Ackman, R. G. 1964. Structural homogeneity in unsalinated fatty acids of marine lipids: A review. J. Fish. Res. Board Canada 21: 247–254.
CAS
Google Scholar
—, and J. McLachlan. 1977. Fatty acids in some Nova Scotian marine seaweeds: a survey for octadecapentaenoic and other biochemically novel fatty acids. Proc. Nova Scotian Inst. Sci. 28: 47–64.
CAS
Google Scholar
Alcaide, A., M. Devys, and M. Barbier. 1968. Remarques sur les stérols des algues rouges. Phytochemistry 7: 329–330.
CAS
Article
Google Scholar
André, S. 1971. Destinée des iodures fixés chez diverses algues marines et caractérisation des acides aminés iodés dans les hydrolysates. Compt. Rend. Séances Soc. Biol. Fil. 165: 2293–2298.
Google Scholar
Ann. Rep. Inst. Seaweed Res. 1954. Inveresk, Scotland. p. 44.
-. 1956. Inveresk, Scotland. p. 23.
-. 1963. Inveresk, Scotland. p. 23.
Barry, V. C., and T. Dillon. 1940. Occurrence of xylans in marine algae. Nature 146: 620.
CAS
Article
Google Scholar
—, B. Hawkins, and P. O’Colla. 1950. The xylan ofRhodymenia palmata. Nature 166: 788.
CAS
Article
Google Scholar
-, J. E. McCormic, and P. W. D. Mitchell. 1954. Properties of periodate-oxidized polysaccharides. III. Estimation of α-glycol groupings in a polysaccharide. J. Chem. Soc. (London): 3692–3696.
Bender, A. E., D. S. Miller, E. J. Tunnah, and W. A. P. Black. 1953. Biological value of algal proteins. Chem. Ind. (London): 1340–1341.
Bernassau, J. M., and M. Fetizon. 1975. An improved method for the degradation of the lanosterol side chain. Synthesis 12: 795–796.
Article
Google Scholar
Bjorndal, H., K.-E. Eriksson, P. J. Garegg, B. Lindberg, and B. Swan. 1965. Studies on the xylan from the red seaweedRhodymenia palmata. Acta. Chem. Scand. 19: 2309–2315.
Google Scholar
Bjornland, T., and M. Aguilar-Martinez. 1976. Carotenoids in red algae. Phytochemistry 5: 291–296.
Article
Google Scholar
Black, W. A. P. 1958. The algae.In Processed Plant Protein Foodstuffs, A. M. Altschul, ed. pp. 805–827. Academic Press, New York.
Google Scholar
—, W. R. Blakemore, J. A. Colquhoun, and E. T. Dewar. 1965. The evaluation of some red marine algae as a source of carrageenan and of its κ- and λ-components. J. Sci. Food Agric. 16: 573–585.
PubMed
CAS
Article
Google Scholar
—, and F. N. Woodward. 1957. The value of seaweeds in animal feedingstuffs as a source of minerals, trace elements, and vitamins. Empire J. Exp. Agric. 25: 51–59.
Google Scholar
Bowen, H. J. M. 1956. Strontium and barium in seawater and marine organisms. J. Mar. Biol. Assoc. U. K. 35: 451–460.
CAS
Google Scholar
Brown, F. 1953. The occurrence of δ-tocopherol in seaweed. Chem. Ind. (London): 174.
Buchecker, R., S. Liaaen-Jensen, and C. H. Eugster. 1976. Reinvestigation of original taraxanthin samples. Helv. Chim. Acta 59: 1360–1364.
CAS
Article
Google Scholar
Butler, M. R. 1931. Comparison of the chemical composition of some marine algae. Pl. Physiol. 6: 295–305.
CAS
Google Scholar
Butters, F. K. 1899. Observations onRhodymenia. Minnesota Bot. Stud. II: 205–213.
Google Scholar
Cameron, A. T. 1915. Contributions to the biochemistry of iodine. II. The distribution of iodine in plant and animal tissues. J. Biol. Chem. 23: 1–39.
CAS
Google Scholar
Cerezo, A. S., A. Lezerovich, and R. Labriola. 1971. A xylan from the red seaweedChaetangium fastigiatum. Carbohydr. Res. 19: 289–296.
CAS
Article
Google Scholar
Channing, D. M., and G. T. Young. 1953. Amino acids and peptides. Part X. The nitrogenous constituents of some marine algae. J. Chem. Soc. (London): 2481–2491.
Chapman, A. R. O., and J. S. Craigie. 1977. Seasonal growth inLaminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. (Berlin) 40: 197–205.
CAS
Article
Google Scholar
Chapman, V. J. 1970. Seaweeds and Their Uses. Methuen, London.
Chaumont, J. P. 1978. Variations de la teneur en composes azotés duRhodymenia palmata Grev. Bot. Mar. 21: 23–29.
CAS
Google Scholar
Chuecas, L., and J. P. Riley. 1966. The component fatty acids of some seaweed fats. J. Mar. Biol. Assoc. U. K. 46: 153–159.
CAS
Google Scholar
Citharel, J. 1966. Recherches sur les constituants azotés des algues marines. Les acides aminés libres. Compt. Rend. Hebd. Séances Acad. Sci. 262: 1495–1497.
CAS
Google Scholar
—, and S. Villeret. 1964. Recherche sur le métabolisme azoté de quelques algues marines des Côtes Bretonnes. Proc. Int. Seaweed Symp. 4: 291–300.
Google Scholar
Clark, R. C, {jrJr.}, and M. Blumer. 1967. Distribution of n-paraffins in marine organisms and sediments. Limnol. Oceanogr. 12: 79–87.
CAS
Google Scholar
Colin, H., and E. Guéguen. 1930. La constitution du principe sucre deRhodymenia palmata. Compt. Rend. Hebd. Séances Acad. Sei. 191: 163–164.
CAS
Google Scholar
Coulson, C. B. 1953a. Amino acids of marine algae. Chem. Ind. (London): 971–972.
-. 1953b. Proteins of marine algae. Chem. Ind. (London): 997–998.
—. 1955. Plant proteins. V. Proteins and amino-acids of marine algae. J. Sci. Food Agric. 6: 674–682.
CAS
Article
Google Scholar
Craigie, J. S., J. McLachlan, and R. D. Tocher. 1968. Some neutral constituents of the Rhodophyceae with special reference to the occurrence of the floridosides. Canad. J. Bot. 46: 605–611.
CAS
Google Scholar
Creac’h, P., and J. Baraud. 1954. L’acide ascorbique total dans les algues marines. Compt. Rend. Séances Soc. Biol. Fil. 148: 105–107.
CAS
Google Scholar
Cronshaw, J., A. Myers, and R. D. Preston. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim. Biophys. Acta 27: 89–103.
PubMed
CAS
Article
Google Scholar
Culkin, F., and J. P. Riley. 1958. The occurrence of gallium in marine organisms. J. Mar. Biol. Assoc. U. K. 37: 607–615.
CAS
Google Scholar
DaSilva, E., and A. Jensen. 1973. Benthic marine and blue-green algal species as a source of choline. J. Sci. Food Agric. 24: 855–861.
PubMed
CAS
Article
Google Scholar
Dawson, E. Y. 1966. Marine Botany. Holt, Rinehart and Winston, New York.
Google Scholar
Dixon, P. S. 1973. Biology of Rhodophyta. Oliver and Boyd, Edinburgh.
Google Scholar
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.
CAS
Article
Google Scholar
Edelstein, T., L. Chen, and J. McLachlan. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby Neck Peninsula, Bay of Fundy. Canad. J. Bot. 48: 621–629.
Google Scholar
Ericson, L.-E. 1953. Further studies on growth factors forStreptococcus faecalis andLeuconostoc citrovorum in marine algae. Ark. Kemi 6: 503–510.
CAS
Google Scholar
—, and L. Lewis. 1953. On the occurrence of vitamin B12-factors in marine algae. Ark. Kemi 6: 427–442.
CAS
Google Scholar
Farlow, W. G. 1891. The Marine Algae of New England. Rep. U.S. Commissioner Fish and Fisheries. Government Printing Office, Washington, D.C.
Google Scholar
Ferezou, J. P., M. Devys, J. P. Allais, and M. Barbier. 1974. Sur le sterol à 26 atomes de carbone de l’algue rougeRhodymenia palmata. Phytochemistry 13: 593–598.
CAS
Article
Google Scholar
Ffrench, R. A. 1974.Rhodymenia palmata. An appraisal of the dulse industry. Atlantic Regional Laboratory Technical Report, National Research Council of Canada.
Fuller, S. W., and A. C. Mathieson. 1972. Ecological studies of economic red algae. IV. Variations of carrageenan concentration and properties inChondrus crispus Stackhouse. J. Exp. Mar. Biol. Ecol. 10: 49–58.
CAS
Article
Google Scholar
Gibbons, G. F., L. J. Goad, and T. W. Goodwin. 1967. The sterols of some marine red algae. Phytochemistry 6: 677–683.
Article
Google Scholar
Goodwin, T. W. 1974. Sterols.In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 266–280. Univ. California Press, Berkeley.
Google Scholar
Guiry, M. D. 1974. A preliminary consideration of the taxonomic position ofPalmaria palmata (L.) Stackhouse =Rhodymenia palmata (L.) Greville. J. Mar. Biol. Assoc. U. K. 54: 509–528.
Article
Google Scholar
—. 1975. An assessment ofPalmaria palmata formamollis (S. et G.) comb. nov. (=Rhodymenia palmata formamollis S. et G.) in the eastern North Pacific. Syesis 8: 245–261.
Google Scholar
Hallsson, S. V. 1964. The uses of seaweeds in Iceland.In C. R. IV Congrès Int. Algues Marines, Biarritz 1961, D. DeVirville and J. Feldmann, ed. pp. 398–405. Pergamon Press, Oxford.
Google Scholar
Haug, A., and B. Larsen. 1956a. Carotene content of some Norwegian seaweeds, and observations on the breakdown of carotene in seaweeds and seaweed meal. Proc. Int. Seaweed Symp. 2: 16–22.
Google Scholar
—. 1956b. Carotene breakdown inRhodymenia palmata (L.) Grev. Acta Chem. Scand. 10: 472–474.
CAS
Google Scholar
—. 1957. Carotene content of seaweed and seaweed meal. Norweg. Inst. Seaweed Res. 19: 1–19.
Google Scholar
Hay, G. U. 1886. Marine algae of the Maritime Provinces. Bull. Nat. Hist. Soc. 1: 62–68.
Google Scholar
Heilbron, I. M., E. G. Parry, and R. F. Phipers. 1935. The algae. II. The relationship between certain algal constituents. Biochem. J. 29: 1376–1381.
PubMed
CAS
Google Scholar
Heinz Company. 1956. Nutritional Data. Pittsburgh, Pennsylvania.
Henry, M.-H. 1949. Contribution à la recherche des glucides solubles et des lipides chez les Floridées. Rev. Gén. Bot. 56: 352–363.
Google Scholar
Hilditch, T. P., and P. M. Williams. 1964. The Chemical Composition of Natural Fats. Chapman and Hall, London.
Google Scholar
Howard, B. H. 1957. Hydrolysis of the soluble pentosans of wheat flour andRhodymenia palmata by ruminai micro-organisms. Biochem. J. 67: 643–651.
PubMed
CAS
Google Scholar
Hpygaard, A., and H. W. Rasmussen. 1939. Vitamin C sources in Eskimo food. Nature 143: 943.
Article
Google Scholar
Idler, D. R., and B. Atkinson. 1976. Seasonal variation in the desmosterol content of dulse(Rhodymenia palmata) from Newfoundland waters. Comp. Biochem. Physiol. B. 53: 517–519.
PubMed
CAS
Article
Google Scholar
—, A. Saito, and P. Wiseman. 1968. Sterols in red algae (Rhodophyceae). Steroids 11: 465–473.
PubMed
CAS
Article
Google Scholar
—, and P. Wiseman. 1970. Sterols in red algae (Rhodophyceae): variation in the desmosterol content of dulse(Rhodymenia palmata). Comp. Biochem. Physiol. 35: 679–687.
CAS
Article
Google Scholar
Igelsrud, I., T. G. Thompson, and B. M. G. Zwicker. 1938. The boron content of sea water and of marine organisms. Amer. J. Sci. 35: 47–63.
CAS
Article
Google Scholar
Jensen, A. 1969. Tocopherol content of seaweed and seaweed meal. 1. Analytical methods and distribution of tocopherols in benthic algae. J. Sci. Food Agric. 20: 449–453.
CAS
Article
Google Scholar
Johnston, H. W. 1966. The biological and economic importance of algae, Part 2. Tuatara 14: 30–63.
Google Scholar
Kanazawa, A., A. Saito, and D. R. Idler. 1966. Vitamins B in dulse(Rhodymenia palmata). J. Fish. Res. Board Canada 23: 915–916.
Google Scholar
Kingsbury, J. M. 1969. Seaweeds of Cape Cod and the Islands. Chatham Press, Chatham, Massachusetts.
Google Scholar
Kuceva, L. S., and V. N. Bukin. 1957. Morskie vodorosli i sapropeli kak istocniki vitamina B12. Dokl. Akad. Nauk SSSR 115: 765–767.
Google Scholar
Kylin, H. 1918. Weitere Beiträge zur Biochemie der Meeresalgen. Hoppe-Seyler’s Z. Physiol. Chem. 101: 236–247.
CAS
Google Scholar
Larsen, B. 1958. The influence of season, habitat and age of tissue on the niacin content of some brown algae. Norweg. Inst. Seaweed Res. 19: 1–13.
Google Scholar
—. 1961. The biotin content of marine algae. Norweg. Inst. Seaweed Res. 26: 1–18.
Google Scholar
—, and A. Haug. 1956. Carotene isomers in some red algae. Acta Chem. Scand. 10: 470–472.
CAS
Google Scholar
—, and W. W. Hawkins. 1961. Nutritional value as protein of some of the nitrogenous constituents of two marine algae,Chondrus crispus andLaminaria digitata. J. Sci. Food Agric. 12: 523–529.
CAS
Article
Google Scholar
Laur, M.-H. 1961. Application de la Chromatographie en phase gazeuse à l’étude des acides gras des Rhodophycées. Compt. Rend. Hebd. Séances Acad. Sci. 253: 966–968.
CAS
Google Scholar
Laycock, M. V., A. G. Mclnnes, and K. C. Morgan. 1979. D-homocysteic acid inPalmaria palmata. Phytochemistry 18: 1220.
CAS
Article
Google Scholar
-. 1979. Unpublished data.
Levring, T., H. A. Hoppe, and O. J. Schmid. 1969. Marine Algae. A Survey of Research and Utilization. Cram, De Gruyter, Hamburg.
Google Scholar
Lovern, J. A. 1936. Fat metabolism in fishes. IX. The fats of some aquatic plants. Biochem. J. 30: 387–390.
PubMed
CAS
Google Scholar
Lunde, G. 1970. Analysis of trace elements in seaweed. J. Sci. Food Agric. 21: 416–418.
PubMed
CAS
Article
Google Scholar
—, and J. Lie. 1938. Vitamin C in Meeresalgen. Hoppe-Seyler's Z. Physiol. Chem. 254: 227–240.
CAS
Google Scholar
Lundin, H., and L.-E. Ericson. 1955. On the occurrence of vitamins in marine algae. Proc. Int. Seaweed Symp. 2: 39–43.
Google Scholar
Lyman, C. M., K. A. Kuiken, and F. Hale. 1956. Essential amino acid content of farm feeds. J. Agric. Food Chem. 4: 1008–1013.
CAS
Article
Google Scholar
MacFarlane, I. 1968. The cultivation of seaweeds in Japan and its possible application in the Atlantic Provinces of Canada. Industrial Development Service, 20. Department Fish. Canada.
Google Scholar
Mackie, I. M., and E. Percival. 1959. The constitution of xylan from the green seaweedCaulerpa filiformis. J. Chem. Soc. (London): 1151–1156.
Mackie, W., and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides.In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 40–85. Univ. California Press, Berkeley.
Google Scholar
MacPherson, M. G., and E. G. Young. 1949. The chemical composition of marine algae. Canad. J. Res. Sect. C. Bot. Sci. 27: 73–77.
Google Scholar
MacRobbie, E. A. C., and J. Dainty. 1958. Sodium and potassium distribution and transport in the seaweedRhodymenia palmata (L.) Grev. Physiol. Pl. 11: 782–801.
CAS
Article
Google Scholar
Madiener, J. C. 1977. The Seavegetable Book. Crown Publ., New York.
Google Scholar
Manners, D. J., and J. P. Mitchell. 1963. The fine-structure ofRhodymenia palmata xylan. Biochem. J. 89: 92P-93P.
Google Scholar
Mathieson, A. C., and E. Tveter. 1975. Carrageenan ecology ofChondrus crispas Stackhouse. Aquat. Bot. 1: 25–43.
CAS
Article
Google Scholar
—. 1976. Carrageenan ecology ofGigartina stellata (Stackhouse) Batters. Aquat. Bot. 2: 353–361.
CAS
Article
Google Scholar
Mauchline, J., and W. L. Templeton. 1966. Strontium, calcium and barium in marine organisms from the Irish Sea. J. Cons. Cons. Int. Explor. Mer 30: 161–170.
Google Scholar
Meeuse, B. J. D., M. Andries, and J. A. Wood. 1960. Floridean starch. J. Exp. Bot. 11: 129–140.
CAS
Article
Google Scholar
Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen, insbesondre in Derivaten der Adenylsäure. Hoppe-Seyler’s Z. Physiol. Chem. 258: 117–120.
CAS
Google Scholar
Meunier, H., S. Zelenski, and L. Worthen. 1970. Comparison of the sterol content of certain Rhodophyta.In Proc. Second Conference Food-drugs from the Sea, 1969, H. W. Youngken, ed. pp. 319–325. Marine Technol. Soc, Washington, D.C.
Google Scholar
Morgan, K. C, P. F. Shacklock, and F. J. Simpson. 1979. Unpublished data.
Morisaki, M., S. Kidooka, and N. Ikekawa. 1976. Studies on steroids. XXXIX. Sterol profiles of red algae. Chem. Pharm. Bull. (Tokyo) 24: 3214–3216.
CAS
Google Scholar
—, J. Rubio-Lightbourn, and N. Ikekawa. 1972. Synthesis of active forms of vitamin D. I. A facile synthesis of 25-hydroxycholesterol. Chem. Pharm. Bull. (Tokyo) 21: 457–458.
Google Scholar
Munda, I. 1972. On the chemical composition, distribution and ecology of some common benthic marine algae from Iceland. Bot. Mar. 15: 1–45.
CAS
Article
Google Scholar
Munda, I. M., and F. Gubensek. 1976. The amino acid composition of some common marine algae from Iceland. Bot. Mar. 19: 85–92.
CAS
Google Scholar
Myers, A., and R. D. Preston. 1959. Fine structure in the red algae. II. The structure of the cell wall ofRhodymenia palmata. Proc. Roy. Soc. London, Series B, Biol. Sci. 150: 447–455.
CAS
Google Scholar
Naylor, G. L., and B. Russell-Wells. 1934. On the presence of cellulose and its distribution in the cell-walls of brown and red algae. Ann. Bot. (London) 48: 635–641.
CAS
Google Scholar
Neish, A. C., P. F. Shacklock, C. H. Fox, and F. J. Simpson. 1977. The cultivation ofChondrus crispus. Factors affecting growth under greenhouse conditions. Canad. J. Bot. 55: 2263–2271.
CAS
Google Scholar
Neish, I. C. 1976. Role of mariculture in the Canadian seaweed industry. J. Fish. Res. Board Canada 33: 1007–1014.
Google Scholar
Ocean Science Associates. 1972. A technological development program for dulse cultivation on Grand Manan Island, New Brunswick. Final Report. New Brunswick Department Fish. Environ. Fredericton, New Brunwsick.
Google Scholar
O’hEocha, C. 1960. Chemical studies of phycoerythrins and phycocyanins.In Comparative Biochemistry of Photoreactive Systems, M. B. Allen, ed. pp. 181–203. Academic Press, New York.
Google Scholar
—. 1962. Phycobilins.In Physiology and Biochemistry of Algae, R. A. Lewin, ed. pp. 421–435. Academic Press, New York.
Google Scholar
Owen, E. C. 1954. The carotene, carotenoid and chlorophyll contents of some Scottish seaweeds. J. Sci. Food Agric. 5: 449–453.
CAS
Article
Google Scholar
Pálsson, P. A., and H. Grimsson. 1953. Demyelination in lambs from ewes which feed on seaweeds. Proc. Soc. Exp. Biol. Med. 83: 518–520.
PubMed
Google Scholar
Partridge, J. J., S. Faber, and M. R. Uskokovic. 1974. Vitamin D3 metabolites I. Synthesis of 25-hydroxycholesterol. Helv. Chim. Acta 57: 764–771.
PubMed
CAS
Article
Google Scholar
Percival, E. G. V., and S. K. Chanda. 1950. The xylan ofRhodymenia palmata. Nature 166: 787–788.
PubMed
CAS
Article
Google Scholar
Percival, E., and R. H. McDowell. 1967. Chemistry and Enzymology of Marine Algal Polysaccharides. Academic Press, New York.
Google Scholar
Putman, E. W., and W. Z. Hassid. 1954. Structure of galactosylglycerol fromIridaea laminarioides. Biochem. J. 79: 7–12.
Google Scholar
Reppert, W. 1973. Final report: Seaweeds development. New Brunswick Department Fish. Environ. Caraquet, New Brunswick.
Google Scholar
Ross, A. G. 1953. Some typical analyses of red seaweeds. J. Sci. Food Agric. 4: 333–335.
CAS
Article
Google Scholar
Schachat, R. E., and M. Glicksman. 1959. Some lesser-known seaweed extracts.In Industrial Gums, Polysaccharides and their Derivatives. R. L. Whistler and J. N. Be Miller, ed. pp. 135–191. Academic Press, New York.
Google Scholar
Schlicting, H., and M. E. Purdom. 1969.Rhodymenia palmata periphyton; protein and amino acids. Proc. Int. Seaweed Symp. 6: 589–594.
Google Scholar
Schmidt-Nielsen, S., and L. Hammer. 1932. Über den hohen Furfurolge-halt vonRhodymenia palmata. Kgl. Norske Videnskab. Selskab. Forh. 5: 158–161.
CAS
Google Scholar
Scott, R. 1954. Observations on the iodo-amino-acids of marine algae using iodine-131. Nature 173: 1098–1099.
CAS
Article
Google Scholar
—, and L.-E. Ericson. 1955. Some aspects of cobalt metabolism byRhodymenia palmata with particular reference to vitamin B12 content. J. Exp. Bot. 6: 348–361.
CAS
Article
Google Scholar
Seybold, A., and K. Egle. 1938. Quantitative investigations of the chlorophyll and carotenoids of sea algae. Jahrb. Wiss. Bot. 86: 50–80.
CAS
Google Scholar
Smith, D. G., and E. G. Young. 1952. On the nitrogenous constituents of algae. Proc. Int. Seaweed Symp. 1: 54–59.
Google Scholar
—. 1955. The combined amino acids in several species of marine algae. J. Biochem. 217: 845–853.
CAS
Google Scholar
Strohal, P., and T. Pinter. 1973. Thorium in water and algae from the Adriatic Sea. Limnol. Oceanogr. 18: 250–253.
CAS
Article
Google Scholar
Sturgeon, R. J. 1973. Determination of the degree of polymerization of xylans. Carbohydr. Res. 30: 175–178.
CAS
Article
Google Scholar
Swartz, M. D. 1911. Nutrition investigations on the carobhydrates of lichens, algae and related substances. Trans. Connecticut Acad. Arts Sci. 16: 247–382.
Google Scholar
Turvey, J. R., and E. L. Williams. 1970. The structures of some xylans from red algae. Phytochemistry 9: 2383–2388.
CAS
Article
Google Scholar
van der Velde, H. H. 1973a. The use of phycoerythrin absorption spectra in the classification of red algae. Acta Bot. Neerl. 22: 92–99.
Google Scholar
—. 1973b. The natural occurrence in red algae of two phycoerythrins with different molecular weights and spectral properties. Biochim. Biophys. Acta 303: 246–257.
PubMed
Google Scholar
Vinogradov, A. P. 1953. The Elementary Chemical Composition of Marine Organisms. Memoir #2, Sears Foundation for Marine Research. Yale Univ., New Haven, Connecticut.
Google Scholar
Waaland, J. R., S. D. Waaland, and G. Bates. 1974. Chloroplast structure and pigment composition in the red algaGriffithsia pacifica: regulation by light intensity. J. Phycol. 10: 193–199.
Google Scholar
Wagner, H., and P. Pohl. 1966. Fatty acid biosynthesis and evolution in plant and animal organisms. Phytochemistry 5: 903–920.
CAS
Article
Google Scholar
Wood, B. J. B. 1974. Fatty acids and saponifiable lipids. Bot. Monogr. 10: 236–265.
CAS
Google Scholar
World Health Organization. 1965. Protein requirements. WHO Tech. Rep. Ser. 301.
Wright, J. L. C. 1979. Unpublished data.
Young, E. G. 1948. Chemistry of seaweed extracts and their uses. Conf. Utilization of Seaweeds, Halifax, 1948. National Research Council of Canada.
—. 1964. The concentration of nucleic acids in some common marine algae. Canad. J. Bot. 42: 1471–1479.
CAS
Article
Google Scholar
—. 1966. The chemical nature of the insoluble residue after severe extraction in some Rhodophyceae and Phaeophyceae. Proc. Int. Seaweed Symp. 5: 337–346.
Google Scholar
—. 1970. A comparison of the soluble proteins in various species of algae by disc electrophoresis in polyacrylamide gels. Phytochemistry 9: 2167–2174.
CAS
Article
Google Scholar
—, and W. M. Langille. 1958. The occurrence of inorganic elements in marine algae of the Atlantic provinces of Canada. Canad. J. Bot. 36: 301–310.
CAS
Google Scholar
Youngblood, W. W., M. Blumer, R. L. Guillard, and F. Fiore. 1971. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. (Berlin) 8: 190–201.
CAS
Article
Google Scholar