Skip to main content

Review of chemical constituents of the red algaPalmaria palmata (dulse)

Abstract

The data reported in the literature and recent analyses of the composition ofPalmaria palmata (Rhodymenia palmata) are compiled and discussed. The reported values have a relatively wide spread ranging from 73–89% moisture and, on a dry weight basis, 12–37% ash, 8–35% crude protein, 38–74% carbohydrate and 0.2–3.8% lipid. Some of the variation can be attributed to seasonal and nutritional conditions.P. palmata has potassium, chlorine and sodium as its major mineral constituents and, in comparison to terrestrial fruits and vegetables, is a good source of iron, magnesium, calcium and iodine. Vitamin A (as carotene) and, in the fresh plant, vitamin C, are present in appreciable amounts.P. palmata is potentially a high protein food source, and its protein quality rates well with vegetables of good nutritional value. The major polysaccharide is a ß-(l → 3) and ß-(l →4) linked xylan.P. palmata is a natural source of desmosterol.

This is a preview of subscription content, access via your institution.

Literature cited

  • Ackman, R. G. 1964. Structural homogeneity in unsalinated fatty acids of marine lipids: A review. J. Fish. Res. Board Canada 21: 247–254.

    CAS  Google Scholar 

  • —, and J. McLachlan. 1977. Fatty acids in some Nova Scotian marine seaweeds: a survey for octadecapentaenoic and other biochemically novel fatty acids. Proc. Nova Scotian Inst. Sci. 28: 47–64.

    CAS  Google Scholar 

  • Alcaide, A., M. Devys, and M. Barbier. 1968. Remarques sur les stérols des algues rouges. Phytochemistry 7: 329–330.

    CAS  Article  Google Scholar 

  • André, S. 1971. Destinée des iodures fixés chez diverses algues marines et caractérisation des acides aminés iodés dans les hydrolysates. Compt. Rend. Séances Soc. Biol. Fil. 165: 2293–2298.

    Google Scholar 

  • Ann. Rep. Inst. Seaweed Res. 1954. Inveresk, Scotland. p. 44.

  • -. 1956. Inveresk, Scotland. p. 23.

  • -. 1963. Inveresk, Scotland. p. 23.

  • Barry, V. C., and T. Dillon. 1940. Occurrence of xylans in marine algae. Nature 146: 620.

    CAS  Article  Google Scholar 

  • —, B. Hawkins, and P. O’Colla. 1950. The xylan ofRhodymenia palmata. Nature 166: 788.

    CAS  Article  Google Scholar 

  • -, J. E. McCormic, and P. W. D. Mitchell. 1954. Properties of periodate-oxidized polysaccharides. III. Estimation of α-glycol groupings in a polysaccharide. J. Chem. Soc. (London): 3692–3696.

  • Bender, A. E., D. S. Miller, E. J. Tunnah, and W. A. P. Black. 1953. Biological value of algal proteins. Chem. Ind. (London): 1340–1341.

  • Bernassau, J. M., and M. Fetizon. 1975. An improved method for the degradation of the lanosterol side chain. Synthesis 12: 795–796.

    Article  Google Scholar 

  • Bjorndal, H., K.-E. Eriksson, P. J. Garegg, B. Lindberg, and B. Swan. 1965. Studies on the xylan from the red seaweedRhodymenia palmata. Acta. Chem. Scand. 19: 2309–2315.

    Google Scholar 

  • Bjornland, T., and M. Aguilar-Martinez. 1976. Carotenoids in red algae. Phytochemistry 5: 291–296.

    Article  Google Scholar 

  • Black, W. A. P. 1958. The algae.In Processed Plant Protein Foodstuffs, A. M. Altschul, ed. pp. 805–827. Academic Press, New York.

    Google Scholar 

  • —, W. R. Blakemore, J. A. Colquhoun, and E. T. Dewar. 1965. The evaluation of some red marine algae as a source of carrageenan and of its κ- and λ-components. J. Sci. Food Agric. 16: 573–585.

    PubMed  CAS  Article  Google Scholar 

  • —, and F. N. Woodward. 1957. The value of seaweeds in animal feedingstuffs as a source of minerals, trace elements, and vitamins. Empire J. Exp. Agric. 25: 51–59.

    Google Scholar 

  • Bowen, H. J. M. 1956. Strontium and barium in seawater and marine organisms. J. Mar. Biol. Assoc. U. K. 35: 451–460.

    CAS  Google Scholar 

  • Brown, F. 1953. The occurrence of δ-tocopherol in seaweed. Chem. Ind. (London): 174.

  • Buchecker, R., S. Liaaen-Jensen, and C. H. Eugster. 1976. Reinvestigation of original taraxanthin samples. Helv. Chim. Acta 59: 1360–1364.

    CAS  Article  Google Scholar 

  • Butler, M. R. 1931. Comparison of the chemical composition of some marine algae. Pl. Physiol. 6: 295–305.

    CAS  Google Scholar 

  • Butters, F. K. 1899. Observations onRhodymenia. Minnesota Bot. Stud. II: 205–213.

    Google Scholar 

  • Cameron, A. T. 1915. Contributions to the biochemistry of iodine. II. The distribution of iodine in plant and animal tissues. J. Biol. Chem. 23: 1–39.

    CAS  Google Scholar 

  • Cerezo, A. S., A. Lezerovich, and R. Labriola. 1971. A xylan from the red seaweedChaetangium fastigiatum. Carbohydr. Res. 19: 289–296.

    CAS  Article  Google Scholar 

  • Channing, D. M., and G. T. Young. 1953. Amino acids and peptides. Part X. The nitrogenous constituents of some marine algae. J. Chem. Soc. (London): 2481–2491.

  • Chapman, A. R. O., and J. S. Craigie. 1977. Seasonal growth inLaminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. (Berlin) 40: 197–205.

    CAS  Article  Google Scholar 

  • Chapman, V. J. 1970. Seaweeds and Their Uses. Methuen, London.

  • Chaumont, J. P. 1978. Variations de la teneur en composes azotés duRhodymenia palmata Grev. Bot. Mar. 21: 23–29.

    CAS  Google Scholar 

  • Chuecas, L., and J. P. Riley. 1966. The component fatty acids of some seaweed fats. J. Mar. Biol. Assoc. U. K. 46: 153–159.

    CAS  Google Scholar 

  • Citharel, J. 1966. Recherches sur les constituants azotés des algues marines. Les acides aminés libres. Compt. Rend. Hebd. Séances Acad. Sci. 262: 1495–1497.

    CAS  Google Scholar 

  • —, and S. Villeret. 1964. Recherche sur le métabolisme azoté de quelques algues marines des Côtes Bretonnes. Proc. Int. Seaweed Symp. 4: 291–300.

    Google Scholar 

  • Clark, R. C, {jrJr.}, and M. Blumer. 1967. Distribution of n-paraffins in marine organisms and sediments. Limnol. Oceanogr. 12: 79–87.

    CAS  Google Scholar 

  • Colin, H., and E. Guéguen. 1930. La constitution du principe sucre deRhodymenia palmata. Compt. Rend. Hebd. Séances Acad. Sei. 191: 163–164.

    CAS  Google Scholar 

  • Coulson, C. B. 1953a. Amino acids of marine algae. Chem. Ind. (London): 971–972.

  • -. 1953b. Proteins of marine algae. Chem. Ind. (London): 997–998.

  • —. 1955. Plant proteins. V. Proteins and amino-acids of marine algae. J. Sci. Food Agric. 6: 674–682.

    CAS  Article  Google Scholar 

  • Craigie, J. S., J. McLachlan, and R. D. Tocher. 1968. Some neutral constituents of the Rhodophyceae with special reference to the occurrence of the floridosides. Canad. J. Bot. 46: 605–611.

    CAS  Google Scholar 

  • Creac’h, P., and J. Baraud. 1954. L’acide ascorbique total dans les algues marines. Compt. Rend. Séances Soc. Biol. Fil. 148: 105–107.

    CAS  Google Scholar 

  • Cronshaw, J., A. Myers, and R. D. Preston. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim. Biophys. Acta 27: 89–103.

    PubMed  CAS  Article  Google Scholar 

  • Culkin, F., and J. P. Riley. 1958. The occurrence of gallium in marine organisms. J. Mar. Biol. Assoc. U. K. 37: 607–615.

    CAS  Google Scholar 

  • DaSilva, E., and A. Jensen. 1973. Benthic marine and blue-green algal species as a source of choline. J. Sci. Food Agric. 24: 855–861.

    PubMed  CAS  Article  Google Scholar 

  • Dawson, E. Y. 1966. Marine Botany. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Dixon, P. S. 1973. Biology of Rhodophyta. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    CAS  Article  Google Scholar 

  • Edelstein, T., L. Chen, and J. McLachlan. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby Neck Peninsula, Bay of Fundy. Canad. J. Bot. 48: 621–629.

    Google Scholar 

  • Ericson, L.-E. 1953. Further studies on growth factors forStreptococcus faecalis andLeuconostoc citrovorum in marine algae. Ark. Kemi 6: 503–510.

    CAS  Google Scholar 

  • —, and L. Lewis. 1953. On the occurrence of vitamin B12-factors in marine algae. Ark. Kemi 6: 427–442.

    CAS  Google Scholar 

  • Farlow, W. G. 1891. The Marine Algae of New England. Rep. U.S. Commissioner Fish and Fisheries. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Ferezou, J. P., M. Devys, J. P. Allais, and M. Barbier. 1974. Sur le sterol à 26 atomes de carbone de l’algue rougeRhodymenia palmata. Phytochemistry 13: 593–598.

    CAS  Article  Google Scholar 

  • Ffrench, R. A. 1974.Rhodymenia palmata. An appraisal of the dulse industry. Atlantic Regional Laboratory Technical Report, National Research Council of Canada.

  • Fuller, S. W., and A. C. Mathieson. 1972. Ecological studies of economic red algae. IV. Variations of carrageenan concentration and properties inChondrus crispus Stackhouse. J. Exp. Mar. Biol. Ecol. 10: 49–58.

    CAS  Article  Google Scholar 

  • Gibbons, G. F., L. J. Goad, and T. W. Goodwin. 1967. The sterols of some marine red algae. Phytochemistry 6: 677–683.

    Article  Google Scholar 

  • Goodwin, T. W. 1974. Sterols.In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 266–280. Univ. California Press, Berkeley.

    Google Scholar 

  • Guiry, M. D. 1974. A preliminary consideration of the taxonomic position ofPalmaria palmata (L.) Stackhouse =Rhodymenia palmata (L.) Greville. J. Mar. Biol. Assoc. U. K. 54: 509–528.

    Article  Google Scholar 

  • —. 1975. An assessment ofPalmaria palmata formamollis (S. et G.) comb. nov. (=Rhodymenia palmata formamollis S. et G.) in the eastern North Pacific. Syesis 8: 245–261.

    Google Scholar 

  • Hallsson, S. V. 1964. The uses of seaweeds in Iceland.In C. R. IV Congrès Int. Algues Marines, Biarritz 1961, D. DeVirville and J. Feldmann, ed. pp. 398–405. Pergamon Press, Oxford.

    Google Scholar 

  • Haug, A., and B. Larsen. 1956a. Carotene content of some Norwegian seaweeds, and observations on the breakdown of carotene in seaweeds and seaweed meal. Proc. Int. Seaweed Symp. 2: 16–22.

    Google Scholar 

  • —. 1956b. Carotene breakdown inRhodymenia palmata (L.) Grev. Acta Chem. Scand. 10: 472–474.

    CAS  Google Scholar 

  • —. 1957. Carotene content of seaweed and seaweed meal. Norweg. Inst. Seaweed Res. 19: 1–19.

    Google Scholar 

  • Hay, G. U. 1886. Marine algae of the Maritime Provinces. Bull. Nat. Hist. Soc. 1: 62–68.

    Google Scholar 

  • Heilbron, I. M., E. G. Parry, and R. F. Phipers. 1935. The algae. II. The relationship between certain algal constituents. Biochem. J. 29: 1376–1381.

    PubMed  CAS  Google Scholar 

  • Heinz Company. 1956. Nutritional Data. Pittsburgh, Pennsylvania.

  • Henry, M.-H. 1949. Contribution à la recherche des glucides solubles et des lipides chez les Floridées. Rev. Gén. Bot. 56: 352–363.

    Google Scholar 

  • Hilditch, T. P., and P. M. Williams. 1964. The Chemical Composition of Natural Fats. Chapman and Hall, London.

    Google Scholar 

  • Howard, B. H. 1957. Hydrolysis of the soluble pentosans of wheat flour andRhodymenia palmata by ruminai micro-organisms. Biochem. J. 67: 643–651.

    PubMed  CAS  Google Scholar 

  • Hpygaard, A., and H. W. Rasmussen. 1939. Vitamin C sources in Eskimo food. Nature 143: 943.

    Article  Google Scholar 

  • Idler, D. R., and B. Atkinson. 1976. Seasonal variation in the desmosterol content of dulse(Rhodymenia palmata) from Newfoundland waters. Comp. Biochem. Physiol. B. 53: 517–519.

    PubMed  CAS  Article  Google Scholar 

  • —, A. Saito, and P. Wiseman. 1968. Sterols in red algae (Rhodophyceae). Steroids 11: 465–473.

    PubMed  CAS  Article  Google Scholar 

  • —, and P. Wiseman. 1970. Sterols in red algae (Rhodophyceae): variation in the desmosterol content of dulse(Rhodymenia palmata). Comp. Biochem. Physiol. 35: 679–687.

    CAS  Article  Google Scholar 

  • Igelsrud, I., T. G. Thompson, and B. M. G. Zwicker. 1938. The boron content of sea water and of marine organisms. Amer. J. Sci. 35: 47–63.

    CAS  Article  Google Scholar 

  • Jensen, A. 1969. Tocopherol content of seaweed and seaweed meal. 1. Analytical methods and distribution of tocopherols in benthic algae. J. Sci. Food Agric. 20: 449–453.

    CAS  Article  Google Scholar 

  • Johnston, H. W. 1966. The biological and economic importance of algae, Part 2. Tuatara 14: 30–63.

    Google Scholar 

  • Kanazawa, A., A. Saito, and D. R. Idler. 1966. Vitamins B in dulse(Rhodymenia palmata). J. Fish. Res. Board Canada 23: 915–916.

    Google Scholar 

  • Kingsbury, J. M. 1969. Seaweeds of Cape Cod and the Islands. Chatham Press, Chatham, Massachusetts.

    Google Scholar 

  • Kuceva, L. S., and V. N. Bukin. 1957. Morskie vodorosli i sapropeli kak istocniki vitamina B12. Dokl. Akad. Nauk SSSR 115: 765–767.

    Google Scholar 

  • Kylin, H. 1918. Weitere Beiträge zur Biochemie der Meeresalgen. Hoppe-Seyler’s Z. Physiol. Chem. 101: 236–247.

    CAS  Google Scholar 

  • Larsen, B. 1958. The influence of season, habitat and age of tissue on the niacin content of some brown algae. Norweg. Inst. Seaweed Res. 19: 1–13.

    Google Scholar 

  • —. 1961. The biotin content of marine algae. Norweg. Inst. Seaweed Res. 26: 1–18.

    Google Scholar 

  • —, and A. Haug. 1956. Carotene isomers in some red algae. Acta Chem. Scand. 10: 470–472.

    CAS  Google Scholar 

  • —, and W. W. Hawkins. 1961. Nutritional value as protein of some of the nitrogenous constituents of two marine algae,Chondrus crispus andLaminaria digitata. J. Sci. Food Agric. 12: 523–529.

    CAS  Article  Google Scholar 

  • Laur, M.-H. 1961. Application de la Chromatographie en phase gazeuse à l’étude des acides gras des Rhodophycées. Compt. Rend. Hebd. Séances Acad. Sci. 253: 966–968.

    CAS  Google Scholar 

  • Laycock, M. V., A. G. Mclnnes, and K. C. Morgan. 1979. D-homocysteic acid inPalmaria palmata. Phytochemistry 18: 1220.

    CAS  Article  Google Scholar 

  • -. 1979. Unpublished data.

  • Levring, T., H. A. Hoppe, and O. J. Schmid. 1969. Marine Algae. A Survey of Research and Utilization. Cram, De Gruyter, Hamburg.

    Google Scholar 

  • Lovern, J. A. 1936. Fat metabolism in fishes. IX. The fats of some aquatic plants. Biochem. J. 30: 387–390.

    PubMed  CAS  Google Scholar 

  • Lunde, G. 1970. Analysis of trace elements in seaweed. J. Sci. Food Agric. 21: 416–418.

    PubMed  CAS  Article  Google Scholar 

  • —, and J. Lie. 1938. Vitamin C in Meeresalgen. Hoppe-Seyler's Z. Physiol. Chem. 254: 227–240.

    CAS  Google Scholar 

  • Lundin, H., and L.-E. Ericson. 1955. On the occurrence of vitamins in marine algae. Proc. Int. Seaweed Symp. 2: 39–43.

    Google Scholar 

  • Lyman, C. M., K. A. Kuiken, and F. Hale. 1956. Essential amino acid content of farm feeds. J. Agric. Food Chem. 4: 1008–1013.

    CAS  Article  Google Scholar 

  • MacFarlane, I. 1968. The cultivation of seaweeds in Japan and its possible application in the Atlantic Provinces of Canada. Industrial Development Service, 20. Department Fish. Canada.

    Google Scholar 

  • Mackie, I. M., and E. Percival. 1959. The constitution of xylan from the green seaweedCaulerpa filiformis. J. Chem. Soc. (London): 1151–1156.

  • Mackie, W., and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides.In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 40–85. Univ. California Press, Berkeley.

    Google Scholar 

  • MacPherson, M. G., and E. G. Young. 1949. The chemical composition of marine algae. Canad. J. Res. Sect. C. Bot. Sci. 27: 73–77.

    Google Scholar 

  • MacRobbie, E. A. C., and J. Dainty. 1958. Sodium and potassium distribution and transport in the seaweedRhodymenia palmata (L.) Grev. Physiol. Pl. 11: 782–801.

    CAS  Article  Google Scholar 

  • Madiener, J. C. 1977. The Seavegetable Book. Crown Publ., New York.

    Google Scholar 

  • Manners, D. J., and J. P. Mitchell. 1963. The fine-structure ofRhodymenia palmata xylan. Biochem. J. 89: 92P-93P.

    Google Scholar 

  • Mathieson, A. C., and E. Tveter. 1975. Carrageenan ecology ofChondrus crispas Stackhouse. Aquat. Bot. 1: 25–43.

    CAS  Article  Google Scholar 

  • —. 1976. Carrageenan ecology ofGigartina stellata (Stackhouse) Batters. Aquat. Bot. 2: 353–361.

    CAS  Article  Google Scholar 

  • Mauchline, J., and W. L. Templeton. 1966. Strontium, calcium and barium in marine organisms from the Irish Sea. J. Cons. Cons. Int. Explor. Mer 30: 161–170.

    Google Scholar 

  • Meeuse, B. J. D., M. Andries, and J. A. Wood. 1960. Floridean starch. J. Exp. Bot. 11: 129–140.

    CAS  Article  Google Scholar 

  • Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen, insbesondre in Derivaten der Adenylsäure. Hoppe-Seyler’s Z. Physiol. Chem. 258: 117–120.

    CAS  Google Scholar 

  • Meunier, H., S. Zelenski, and L. Worthen. 1970. Comparison of the sterol content of certain Rhodophyta.In Proc. Second Conference Food-drugs from the Sea, 1969, H. W. Youngken, ed. pp. 319–325. Marine Technol. Soc, Washington, D.C.

    Google Scholar 

  • Morgan, K. C, P. F. Shacklock, and F. J. Simpson. 1979. Unpublished data.

  • Morisaki, M., S. Kidooka, and N. Ikekawa. 1976. Studies on steroids. XXXIX. Sterol profiles of red algae. Chem. Pharm. Bull. (Tokyo) 24: 3214–3216.

    CAS  Google Scholar 

  • —, J. Rubio-Lightbourn, and N. Ikekawa. 1972. Synthesis of active forms of vitamin D. I. A facile synthesis of 25-hydroxycholesterol. Chem. Pharm. Bull. (Tokyo) 21: 457–458.

    Google Scholar 

  • Munda, I. 1972. On the chemical composition, distribution and ecology of some common benthic marine algae from Iceland. Bot. Mar. 15: 1–45.

    CAS  Article  Google Scholar 

  • Munda, I. M., and F. Gubensek. 1976. The amino acid composition of some common marine algae from Iceland. Bot. Mar. 19: 85–92.

    CAS  Google Scholar 

  • Myers, A., and R. D. Preston. 1959. Fine structure in the red algae. II. The structure of the cell wall ofRhodymenia palmata. Proc. Roy. Soc. London, Series B, Biol. Sci. 150: 447–455.

    CAS  Google Scholar 

  • Naylor, G. L., and B. Russell-Wells. 1934. On the presence of cellulose and its distribution in the cell-walls of brown and red algae. Ann. Bot. (London) 48: 635–641.

    CAS  Google Scholar 

  • Neish, A. C., P. F. Shacklock, C. H. Fox, and F. J. Simpson. 1977. The cultivation ofChondrus crispus. Factors affecting growth under greenhouse conditions. Canad. J. Bot. 55: 2263–2271.

    CAS  Google Scholar 

  • Neish, I. C. 1976. Role of mariculture in the Canadian seaweed industry. J. Fish. Res. Board Canada 33: 1007–1014.

    Google Scholar 

  • Ocean Science Associates. 1972. A technological development program for dulse cultivation on Grand Manan Island, New Brunswick. Final Report. New Brunswick Department Fish. Environ. Fredericton, New Brunwsick.

    Google Scholar 

  • O’hEocha, C. 1960. Chemical studies of phycoerythrins and phycocyanins.In Comparative Biochemistry of Photoreactive Systems, M. B. Allen, ed. pp. 181–203. Academic Press, New York.

    Google Scholar 

  • —. 1962. Phycobilins.In Physiology and Biochemistry of Algae, R. A. Lewin, ed. pp. 421–435. Academic Press, New York.

    Google Scholar 

  • Owen, E. C. 1954. The carotene, carotenoid and chlorophyll contents of some Scottish seaweeds. J. Sci. Food Agric. 5: 449–453.

    CAS  Article  Google Scholar 

  • Pálsson, P. A., and H. Grimsson. 1953. Demyelination in lambs from ewes which feed on seaweeds. Proc. Soc. Exp. Biol. Med. 83: 518–520.

    PubMed  Google Scholar 

  • Partridge, J. J., S. Faber, and M. R. Uskokovic. 1974. Vitamin D3 metabolites I. Synthesis of 25-hydroxycholesterol. Helv. Chim. Acta 57: 764–771.

    PubMed  CAS  Article  Google Scholar 

  • Percival, E. G. V., and S. K. Chanda. 1950. The xylan ofRhodymenia palmata. Nature 166: 787–788.

    PubMed  CAS  Article  Google Scholar 

  • Percival, E., and R. H. McDowell. 1967. Chemistry and Enzymology of Marine Algal Polysaccharides. Academic Press, New York.

    Google Scholar 

  • Putman, E. W., and W. Z. Hassid. 1954. Structure of galactosylglycerol fromIridaea laminarioides. Biochem. J. 79: 7–12.

    Google Scholar 

  • Reppert, W. 1973. Final report: Seaweeds development. New Brunswick Department Fish. Environ. Caraquet, New Brunswick.

    Google Scholar 

  • Ross, A. G. 1953. Some typical analyses of red seaweeds. J. Sci. Food Agric. 4: 333–335.

    CAS  Article  Google Scholar 

  • Schachat, R. E., and M. Glicksman. 1959. Some lesser-known seaweed extracts.In Industrial Gums, Polysaccharides and their Derivatives. R. L. Whistler and J. N. Be Miller, ed. pp. 135–191. Academic Press, New York.

    Google Scholar 

  • Schlicting, H., and M. E. Purdom. 1969.Rhodymenia palmata periphyton; protein and amino acids. Proc. Int. Seaweed Symp. 6: 589–594.

    Google Scholar 

  • Schmidt-Nielsen, S., and L. Hammer. 1932. Über den hohen Furfurolge-halt vonRhodymenia palmata. Kgl. Norske Videnskab. Selskab. Forh. 5: 158–161.

    CAS  Google Scholar 

  • Scott, R. 1954. Observations on the iodo-amino-acids of marine algae using iodine-131. Nature 173: 1098–1099.

    CAS  Article  Google Scholar 

  • —, and L.-E. Ericson. 1955. Some aspects of cobalt metabolism byRhodymenia palmata with particular reference to vitamin B12 content. J. Exp. Bot. 6: 348–361.

    CAS  Article  Google Scholar 

  • Seybold, A., and K. Egle. 1938. Quantitative investigations of the chlorophyll and carotenoids of sea algae. Jahrb. Wiss. Bot. 86: 50–80.

    CAS  Google Scholar 

  • Smith, D. G., and E. G. Young. 1952. On the nitrogenous constituents of algae. Proc. Int. Seaweed Symp. 1: 54–59.

    Google Scholar 

  • —. 1955. The combined amino acids in several species of marine algae. J. Biochem. 217: 845–853.

    CAS  Google Scholar 

  • Strohal, P., and T. Pinter. 1973. Thorium in water and algae from the Adriatic Sea. Limnol. Oceanogr. 18: 250–253.

    CAS  Article  Google Scholar 

  • Sturgeon, R. J. 1973. Determination of the degree of polymerization of xylans. Carbohydr. Res. 30: 175–178.

    CAS  Article  Google Scholar 

  • Swartz, M. D. 1911. Nutrition investigations on the carobhydrates of lichens, algae and related substances. Trans. Connecticut Acad. Arts Sci. 16: 247–382.

    Google Scholar 

  • Turvey, J. R., and E. L. Williams. 1970. The structures of some xylans from red algae. Phytochemistry 9: 2383–2388.

    CAS  Article  Google Scholar 

  • van der Velde, H. H. 1973a. The use of phycoerythrin absorption spectra in the classification of red algae. Acta Bot. Neerl. 22: 92–99.

    Google Scholar 

  • —. 1973b. The natural occurrence in red algae of two phycoerythrins with different molecular weights and spectral properties. Biochim. Biophys. Acta 303: 246–257.

    PubMed  Google Scholar 

  • Vinogradov, A. P. 1953. The Elementary Chemical Composition of Marine Organisms. Memoir #2, Sears Foundation for Marine Research. Yale Univ., New Haven, Connecticut.

    Google Scholar 

  • Waaland, J. R., S. D. Waaland, and G. Bates. 1974. Chloroplast structure and pigment composition in the red algaGriffithsia pacifica: regulation by light intensity. J. Phycol. 10: 193–199.

    Google Scholar 

  • Wagner, H., and P. Pohl. 1966. Fatty acid biosynthesis and evolution in plant and animal organisms. Phytochemistry 5: 903–920.

    CAS  Article  Google Scholar 

  • Wood, B. J. B. 1974. Fatty acids and saponifiable lipids. Bot. Monogr. 10: 236–265.

    CAS  Google Scholar 

  • World Health Organization. 1965. Protein requirements. WHO Tech. Rep. Ser. 301.

  • Wright, J. L. C. 1979. Unpublished data.

  • Young, E. G. 1948. Chemistry of seaweed extracts and their uses. Conf. Utilization of Seaweeds, Halifax, 1948. National Research Council of Canada.

  • —. 1964. The concentration of nucleic acids in some common marine algae. Canad. J. Bot. 42: 1471–1479.

    CAS  Article  Google Scholar 

  • —. 1966. The chemical nature of the insoluble residue after severe extraction in some Rhodophyceae and Phaeophyceae. Proc. Int. Seaweed Symp. 5: 337–346.

    Google Scholar 

  • —. 1970. A comparison of the soluble proteins in various species of algae by disc electrophoresis in polyacrylamide gels. Phytochemistry 9: 2167–2174.

    CAS  Article  Google Scholar 

  • —, and W. M. Langille. 1958. The occurrence of inorganic elements in marine algae of the Atlantic provinces of Canada. Canad. J. Bot. 36: 301–310.

    CAS  Google Scholar 

  • Youngblood, W. W., M. Blumer, R. L. Guillard, and F. Fiore. 1971. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. (Berlin) 8: 190–201.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgan, K.C., Wright, J.L.C. & Simpson, F.J. Review of chemical constituents of the red algaPalmaria palmata (dulse). Econ Bot 34, 27–50 (1980). https://doi.org/10.1007/BF02859553

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02859553

Keywords

  • Carotenoid
  • Economic Botany
  • Carotene
  • Marine Alga
  • Desmosterol