H. A., &F. Shropshire. 1967. Population variability in temperature related photosynthetic acclimation.Oecol. Plant.2: 1–13.

    Google Scholar 

  • Mooney, H. A., R. Brayton, &M. West. 1968. Transpiration intensity as related to vegetation zonation in the White Mountains of California.Amer. Midl. Nat.80: 407–412.

    Article  Google Scholar 

  • Mooney, H. A., &E. L. Dunn. 1970a. Photosynthetic systems of mediterraneanclimate shrubs and trees of California and Chile.Amer. Nat.104: 447–453.

    Article  Google Scholar 

  • Mooney, H. A., &E. L. Dunn. 1970b. Convergent evolution of mediterranean climate evergreen sclerophyll shrubs.Evolution24: 292–303.

    Article  Google Scholar 

  • Mooney, H. A., E. L. Dunn, A. T. Harrison, P. A. Morrow, B. Bartholomew, &R. Hays. 1971. A mobile laboratory for gas exchange measurements.Photosynthetica5: 128–132.

    Google Scholar 

  • Musgrave, R. B., &D. N. Moss. 1961. Photosynthesis under field conditions. I. A portable, closed system for determining net assimilation and respiration of corn.Crop Sci.1: 37–41.

    Article  CAS  Google Scholar 

  • Neales, T. F., A. Patterson, &V. Hartney. 1968. Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes.Nature219: 469–472.

    Article  Google Scholar 

  • Ordway, D. E. 1969. An aerodynamicist’s analysis of the Odum cylinder approach to net CO2 exchange.Photosynthetica3: 199–209.

    Google Scholar 

  • Patten, D. T., &B. E. Dingeh. 1969. Carbon dioxide exchange patterns of cacti from different environments.Ecology50: 686–688.

    Article  CAS  Google Scholar 

  • Pearson, L., &E. Skye. 1965. Air pollution affects pattern of photosynthesis inParmelia sulcata, a corticolous lichen.Science148: 1600–1662.

    Article  PubMed  CAS  Google Scholar 

  • Pisek, A., &W. Tranquillini. 1954. Assimilation und Kohlenstoff haushalt in der Krone von Fichten—(Picea excelsa Link) und Rotbuchenbaumen (Fagus silvatica L.).Flora141: 237–270.

    Google Scholar 

  • Pisek, A. 1960. Pflanzen der Arktis und des Hochgebirges.In:Encyclopedia of Plant Physiology. Vol.5: 375–414. W. Ruhland (Ed.). Springer Verlag, Berlin.

    Google Scholar 

  • Rabinowitch, E. I. 1951. Photosynthesis and Related Processes. Interscience Publ., New York. 2 Vols., 2088 pp.

    Google Scholar 

  • Saeki, T., &N. Nomoto. 1958. On the seasonal change of photosynthetic activity of some deciduous and evergreen broadleaf trees.Botanical Magazine71: 235–241.

    Google Scholar 

  • Sasaki, S., &T. T. Kozlowski. 1966a. Variable photosynthetic responses ofPinus resinosa seedlings to herbicides.Nature209: 1042–1043.

    Google Scholar 

  • Saugier, B. 1970. Transport turbulents de CO2 et vapeur d’eau audessus et a l’intérieur de la végétation. Méthodes de mesure micrométéorologiques.Oecol. Plant.5: 179–223.

    Google Scholar 

  • Schulze, E. D., H. A. Mooney, &E. L. Dunn. 1967. Wintertime photosynthesis of bristlecone pine (Pinus aristata) in the White Mountains of California.Ecology48: 1044–1047.

    Article  Google Scholar 

  • Schulze, E. D. 1970. Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhangigkeit von den Klimafaktoren im Freiland.Flora159: 177–232.

    Google Scholar 

  • Shimshi, D. 1969. A rapid field method for measuring photosynthesis with labelled carbon dioxide.J. Expt. Bot.20: 381–401.

    Article  CAS  Google Scholar 

  • Slatyer, R. 1970. Comparative photosynthesis, growth and transpiration of two species ofAtriplex.Planta93: 175–189.

    Article  Google Scholar 

  • Stocker, O. 1935. Assimilation und Atmung west javanischer Tropenbäume.Planta24: 402–445.

    Article  Google Scholar 

  • Strain, B. R. 1965. Another mobile laboratory.Bull. Ecol. Soc. Amer.46: 190.

    Google Scholar 

  • — 1969. Seasonal adaptations in four desert shrubs growingin situ.Ecology 50: 511–513.

    Article  Google Scholar 

  • — 1970. Field measurements of tissue water potential and carbon dioxide exchange in the desert shrubsProsopis julifera andLarrea divaricata.Photosynthetica 4: 118–122.

    CAS  Google Scholar 

  • Strain, B. R., &V. C. Chase. 1966. Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials.Ecology47: 1043–1045.

    Article  Google Scholar 

  • Strebeyko, P. 1967. Rapid method for measuring photosynthetic rate using14CO2.Photosynthetica1: 45–49.

    Google Scholar 

  • Taylor, O. C., E. Cardiff, &J. Mersereau. 1965. Apparent photosynthesis as a measure of air pollution damage.J. Air Poll. Contr. Assoc.15: 171–173.

    CAS  Google Scholar 

  • Thomas, M. D., &G. R. Hill. 1937a. The continuous measurement of photosynthesis, respiration, and transpiration of alfalfa and wheat growing under field conditions.Plant Physiol.12: 285–307.

    PubMed  CAS  Google Scholar 

  • — 1937b. Relation of sulphur dioxide in the atmosphere to photosynthesis and respiration of alfalfa.Plant Physiol.12: 309–383.

    PubMed  CAS  Google Scholar 

  • Todd, G. W. 1956. “Hidden damage” to plants as caused by air pollutants.Plant Physiol. (Suppl.)31: XV.

    Google Scholar 

  • Todd, G. W., &B. Propst. 1963. Changes in transpiration and photosynthetic rates of various leaves during treatment with ozonated hexene or ozone gas.Physiol. Plant.16: 57–65.

    Article  CAS  Google Scholar 

  • Tranquillini, W. 1954. Über den Einfluss von Übertemperaturen der Blätter bei Dauereinschluss in Küvetten auf die ökologische CO2 Assimilationsmessung.Ber. Dtsch bot. Ges.67: 191–204.

    CAS  Google Scholar 

  • — 1957. Standortsklima, Wasserbilanz und CO2-Gaswechsel junger Zirben (Pinus cembra L.) an der alpinen Waldgrenze.Planta 49: 612–661.

    Article  Google Scholar 

  • — 1959a. Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. I. Standortsklima und CO2-Assimilation.Planta 54: 107–129.

    Article  CAS  Google Scholar 

  • — 1959b. Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. II. Zuwachs und CO2-Bilanz.Planta 54: 130–151.

    Article  CAS  Google Scholar 

  • — 1963. Die Abhängigkeit der Kohlensäureassimilation junger Lärchen, Fichten und Zirben von der Luft — und Bodenfeuchtigkeit.Planta 60: 70–94.

    Article  CAS  Google Scholar 

  • Vehduin, J. 1953. A table of photosynthetic rates under optimal, near optimal conditions.Am. J. Bot.40: 675–679.

    Article  Google Scholar 

  • Verduin, J., E. Whitwer, &B. Cowell. 1959. Maximal photosynthetic rates in nature.Science130: 268–269.

    Article  PubMed  CAS  Google Scholar 

  • Voznesensky, V. L. 1964. Conductometric apparatus for determining photosynthetic rate.Biologia Plantarum (Praha)6: 79–83.

    Google Scholar 

  • Wager, H. G. 1941. On the respiration and carbon assimilation rates of some arctic plants as related to temperature.New Phytol.40: 1–19.

    Article  CAS  Google Scholar 

  • Wolf, F. T. 1969. Plants with high rates of photosynthesis.Biologist91: 147–155.

    Google Scholar 

  • Woodwell, G. M., &D. B. Botkin. 1970. Metabolism of terrestrial ecosystems by gas exchange techniques: the Brookhaven approach.In: Reichle, D. (Ed.).Analysis of Temperate Forest Ecosystems. Springer-Verlag, New York. pp. 73–85.

    Google Scholar 

  • Wright, J. L., &E. R. Lemon. 1966. Photosynthesis under field conditions. IX. Vertical distribution of photosynthesis within a corn crop.Agronomy J.58: 265–268.

    Article  Google Scholar 

  • Zalensky, O. V. 1954. Photosynthèse dans les conditions naturelles. In:Essais de Botanique I: Moscow-Leningrad. Acad. des Sciences de l’URSS.

  • Zalensky, O. V., O. A. Semikhatova, &V. L. Voznesenskii. 1955. Use of radioactive carbon14 in the study of photosynthesis. A. E. C. Translation 3432.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooney, H.A. Carbon dioxide exchange of plants in natural environments. Bot. Rev 38, 455–469 (1972). https://doi.org/10.1007/BF02860011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860011

Keywords

Navigation