Economic Botany

, Volume 34, Issue 1, pp 27–50 | Cite as

Review of chemical constituents of the red algaPalmaria palmata (dulse)

  • Keith C. Morgan
  • Jeffrey L. C. Wright
  • F. J. Simpson


The data reported in the literature and recent analyses of the composition ofPalmaria palmata (Rhodymenia palmata) are compiled and discussed. The reported values have a relatively wide spread ranging from 73–89% moisture and, on a dry weight basis, 12–37% ash, 8–35% crude protein, 38–74% carbohydrate and 0.2–3.8% lipid. Some of the variation can be attributed to seasonal and nutritional conditions.P. palmata has potassium, chlorine and sodium as its major mineral constituents and, in comparison to terrestrial fruits and vegetables, is a good source of iron, magnesium, calcium and iodine. Vitamin A (as carotene) and, in the fresh plant, vitamin C, are present in appreciable amounts.P. palmata is potentially a high protein food source, and its protein quality rates well with vegetables of good nutritional value. The major polysaccharide is a ß-(l → 3) and ß-(l →4) linked xylan.P. palmata is a natural source of desmosterol.


Carotenoid Economic Botany Carotene Marine Alga Desmosterol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ackman, R. G. 1964. Structural homogeneity in unsalinated fatty acids of marine lipids: A review. J. Fish. Res. Board Canada 21: 247–254.Google Scholar
  2. —, and J. McLachlan. 1977. Fatty acids in some Nova Scotian marine seaweeds: a survey for octadecapentaenoic and other biochemically novel fatty acids. Proc. Nova Scotian Inst. Sci. 28: 47–64.Google Scholar
  3. Alcaide, A., M. Devys, and M. Barbier. 1968. Remarques sur les stérols des algues rouges. Phytochemistry 7: 329–330.CrossRefGoogle Scholar
  4. André, S. 1971. Destinée des iodures fixés chez diverses algues marines et caractérisation des acides aminés iodés dans les hydrolysates. Compt. Rend. Séances Soc. Biol. Fil. 165: 2293–2298.Google Scholar
  5. Ann. Rep. Inst. Seaweed Res. 1954. Inveresk, Scotland. p. 44.Google Scholar
  6. -. 1956. Inveresk, Scotland. p. 23.Google Scholar
  7. -. 1963. Inveresk, Scotland. p. 23.Google Scholar
  8. Barry, V. C., and T. Dillon. 1940. Occurrence of xylans in marine algae. Nature 146: 620.CrossRefGoogle Scholar
  9. —, B. Hawkins, and P. O’Colla. 1950. The xylan ofRhodymenia palmata. Nature 166: 788.CrossRefGoogle Scholar
  10. -, J. E. McCormic, and P. W. D. Mitchell. 1954. Properties of periodate-oxidized polysaccharides. III. Estimation of α-glycol groupings in a polysaccharide. J. Chem. Soc. (London): 3692–3696.Google Scholar
  11. Bender, A. E., D. S. Miller, E. J. Tunnah, and W. A. P. Black. 1953. Biological value of algal proteins. Chem. Ind. (London): 1340–1341.Google Scholar
  12. Bernassau, J. M., and M. Fetizon. 1975. An improved method for the degradation of the lanosterol side chain. Synthesis 12: 795–796.CrossRefGoogle Scholar
  13. Bjorndal, H., K.-E. Eriksson, P. J. Garegg, B. Lindberg, and B. Swan. 1965. Studies on the xylan from the red seaweedRhodymenia palmata. Acta. Chem. Scand. 19: 2309–2315.Google Scholar
  14. Bjornland, T., and M. Aguilar-Martinez. 1976. Carotenoids in red algae. Phytochemistry 5: 291–296.CrossRefGoogle Scholar
  15. Black, W. A. P. 1958. The algae.In Processed Plant Protein Foodstuffs, A. M. Altschul, ed. pp. 805–827. Academic Press, New York.Google Scholar
  16. —, W. R. Blakemore, J. A. Colquhoun, and E. T. Dewar. 1965. The evaluation of some red marine algae as a source of carrageenan and of its κ- and λ-components. J. Sci. Food Agric. 16: 573–585.PubMedCrossRefGoogle Scholar
  17. —, and F. N. Woodward. 1957. The value of seaweeds in animal feedingstuffs as a source of minerals, trace elements, and vitamins. Empire J. Exp. Agric. 25: 51–59.Google Scholar
  18. Bowen, H. J. M. 1956. Strontium and barium in seawater and marine organisms. J. Mar. Biol. Assoc. U. K. 35: 451–460.Google Scholar
  19. Brown, F. 1953. The occurrence of δ-tocopherol in seaweed. Chem. Ind. (London): 174.Google Scholar
  20. Buchecker, R., S. Liaaen-Jensen, and C. H. Eugster. 1976. Reinvestigation of original taraxanthin samples. Helv. Chim. Acta 59: 1360–1364.CrossRefGoogle Scholar
  21. Butler, M. R. 1931. Comparison of the chemical composition of some marine algae. Pl. Physiol. 6: 295–305.Google Scholar
  22. Butters, F. K. 1899. Observations onRhodymenia. Minnesota Bot. Stud. II: 205–213.Google Scholar
  23. Cameron, A. T. 1915. Contributions to the biochemistry of iodine. II. The distribution of iodine in plant and animal tissues. J. Biol. Chem. 23: 1–39.Google Scholar
  24. Cerezo, A. S., A. Lezerovich, and R. Labriola. 1971. A xylan from the red seaweedChaetangium fastigiatum. Carbohydr. Res. 19: 289–296.CrossRefGoogle Scholar
  25. Channing, D. M., and G. T. Young. 1953. Amino acids and peptides. Part X. The nitrogenous constituents of some marine algae. J. Chem. Soc. (London): 2481–2491.Google Scholar
  26. Chapman, A. R. O., and J. S. Craigie. 1977. Seasonal growth inLaminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. (Berlin) 40: 197–205.CrossRefGoogle Scholar
  27. Chapman, V. J. 1970. Seaweeds and Their Uses. Methuen, London.Google Scholar
  28. Chaumont, J. P. 1978. Variations de la teneur en composes azotés duRhodymenia palmata Grev. Bot. Mar. 21: 23–29.Google Scholar
  29. Chuecas, L., and J. P. Riley. 1966. The component fatty acids of some seaweed fats. J. Mar. Biol. Assoc. U. K. 46: 153–159.Google Scholar
  30. Citharel, J. 1966. Recherches sur les constituants azotés des algues marines. Les acides aminés libres. Compt. Rend. Hebd. Séances Acad. Sci. 262: 1495–1497.Google Scholar
  31. —, and S. Villeret. 1964. Recherche sur le métabolisme azoté de quelques algues marines des Côtes Bretonnes. Proc. Int. Seaweed Symp. 4: 291–300.Google Scholar
  32. Clark, R. C, {jrJr.}, and M. Blumer. 1967. Distribution of n-paraffins in marine organisms and sediments. Limnol. Oceanogr. 12: 79–87.Google Scholar
  33. Colin, H., and E. Guéguen. 1930. La constitution du principe sucre deRhodymenia palmata. Compt. Rend. Hebd. Séances Acad. Sei. 191: 163–164.Google Scholar
  34. Coulson, C. B. 1953a. Amino acids of marine algae. Chem. Ind. (London): 971–972.Google Scholar
  35. -. 1953b. Proteins of marine algae. Chem. Ind. (London): 997–998.Google Scholar
  36. —. 1955. Plant proteins. V. Proteins and amino-acids of marine algae. J. Sci. Food Agric. 6: 674–682.CrossRefGoogle Scholar
  37. Craigie, J. S., J. McLachlan, and R. D. Tocher. 1968. Some neutral constituents of the Rhodophyceae with special reference to the occurrence of the floridosides. Canad. J. Bot. 46: 605–611.Google Scholar
  38. Creac’h, P., and J. Baraud. 1954. L’acide ascorbique total dans les algues marines. Compt. Rend. Séances Soc. Biol. Fil. 148: 105–107.Google Scholar
  39. Cronshaw, J., A. Myers, and R. D. Preston. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim. Biophys. Acta 27: 89–103.PubMedCrossRefGoogle Scholar
  40. Culkin, F., and J. P. Riley. 1958. The occurrence of gallium in marine organisms. J. Mar. Biol. Assoc. U. K. 37: 607–615.Google Scholar
  41. DaSilva, E., and A. Jensen. 1973. Benthic marine and blue-green algal species as a source of choline. J. Sci. Food Agric. 24: 855–861.PubMedCrossRefGoogle Scholar
  42. Dawson, E. Y. 1966. Marine Botany. Holt, Rinehart and Winston, New York.Google Scholar
  43. Dixon, P. S. 1973. Biology of Rhodophyta. Oliver and Boyd, Edinburgh.Google Scholar
  44. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  45. Edelstein, T., L. Chen, and J. McLachlan. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby Neck Peninsula, Bay of Fundy. Canad. J. Bot. 48: 621–629.Google Scholar
  46. Ericson, L.-E. 1953. Further studies on growth factors forStreptococcus faecalis andLeuconostoc citrovorum in marine algae. Ark. Kemi 6: 503–510.Google Scholar
  47. —, and L. Lewis. 1953. On the occurrence of vitamin B12-factors in marine algae. Ark. Kemi 6: 427–442.Google Scholar
  48. Farlow, W. G. 1891. The Marine Algae of New England. Rep. U.S. Commissioner Fish and Fisheries. Government Printing Office, Washington, D.C.Google Scholar
  49. Ferezou, J. P., M. Devys, J. P. Allais, and M. Barbier. 1974. Sur le sterol à 26 atomes de carbone de l’algue rougeRhodymenia palmata. Phytochemistry 13: 593–598.CrossRefGoogle Scholar
  50. Ffrench, R. A. 1974.Rhodymenia palmata. An appraisal of the dulse industry. Atlantic Regional Laboratory Technical Report, National Research Council of Canada.Google Scholar
  51. Fuller, S. W., and A. C. Mathieson. 1972. Ecological studies of economic red algae. IV. Variations of carrageenan concentration and properties inChondrus crispus Stackhouse. J. Exp. Mar. Biol. Ecol. 10: 49–58.CrossRefGoogle Scholar
  52. Gibbons, G. F., L. J. Goad, and T. W. Goodwin. 1967. The sterols of some marine red algae. Phytochemistry 6: 677–683.CrossRefGoogle Scholar
  53. Goodwin, T. W. 1974. Sterols.In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 266–280. Univ. California Press, Berkeley.Google Scholar
  54. Guiry, M. D. 1974. A preliminary consideration of the taxonomic position ofPalmaria palmata (L.) Stackhouse =Rhodymenia palmata (L.) Greville. J. Mar. Biol. Assoc. U. K. 54: 509–528.CrossRefGoogle Scholar
  55. —. 1975. An assessment ofPalmaria palmata formamollis (S. et G.) comb. nov. (=Rhodymenia palmata formamollis S. et G.) in the eastern North Pacific. Syesis 8: 245–261.Google Scholar
  56. Hallsson, S. V. 1964. The uses of seaweeds in Iceland.In C. R. IV Congrès Int. Algues Marines, Biarritz 1961, D. DeVirville and J. Feldmann, ed. pp. 398–405. Pergamon Press, Oxford.Google Scholar
  57. Haug, A., and B. Larsen. 1956a. Carotene content of some Norwegian seaweeds, and observations on the breakdown of carotene in seaweeds and seaweed meal. Proc. Int. Seaweed Symp. 2: 16–22.Google Scholar
  58. —. 1956b. Carotene breakdown inRhodymenia palmata (L.) Grev. Acta Chem. Scand. 10: 472–474.Google Scholar
  59. —. 1957. Carotene content of seaweed and seaweed meal. Norweg. Inst. Seaweed Res. 19: 1–19.Google Scholar
  60. Hay, G. U. 1886. Marine algae of the Maritime Provinces. Bull. Nat. Hist. Soc. 1: 62–68.Google Scholar
  61. Heilbron, I. M., E. G. Parry, and R. F. Phipers. 1935. The algae. II. The relationship between certain algal constituents. Biochem. J. 29: 1376–1381.PubMedGoogle Scholar
  62. Heinz Company. 1956. Nutritional Data. Pittsburgh, Pennsylvania.Google Scholar
  63. Henry, M.-H. 1949. Contribution à la recherche des glucides solubles et des lipides chez les Floridées. Rev. Gén. Bot. 56: 352–363.Google Scholar
  64. Hilditch, T. P., and P. M. Williams. 1964. The Chemical Composition of Natural Fats. Chapman and Hall, London.Google Scholar
  65. Howard, B. H. 1957. Hydrolysis of the soluble pentosans of wheat flour andRhodymenia palmata by ruminai micro-organisms. Biochem. J. 67: 643–651.PubMedGoogle Scholar
  66. Hpygaard, A., and H. W. Rasmussen. 1939. Vitamin C sources in Eskimo food. Nature 143: 943.CrossRefGoogle Scholar
  67. Idler, D. R., and B. Atkinson. 1976. Seasonal variation in the desmosterol content of dulse(Rhodymenia palmata) from Newfoundland waters. Comp. Biochem. Physiol. B. 53: 517–519.PubMedCrossRefGoogle Scholar
  68. —, A. Saito, and P. Wiseman. 1968. Sterols in red algae (Rhodophyceae). Steroids 11: 465–473.PubMedCrossRefGoogle Scholar
  69. —, and P. Wiseman. 1970. Sterols in red algae (Rhodophyceae): variation in the desmosterol content of dulse(Rhodymenia palmata). Comp. Biochem. Physiol. 35: 679–687.CrossRefGoogle Scholar
  70. Igelsrud, I., T. G. Thompson, and B. M. G. Zwicker. 1938. The boron content of sea water and of marine organisms. Amer. J. Sci. 35: 47–63.CrossRefGoogle Scholar
  71. Jensen, A. 1969. Tocopherol content of seaweed and seaweed meal. 1. Analytical methods and distribution of tocopherols in benthic algae. J. Sci. Food Agric. 20: 449–453.CrossRefGoogle Scholar
  72. Johnston, H. W. 1966. The biological and economic importance of algae, Part 2. Tuatara 14: 30–63.Google Scholar
  73. Kanazawa, A., A. Saito, and D. R. Idler. 1966. Vitamins B in dulse(Rhodymenia palmata). J. Fish. Res. Board Canada 23: 915–916.Google Scholar
  74. Kingsbury, J. M. 1969. Seaweeds of Cape Cod and the Islands. Chatham Press, Chatham, Massachusetts.Google Scholar
  75. Kuceva, L. S., and V. N. Bukin. 1957. Morskie vodorosli i sapropeli kak istocniki vitamina B12. Dokl. Akad. Nauk SSSR 115: 765–767.Google Scholar
  76. Kylin, H. 1918. Weitere Beiträge zur Biochemie der Meeresalgen. Hoppe-Seyler’s Z. Physiol. Chem. 101: 236–247.Google Scholar
  77. Larsen, B. 1958. The influence of season, habitat and age of tissue on the niacin content of some brown algae. Norweg. Inst. Seaweed Res. 19: 1–13.Google Scholar
  78. —. 1961. The biotin content of marine algae. Norweg. Inst. Seaweed Res. 26: 1–18.Google Scholar
  79. —, and A. Haug. 1956. Carotene isomers in some red algae. Acta Chem. Scand. 10: 470–472.Google Scholar
  80. —, and W. W. Hawkins. 1961. Nutritional value as protein of some of the nitrogenous constituents of two marine algae,Chondrus crispus andLaminaria digitata. J. Sci. Food Agric. 12: 523–529.CrossRefGoogle Scholar
  81. Laur, M.-H. 1961. Application de la Chromatographie en phase gazeuse à l’étude des acides gras des Rhodophycées. Compt. Rend. Hebd. Séances Acad. Sci. 253: 966–968.Google Scholar
  82. Laycock, M. V., A. G. Mclnnes, and K. C. Morgan. 1979. D-homocysteic acid inPalmaria palmata. Phytochemistry 18: 1220.CrossRefGoogle Scholar
  83. -. 1979. Unpublished data.Google Scholar
  84. Levring, T., H. A. Hoppe, and O. J. Schmid. 1969. Marine Algae. A Survey of Research and Utilization. Cram, De Gruyter, Hamburg.Google Scholar
  85. Lovern, J. A. 1936. Fat metabolism in fishes. IX. The fats of some aquatic plants. Biochem. J. 30: 387–390.PubMedGoogle Scholar
  86. Lunde, G. 1970. Analysis of trace elements in seaweed. J. Sci. Food Agric. 21: 416–418.PubMedCrossRefGoogle Scholar
  87. —, and J. Lie. 1938. Vitamin C in Meeresalgen. Hoppe-Seyler's Z. Physiol. Chem. 254: 227–240.Google Scholar
  88. Lundin, H., and L.-E. Ericson. 1955. On the occurrence of vitamins in marine algae. Proc. Int. Seaweed Symp. 2: 39–43.Google Scholar
  89. Lyman, C. M., K. A. Kuiken, and F. Hale. 1956. Essential amino acid content of farm feeds. J. Agric. Food Chem. 4: 1008–1013.CrossRefGoogle Scholar
  90. MacFarlane, I. 1968. The cultivation of seaweeds in Japan and its possible application in the Atlantic Provinces of Canada. Industrial Development Service, 20. Department Fish. Canada.Google Scholar
  91. Mackie, I. M., and E. Percival. 1959. The constitution of xylan from the green seaweedCaulerpa filiformis. J. Chem. Soc. (London): 1151–1156.Google Scholar
  92. Mackie, W., and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides.In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 40–85. Univ. California Press, Berkeley.Google Scholar
  93. MacPherson, M. G., and E. G. Young. 1949. The chemical composition of marine algae. Canad. J. Res. Sect. C. Bot. Sci. 27: 73–77.Google Scholar
  94. MacRobbie, E. A. C., and J. Dainty. 1958. Sodium and potassium distribution and transport in the seaweedRhodymenia palmata (L.) Grev. Physiol. Pl. 11: 782–801.CrossRefGoogle Scholar
  95. Madiener, J. C. 1977. The Seavegetable Book. Crown Publ., New York.Google Scholar
  96. Manners, D. J., and J. P. Mitchell. 1963. The fine-structure ofRhodymenia palmata xylan. Biochem. J. 89: 92P-93P.Google Scholar
  97. Mathieson, A. C., and E. Tveter. 1975. Carrageenan ecology ofChondrus crispas Stackhouse. Aquat. Bot. 1: 25–43.CrossRefGoogle Scholar
  98. —. 1976. Carrageenan ecology ofGigartina stellata (Stackhouse) Batters. Aquat. Bot. 2: 353–361.CrossRefGoogle Scholar
  99. Mauchline, J., and W. L. Templeton. 1966. Strontium, calcium and barium in marine organisms from the Irish Sea. J. Cons. Cons. Int. Explor. Mer 30: 161–170.Google Scholar
  100. Meeuse, B. J. D., M. Andries, and J. A. Wood. 1960. Floridean starch. J. Exp. Bot. 11: 129–140.CrossRefGoogle Scholar
  101. Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen, insbesondre in Derivaten der Adenylsäure. Hoppe-Seyler’s Z. Physiol. Chem. 258: 117–120.Google Scholar
  102. Meunier, H., S. Zelenski, and L. Worthen. 1970. Comparison of the sterol content of certain Rhodophyta.In Proc. Second Conference Food-drugs from the Sea, 1969, H. W. Youngken, ed. pp. 319–325. Marine Technol. Soc, Washington, D.C.Google Scholar
  103. Morgan, K. C, P. F. Shacklock, and F. J. Simpson. 1979. Unpublished data.Google Scholar
  104. Morisaki, M., S. Kidooka, and N. Ikekawa. 1976. Studies on steroids. XXXIX. Sterol profiles of red algae. Chem. Pharm. Bull. (Tokyo) 24: 3214–3216.Google Scholar
  105. —, J. Rubio-Lightbourn, and N. Ikekawa. 1972. Synthesis of active forms of vitamin D. I. A facile synthesis of 25-hydroxycholesterol. Chem. Pharm. Bull. (Tokyo) 21: 457–458.Google Scholar
  106. Munda, I. 1972. On the chemical composition, distribution and ecology of some common benthic marine algae from Iceland. Bot. Mar. 15: 1–45.CrossRefGoogle Scholar
  107. Munda, I. M., and F. Gubensek. 1976. The amino acid composition of some common marine algae from Iceland. Bot. Mar. 19: 85–92.Google Scholar
  108. Myers, A., and R. D. Preston. 1959. Fine structure in the red algae. II. The structure of the cell wall ofRhodymenia palmata. Proc. Roy. Soc. London, Series B, Biol. Sci. 150: 447–455.Google Scholar
  109. Naylor, G. L., and B. Russell-Wells. 1934. On the presence of cellulose and its distribution in the cell-walls of brown and red algae. Ann. Bot. (London) 48: 635–641.Google Scholar
  110. Neish, A. C., P. F. Shacklock, C. H. Fox, and F. J. Simpson. 1977. The cultivation ofChondrus crispus. Factors affecting growth under greenhouse conditions. Canad. J. Bot. 55: 2263–2271.Google Scholar
  111. Neish, I. C. 1976. Role of mariculture in the Canadian seaweed industry. J. Fish. Res. Board Canada 33: 1007–1014.Google Scholar
  112. Ocean Science Associates. 1972. A technological development program for dulse cultivation on Grand Manan Island, New Brunswick. Final Report. New Brunswick Department Fish. Environ. Fredericton, New Brunwsick.Google Scholar
  113. O’hEocha, C. 1960. Chemical studies of phycoerythrins and phycocyanins.In Comparative Biochemistry of Photoreactive Systems, M. B. Allen, ed. pp. 181–203. Academic Press, New York.Google Scholar
  114. —. 1962. Phycobilins.In Physiology and Biochemistry of Algae, R. A. Lewin, ed. pp. 421–435. Academic Press, New York.Google Scholar
  115. Owen, E. C. 1954. The carotene, carotenoid and chlorophyll contents of some Scottish seaweeds. J. Sci. Food Agric. 5: 449–453.CrossRefGoogle Scholar
  116. Pálsson, P. A., and H. Grimsson. 1953. Demyelination in lambs from ewes which feed on seaweeds. Proc. Soc. Exp. Biol. Med. 83: 518–520.PubMedGoogle Scholar
  117. Partridge, J. J., S. Faber, and M. R. Uskokovic. 1974. Vitamin D3 metabolites I. Synthesis of 25-hydroxycholesterol. Helv. Chim. Acta 57: 764–771.PubMedCrossRefGoogle Scholar
  118. Percival, E. G. V., and S. K. Chanda. 1950. The xylan ofRhodymenia palmata. Nature 166: 787–788.PubMedCrossRefGoogle Scholar
  119. Percival, E., and R. H. McDowell. 1967. Chemistry and Enzymology of Marine Algal Polysaccharides. Academic Press, New York.Google Scholar
  120. Putman, E. W., and W. Z. Hassid. 1954. Structure of galactosylglycerol fromIridaea laminarioides. Biochem. J. 79: 7–12.Google Scholar
  121. Reppert, W. 1973. Final report: Seaweeds development. New Brunswick Department Fish. Environ. Caraquet, New Brunswick.Google Scholar
  122. Ross, A. G. 1953. Some typical analyses of red seaweeds. J. Sci. Food Agric. 4: 333–335.CrossRefGoogle Scholar
  123. Schachat, R. E., and M. Glicksman. 1959. Some lesser-known seaweed extracts.In Industrial Gums, Polysaccharides and their Derivatives. R. L. Whistler and J. N. Be Miller, ed. pp. 135–191. Academic Press, New York.Google Scholar
  124. Schlicting, H., and M. E. Purdom. 1969.Rhodymenia palmata periphyton; protein and amino acids. Proc. Int. Seaweed Symp. 6: 589–594.Google Scholar
  125. Schmidt-Nielsen, S., and L. Hammer. 1932. Über den hohen Furfurolge-halt vonRhodymenia palmata. Kgl. Norske Videnskab. Selskab. Forh. 5: 158–161.Google Scholar
  126. Scott, R. 1954. Observations on the iodo-amino-acids of marine algae using iodine-131. Nature 173: 1098–1099.CrossRefGoogle Scholar
  127. —, and L.-E. Ericson. 1955. Some aspects of cobalt metabolism byRhodymenia palmata with particular reference to vitamin B12 content. J. Exp. Bot. 6: 348–361.CrossRefGoogle Scholar
  128. Seybold, A., and K. Egle. 1938. Quantitative investigations of the chlorophyll and carotenoids of sea algae. Jahrb. Wiss. Bot. 86: 50–80.Google Scholar
  129. Smith, D. G., and E. G. Young. 1952. On the nitrogenous constituents of algae. Proc. Int. Seaweed Symp. 1: 54–59.Google Scholar
  130. —. 1955. The combined amino acids in several species of marine algae. J. Biochem. 217: 845–853.Google Scholar
  131. Strohal, P., and T. Pinter. 1973. Thorium in water and algae from the Adriatic Sea. Limnol. Oceanogr. 18: 250–253.CrossRefGoogle Scholar
  132. Sturgeon, R. J. 1973. Determination of the degree of polymerization of xylans. Carbohydr. Res. 30: 175–178.CrossRefGoogle Scholar
  133. Swartz, M. D. 1911. Nutrition investigations on the carobhydrates of lichens, algae and related substances. Trans. Connecticut Acad. Arts Sci. 16: 247–382.Google Scholar
  134. Turvey, J. R., and E. L. Williams. 1970. The structures of some xylans from red algae. Phytochemistry 9: 2383–2388.CrossRefGoogle Scholar
  135. van der Velde, H. H. 1973a. The use of phycoerythrin absorption spectra in the classification of red algae. Acta Bot. Neerl. 22: 92–99.Google Scholar
  136. —. 1973b. The natural occurrence in red algae of two phycoerythrins with different molecular weights and spectral properties. Biochim. Biophys. Acta 303: 246–257.PubMedGoogle Scholar
  137. Vinogradov, A. P. 1953. The Elementary Chemical Composition of Marine Organisms. Memoir #2, Sears Foundation for Marine Research. Yale Univ., New Haven, Connecticut.Google Scholar
  138. Waaland, J. R., S. D. Waaland, and G. Bates. 1974. Chloroplast structure and pigment composition in the red algaGriffithsia pacifica: regulation by light intensity. J. Phycol. 10: 193–199.Google Scholar
  139. Wagner, H., and P. Pohl. 1966. Fatty acid biosynthesis and evolution in plant and animal organisms. Phytochemistry 5: 903–920.CrossRefGoogle Scholar
  140. Wood, B. J. B. 1974. Fatty acids and saponifiable lipids. Bot. Monogr. 10: 236–265.Google Scholar
  141. World Health Organization. 1965. Protein requirements. WHO Tech. Rep. Ser. 301.Google Scholar
  142. Wright, J. L. C. 1979. Unpublished data.Google Scholar
  143. Young, E. G. 1948. Chemistry of seaweed extracts and their uses. Conf. Utilization of Seaweeds, Halifax, 1948. National Research Council of Canada.Google Scholar
  144. —. 1964. The concentration of nucleic acids in some common marine algae. Canad. J. Bot. 42: 1471–1479.CrossRefGoogle Scholar
  145. —. 1966. The chemical nature of the insoluble residue after severe extraction in some Rhodophyceae and Phaeophyceae. Proc. Int. Seaweed Symp. 5: 337–346.Google Scholar
  146. —. 1970. A comparison of the soluble proteins in various species of algae by disc electrophoresis in polyacrylamide gels. Phytochemistry 9: 2167–2174.CrossRefGoogle Scholar
  147. —, and W. M. Langille. 1958. The occurrence of inorganic elements in marine algae of the Atlantic provinces of Canada. Canad. J. Bot. 36: 301–310.Google Scholar
  148. Youngblood, W. W., M. Blumer, R. L. Guillard, and F. Fiore. 1971. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. (Berlin) 8: 190–201.CrossRefGoogle Scholar

Copyright information

© New York Botanical Garden, Bronx, NY 10458 1980

Authors and Affiliations

  • Keith C. Morgan
  • Jeffrey L. C. Wright
  • F. J. Simpson
    • 1
  1. 1.Atlantic Regional LaboratoryNational Research Council of CanadaHalifax

Personalised recommendations