Skip to main content
Log in

Non-local structure of field theories with non-renormalizable interaction

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Quantized field theories of the second kind, the so-called non-renormalizable theories, are investigated. It has recently been shown that a number of those theories actually can be renormalized. We show that field theories of the second kind, pertaining to derivative couplings, possess non-local structure. The full recoil neutral PS-PV theory in its non-linear form is discussed. The non-localizability of both the unrenormalized and the renormalized theories is due to the fact that the infinite set of topologically independent direct interactions, which characterizes PS-PV theory, is equivalent to a new type of indirect interaction. The non-localizability manifests itself in an indeterminacy in space-time of the light-cone. This indeterminacy can be interpreted in terms of a statistical spread in space-time of the positions of two interacting point-nucleons over a space-time volume the size of which is determined by the coupling constant |g| of the linear version of PS-PV theory. The length |g| loses its meaning as a coupling in the non-linear formalism in favour of the nucleon mass and plays now the role of a fundamental structure constant. In particular, |g| determines the region in which the equivalence theorem and the 1/r 3-potential become invalid and repulsive-core potentials begin to act. In virtue of the oscillatory behaviour of the non-tempered momentum space operators in the high energy region, positive-definiteness conditions can be established only for regions |k 2v |≳|1/g 2| and |x 2v |≳|1/g 2|. The non-localizability is concentrated in these domains and |g| seems to play the role of the meson Compton wave length. A new interpretation of the non-linear PS-PV theory is suggested. It is conjectured that also β interactions give rise to non-local structures. Multiple propagators are introduced to render the formal coupling constant expansions in theories of the second kind mathematically meaningful without producing non-renormalizable infinities. Arguments are advanced against the mathematical consistency of the concept of creation (annihilation) and localizability of more than one point-particle at a single space-time point.

Riassunto

Si esaminano le teorie quantizzate di campo di seconda specie, le cosiddette teorie non rinormalizzabili. Si è dimostrato recentemente che alcune di queste teorie possono in realità essere rinormalizzate. Dimostriamo che le teorie di campo di seconda specie, appartenenti agli accoppiamenti per derivazione, hanno struttura non locale. Si discute nella sua forma non lineare la teoria PS-PV neutra del rinculo completo. La non localizzabilità delle teorie sia non rinormalizzate che rinormalizzate è dovuta al fatto che il gruppo infinito delle interazioni dirette topologicamente indipendenti che caratterizza la teoria PS-PV è equivalente a un nuovo tipo d’interazione diretta. La non localizzabilità si manifesta in un’indeterminazione del cono di luce nello spazio-tempo. Tale indeterminazione si può interpretare in termini di una diffusione statistica nello spaziotempo delle posizioni di due nucleoni puntiformi interagenti in un volume di spaziotempo la cui estensione è determinata dalla costante d’accoppiamento |g| della versione lineare della teoria PS-PV. La lunghezza |g| perde il suo significato di accoppiamento nel formalismo non lineare in favore della massa del nucleone, ed acquista ora l’ufficio di una costante fondamentale di struttura. In particolare |g| determina la regione in cui il teorema di equivalenza e il potenziale 1/r 3 perdono la loro validità e cominciano ad agire potenziali di core repulsivi. In virtù del comportamento oscillatorio nella regione di alta energia degli operatori dello spazio non temperato dei momenti si possono imporre condizioni di positività definita solo per regioni |k 2v | ≲ |1/g 2| e |x 2v | ≳ |g 2|. La non localizzabilità è concentrata in questi domini e |g| sembra acquistare l’ufficio della lunghezza d’onda Compton del mesone. Si suggerisce una nuova interpretazione della teoria PS-PV non lineare. Si congettura che anche le interazioni diano vita a strutture non locali. Si introducono propagatori multipli per rendere matematicamente significativi nelle teorie di seconda specie gli sviluppi formali delle costanti d’accoppiamento senza produrre grandezze infinite non rinormalizzabili. Si dannargomenti contro la fondatezza matematica del concetto di creazione (distruzione) e di localizzabilità di più di una particella puntiforme in un singolo punto dello spaziotempo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Arnowitt andS. Deser:Phys. Rev.,100, 349 (1955); referred to as AD.

    Article  MathSciNet  ADS  Google Scholar 

  2. L. N. Cooper:Phys. Rev.,100, 362 (1955). Thanks are due to Dr.Cooper for communications in advance of publication.

    Article  MathSciNet  ADS  Google Scholar 

  3. W. Heisenberg:Ann. Phys.,32, 20 (1938);Nachr. Gött. Akad. Wiss., Fests. 1951.

    Article  Google Scholar 

  4. H. Lehmann, K. Symanzik andW. Zimmermann:Nuovo Cimento,1, 205 (1955);6, 319 (1957); referred to as LSZ.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. König:Arch. Math.,6, 391 (1955).

    Article  MATH  Google Scholar 

  6. A. S. Wightman:Phys. Rev.,101, 860 (1956);W. Schmidt andK. Baumann:Nuovo Cimento,4, 860 (1956). The author is grateful to Dr.Wightman for a preprint.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. The localizability of the weak interactions may be checked by an experimental verification of Bogoljubov’s dispersion relations:N. N. Bogoljubov, S. M. Bilenkij andA. A. Logunov:Dispersion Relations for Weak Interactions (preprint). I wish to express my gratitude to Drs.Bogoljubov andŠirkow for communications in advance of publication.

  8. S. Hori andA. Wakasa:Nuovo Cimento,6, 304 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Sakata, H. Umezawa andS. Kamefuchi:Progr. Theor. Phys.,7, 377 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Since this work has been done,I. S. R. Chisholm (Phil. Mag.,1, 338 (1956)) has discussed in detail the classification of the graphs resulting from the Lagrangian (6). I am indebted to Prof.A. Salam for calling my attention to Chisholm’s work.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. L. Schwartz:Théorie des distributions,1–2 (Paris, 1950–51);I. Halperin,Theory of distributions (Toronto, 1952);H. König: refs. (5), (15), (24), (31).

  12. H. König:Math. Ann.,128, 420 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Alexandrov:Helv. Phys. Acta. Suppl.,4, 44 (1956).

    Google Scholar 

  14. N. N. Bogoljubov andD. Širkov:Nuovo Cimento,3, 845 (1956);V. Z. Blank andD. V. Širkov:Nucl. Phys.,2, 356 (1957).

    Article  Google Scholar 

  15. L. D. Landau: inNiels Bohr and the Development of Physics (Edited byW. Pauli) (New York, 1955).

  16. I. Y. Pomerančuk, V. V. Sudakov andV. A. Ter-Martirosyan:Phys. Rev.,103, 784 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  17. W. Güttinger:Nuclear Physics, in press.

  18. The order of the events in (9) cannot be changed continuously (|εi+1|=α|εi|, α≠ 1). The limit in (9) is a special case of the «limes generalis» used byMethée (ref. (22) those techniques can be fully justified in terms of a residue-class algebra. The similar lim-process gives zero value to the photon self-energy as has been pointed out byJ. Tiomno in conversations.

    Article  Google Scholar 

  19. P. D. Methée:Comm. Math. Helv.,28, 255 (1954);Compt. Rend. Acad. Sci.,240, 1179 (1955);241, 684 (1955);Int. Colloqu. CNRS, Publ. (Nancy, 1956), p. 145.

    Article  Google Scholar 

  20. C. L. R. Braga:Lorentz Invariant Distributions (preprint), to be published. The author is much indebted to Prof.Braga for valuable communications prior to publication.

  21. H. König:Math. Ann. (to be published);Proc. Int. Math. Congr. (Amsterdam, 1954).

  22. W. Güttinger:Zeits. f. Naturfor.,10 a, 257 (1955).

    ADS  Google Scholar 

  23. M. Schönberg:Quantum Mechanics and Geometry (preprint);Ann. Acad. Sci. Bras. (in press).

  24. C. L. R. Braga: to be published.

  25. Within a closed system of interacting point-particles only the point-particles themselves can act as test-bodies. Hence, the testing functionsϕgm) shouldnot be considered as space-time densities of (macroscopic) test-bodies in the sense of Bohr and Rosenfeld. Cf., however,Schmidt andBaumann, ref. (6).

  26. The non-invariance under similarity transforms (cf., also Appendix (A.4)) inK with axiom (iii) missing (e.g., inII) brings a new degree of freedom into the theory. The formalism is still Lorentz invariant in the sense that each finite partial series of (19) is so.

  27. Since this work has been done, the paper ofGel’fand andSilov (Am. Math. Soc. Trans.,5, 221 (1957)) became available. These authors have treated the caseϱ ⩾ 1 by similar methods. However, the case 0 < ϱ < 1 has not been discussed. I am grateful to Prof.B. Gross for calling my attention toGel’fand andSilov’s paper.

    MathSciNet  MATH  Google Scholar 

  28. H. König:Math. Nachr.,9, 129 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Symanzik:Phys. Rev.,105, 743 (1957);N. N. Bogoljubov, B. V. Medvedev, M. K. Polivanov andD. W. Širkov:Problems of Dispersion Relation Theory (preprint).

    Article  ADS  MATH  Google Scholar 

  30. G. C. Wick:Rev. Mod. Phys.,27, 339 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. L. Schwartz: ref. (13),2, 132.

  32. H. Lehmann:Nuovo Cimento,11, 342 (1954);A. S. Wightman, ref. (6).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Ezawa, Y. Tomozawa andH. Umezawa:Nuovo Cimento,5, 810 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Pais andG. E. Uhlenbeck:Phys. Rev.,79, 145 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. W. Heisenberg:Rev. Mod. Phys.,29, 269 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güttinger, W. Non-local structure of field theories with non-renormalizable interaction. Nuovo Cim 10, 1–36 (1958). https://doi.org/10.1007/BF02859602

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859602

Navigation