Skip to main content
Log in

Excised root culture

  • Published:
The Botanical Review Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  • Abbott, A. J. 1963. The growth and development of excised roots in relation to trace element deficiencies. Ph.D. Thesis, Univ. Bristol.

    Google Scholar 

  • Åberg, B. 1957. Auxin relations in roots. Ann. Rev. Plant Physiol.8: 153–180.

    Article  Google Scholar 

  • Addicott, F. T., andDevirian, P. S. 1939. A second growth factor for excised pea roots—nicotinic acid. Amer. Jour. Bot.26: 667–671.

    Article  CAS  Google Scholar 

  • Almestrand, A. 1949. Studies on the growth of isolated roots of barley and oats. Physiol. Plant.2: 372–387.

    Article  Google Scholar 

  • —. 1950a. Further studies on the growth of isolated roots of barley and oats. Physiol. Plant.3: 205–224.

    Article  Google Scholar 

  • —. 1950b. Growth factor requirements of isolated wheat roots. Physiol. Plant.3: 293–299.

    Article  Google Scholar 

  • — 1957. Growth and metabolism of isolated cereal roots. Physiol. Plant.10: 521–620.

    Article  CAS  Google Scholar 

  • Audus, L. J. 1959. Plant Growth Substances. 2nd ed. Leonard Hill, London.

    Google Scholar 

  • Bachelard, E. P., andStowe, B. B. 1963. Growth in vitro of roots ofAcer rubrum L. andEucalyptus canaldulensis, Dehn. Physiol. Plant.16: 20–30.

    Article  CAS  Google Scholar 

  • Ball, E. 1955. Studies of the nutrition of the callus culture ofSequoia sempervirens. Année Biol.31: 80–105.

    Google Scholar 

  • Barnes, R. L., andNaylor, A. W. 1959a. In vitro culture of pine roots and the use ofPinus serotina roots in metabolic studies. Forest Sci.5: 158–168.

    Google Scholar 

  • —— 1959b. Effect of various nitrogen sources on growth of isolated roots ofPinus serotina. Physiol. Plant.12: 82–89.

    Article  Google Scholar 

  • Bausá Alcalde, M. 1953. Sobre el cultivo in vitro de raices aisladas de berenjema. Farmacognosia13: 33.

    Google Scholar 

  • — 1961. Sobre el cultivo in vitro de raices aisladas deAndrocymbium gramineum (Cav.) McBride. Farmacognosia21: 71–96.

    PubMed  Google Scholar 

  • Boll, W. G. 1954. Studies on the growth of excised roots. V. Growth of excised roots of two inbred lines of tomato and their reciprocal crosses in media supplemented with various growth factors. New Phytol.53: 406–429.

    Article  Google Scholar 

  • — 1959. Evidence for negative feedback in the control of ethanolamine biosynthesis in excised tomato roots. Canad. Jour. Bot.37: 1071–1083.

    CAS  Google Scholar 

  • —, andStreet, H. E. 1951. Studies on the growth of excised roots. I. The stimulatory effect of molybdenum and copper on the growth of excised tomato roots. New Phytol.50: 52–75.

    Article  CAS  Google Scholar 

  • Bonner, J. 1940. On the growth factor requirements of isolated roots. Amer. Jour. Bot.27: 692–701.

    Article  CAS  Google Scholar 

  • — 1942a. Culture of isolated roots ofAcacia melanoxylon. Bull. Torrey Bot. Club69: 130–132.

    Article  Google Scholar 

  • — 1942b. Riboflavin in isolated roots. Bot. Gaz.103: 581–585.

    Article  CAS  Google Scholar 

  • — 1943. Further experiments on the nutrition of isolated tomato roots. Bull. Torrey Bot. Club70: 184–189.

    Article  CAS  Google Scholar 

  • —, andAddicott, F. 1937. Cultivation in vitro of excised pea roots. Bot. Gaz.99: 144–170.

    Article  CAS  Google Scholar 

  • —, andBonner, H. 1948. The B vitamins as plant hormones. Vitam. & Horm.6: 225–275.

    Article  CAS  Google Scholar 

  • —, andDevirian, P. S. 1939. Growth factor requirements of four species of isolated roots. Amer. Jour. Bot.26: 661–665.

    Article  CAS  Google Scholar 

  • —, andKoepfli, J. B. 1939. The inhibition of root growth by auxins. Amer. Jour. Bot.26: 557–565.

    Article  CAS  Google Scholar 

  • Börner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev.26: 393–424.

    Article  Google Scholar 

  • Boysen-Jensen, P. 1936. Growth Hormones in Plants. New York. [Trans. revised by G. S. Avery Jr. and P. K. Burkholder.]

  • Brakke, M. K., andNickell, L. G. 1951. Secretion of α-amylase byRumex virus tumors in vitro. Properties and assay. Arch. Biochem. & Biophys.32: 28–41.

    Article  CAS  Google Scholar 

  • Braun, A. C., andWood, H. N. 1962. On the activation of certain essential biosynthetic systems in cells ofVinca rosea, L. Proc. Nat. Acad. Sci. [Wash.]48: 1776–1782.

    Article  CAS  Google Scholar 

  • Brown, R. 1959. The regulation of growth and differentiation in the root. IV Int. Cong. Biochem. Proc. Symp. Vol.6: 77–94.

    Google Scholar 

  • —, andBroadbent, D. 1950. The development of cells in the growing zones of the root. Jour. Exp. Bot.1: 249–263.

    Article  Google Scholar 

  • —, andPossingham, J. V. 1957. Iron deficiency and the growth of pea roots. Proc. Roy. Soc. B.147: 145–166.

    CAS  Google Scholar 

  • —, andRickless, P. 1949. A new method for the study of cell division and cell extension with some preliminary observations on the effect of temperature and of nutrients. Proc. Roy. Soc. B.136: 110–125.

    Article  CAS  Google Scholar 

  • -,Brown, R., andRobinson, E. 1955. Cellular differentiation and the development of enzyme proteins in plant.In: Butler, E. G. [ed.] Biological Specificity and Growth. Princeton Univ. Press: 93–118.

  • Burkholder, P. R., andNickell, L. G. 1949. Atypical growth in plants. I. Cultivation of virus tumors ofRumex on nutrient agar. Bot. Gaz.110: 426–437.

    Article  CAS  Google Scholar 

  • Burström, H. 1941a. On formative effects of carbohydrate on root growth. Bot. Not. 310.

  • — 1941b. Studies on the carbohydrate nutrition of roots. Lantbr-Högsk. Ann.9: 264.

    Google Scholar 

  • — 1942. The influence of heteroauxins on cell growth and development. LantbrHögsk. Ann.10: 209–240.

    Google Scholar 

  • — 1948. Observations on the influence of galactose on wheat roots. Physiol. Plant.1: 209–215.

    Article  Google Scholar 

  • — 1954. Studies on growth and metabolism of roots. IX. The influence of auxin and coumarin derivatives on the cell wall. Physiol. Plant.7: 548–559.

    Article  Google Scholar 

  • — 1955. Zur Wirkungswerse chemischer Regulatoren des Wurzelwachstums. Bot. Not.108: 400–416.

    Google Scholar 

  • Butcher, D. N. 1963. The presence of gibberellins in excised tomato roots. Jour. Exp. Bot.14: 272–280.

    Article  CAS  Google Scholar 

  • —, andStreet, H. E. 1960a. The effects of gibberellins on the growth of excised tomato roots. Jour. Exp. Bot.11: 206–216.

    Article  CAS  Google Scholar 

  • —— 1960b. Effects of kinetin on the growth of excised tomato roots. Physiol. Plant.13: 46–55.

    Article  CAS  Google Scholar 

  • Butler, G. W., Ferguson, J. D., andAllison, R. M. 1961. The biosynthesis of allantoin inSymphytum. Physiol. Plant.14: 310–321.

    Article  CAS  Google Scholar 

  • Carter, J. E., andStreet, H. E. 1963. Studies on the growth in culture of excised wheat roots. IV. The activation of DL-tryptophane by autoclaving. Physiol. Plant.16: 347–358.

    Article  CAS  Google Scholar 

  • Chapman, H. W. 1956. Continuous growth of excised potato root tips. Amer. Jour. Bot.43: 468–471.

    Article  CAS  Google Scholar 

  • Charles, H. P. 1959. Studies on the growth of excised roots. VII. The effects of 2-naphthoxyacetic acid on excised roots from four strains of groundsel. New Phytol.58: 81–84.

    Article  CAS  Google Scholar 

  • — andStreet, H. E. 1959. Studies on the growth of excised roots. VI. The effects of certain amino acids and auxins on the growth of excised groundsel roots. New Phytol.58: 75–80.

    Article  CAS  Google Scholar 

  • Christiansen, G. S., andThimann, K. V. 1950. The metabolism of stem tissue during growth and its inhibition. I. Carbohydrates. Arch. Biochem.26: 230–247.

    PubMed  CAS  Google Scholar 

  • Damodaran, M. andSivaramakrishnan, P. M. 1937. New sources of urease for determination of urea. Biochem. Jour.31: 1041–1046.

    CAS  Google Scholar 

  • Danckwardt-Lillieström, C. 1957. Kinetin-induced shoot formation from isolated roots ofIsatis tinctoria. Physiol. Plant.10: 794–797.

    Article  Google Scholar 

  • David, S. B. 1954. Studies on the nutrition of excised roots ofMedicago saliva, L. Ph.D. Thesis, Univ. Manchester.

    Google Scholar 

  • — 1958. Studies on the amino acid nutrition of excised roots ofMedicago saliva, L. Modern Developments in Plant Physiology. Dept. Botany, Delhi, 90.

    Google Scholar 

  • Dawson, J. R. O. 1958. Studies on the comparative physiology of excised roots derived from strains of red clover,Trifolium pratense, L. Ph.D. Thesis, Univ. Wales.

    Google Scholar 

  • — andStreet, H. E. 1959a. The behaviour in culture of excised root clones of the ‘Dorset Marlgrass’ strain of red clover,Trifolium fratense, L. Bot. Gaz.120: 217–227.

    Article  CAS  Google Scholar 

  • —— 1959b. The growth responses of a clone of excised roots of the ‘Dorset Marlgrass’ strain of red clover,Trifolium pratense L. Bot. Gaz.120: 227.

    Article  CAS  Google Scholar 

  • Dawson, R. F. 1942. Nicotine synthesis in excised tobacco roots. Amer. Jour. Bot.29: 813–815.

    Article  CAS  Google Scholar 

  • Day, D. 1943. Growth of excised tomato roots in agar with thiamine plus pyridoxine, nicotinamide or glycine. Amer. Jour. Bot.30: 150–156.

    Article  CAS  Google Scholar 

  • Delarge, L. 1941. Étude de la croissance et de la ramification des racines in vitro. Arch. Inst. Bot. Univ. Liége17: 1–29.

    Google Scholar 

  • Derbyshire, E., andStreet, H. E. 1964. Studies of the growth in culture of excised wheat roots. V. The influence of light on nitrate uptake and assimilation. Physiol. Plant.17: 107–118.

    Article  CAS  Google Scholar 

  • Dormer, K. J., andStreet, H. E. 1948. Secondary thickening in excised tomato roots. Nature [London]161: 483.

    Article  Google Scholar 

  • —— 1949. The carbohydrate nutrition of tomato roots. Ann. Bot.13: 199–217.

    CAS  Google Scholar 

  • Duhamet, L. 1939. Action de l’hétéro-auxine sur la croissance de racines isolées deLupinus albus. Comp. Rend. Acad. Sci. [Paris]208: 1838–1840.

    CAS  Google Scholar 

  • Eagle, H. 1959. The growth requirement and metabolic activities of human and animal cells in culture. IV Int. Cong. Biochem. Proc. Symp. VI. 1–19.

  • Ferguson, J. D. 1963. Continuous culture of excised wheat roots. Physiol. Plant.16: 585–595.

    Article  CAS  Google Scholar 

  • —,Street, H. E., andDavid, S. B. 1958a. The carbohydrate nutrition of tomato roots. V. The promotion and inhibition of excised root growth by various sugars and sugar alcohols. Ann. Bot.22: 513–524.

    CAS  Google Scholar 

  • ——— 1958b. The carbohydrate nutrition of tomato roots. VI. The inhibition of excised root growth by galactose and mannose and its reversal by dextrose and xylose. Ann Bot.22: 525–538.

    CAS  Google Scholar 

  • Fiedler, H. 1936. Entwicklungs- und reizphysiologische Untersuchungen an Kulturen isolierter Wurzelspitzen. Zeits. Bot.30: 385–436.

    CAS  Google Scholar 

  • Fosse, R. 1916. Origine et distribution de l’urée dans la nature. Ann. Chim. N.S.6: 198.

    Google Scholar 

  • Fridhandler, L., andQuastel, J. H. 1955. Absorption of amino acids from isolated surviving intestine. Arch. Biochem. & Biophys.56: 424–440.

    Article  CAS  Google Scholar 

  • Fries, N. 1951. The influence of amino acids on growth and lateral root formation in cotyledonless pea seedlings. Experientia7: 378–379.

    Article  PubMed  CAS  Google Scholar 

  • — 1954. Chemical factors controlling the growth of the decotylised pea seedling. Symb. Bot. Upsal.13: 1–83.

    Google Scholar 

  • —, andForsman, B. 1951. Quantitative determination of certain nucleic acid derivatives in pea root exudate. Physiol. Plant.4: 410–420.

    Article  Google Scholar 

  • Fujiwara, A., andOjima, H. 1954. Physiological studies of plant roots. I. Influence of some environmental conditions on the growth of isolated roots of the rice plant and wheat. Tohoku Jour. Agr. Res.5: 53–61.

    CAS  Google Scholar 

  • Gauch, H. G. andDuggar, W. M. 1953. The role of boron in the translocation of sucrose. Plant. Physiol.28: 457–466.

    PubMed  CAS  Google Scholar 

  • -, and -, 1954. The physiological action of boron in higher plants: a review and interpretation. Bull. Md. Agr. Exp. Sta. A80 (Technical).

  • Gautheret, R. J. 1933. Culture de meristems de racines deZea mays. Comp. Rend. Acad. Sci. [Paris]197: 85–87.

    Google Scholar 

  • — 1935. Recherches sur la culture des tissus végétaux: Essais de culture de quelques tissus méristematiques. Thèse. Univ. Paris.

    Google Scholar 

  • — 1939. Sur la possibilité de reáliser la culture indefinie des tissus de tubercules de carotte. Comp. Rend. Acad. Sci. [Paris]208: 118–121.

    Google Scholar 

  • — 1945. La Culture de Tissus. Gallimard, Paris.

    Google Scholar 

  • Gladstone, G. P. 1939. Inter-relationships between amino acids in the nutrition ofB. anthracis. Brit. Jour. Exp. Path.20: 189–200.

    CAS  Google Scholar 

  • Goldacre, P. L. 1959. Potentiation of lateral root induction by root initials in isolated flax roots. Aust. Jour. Biol. Sci.12: 388–394.

    CAS  Google Scholar 

  • —, andUnt, H. 1961. The cultivation of isolated roots of subterranean clover and effects of amino acids on their growth. Austral. Jour. Biol. Sci.14: 323–335.

    CAS  Google Scholar 

  • Goldsworthy, A. 1964. Studies in the carbohydrate metabolism of excised roots. Ph.D. Thesis, Univ. Wales.

    Google Scholar 

  • Goodwin, R. H., andStepka, W. 1945. Growth and differentiation in root tip ofPhleum pratense. Amer. Jour. Bot.32: 36–46.

    Article  Google Scholar 

  • Goris, A. 1947. Hydration de fragments de tubercules de Carotte et de Topinambour cultivés in vitro sur milieux dépourves de sucres. Influence de l’acide indole-3-acetique. Comp. Rend. Séanc. Soc. Biol.141: 1205–1207.

    CAS  Google Scholar 

  • — 1948a. Épuisement des reserves glucidiques de souches de tissus et de fragments de tubercules de Carotte maintenus in vitro sur milieux depourvus de sucres. Comp. Rend. Acad. Sci. [Paris]226: 105–107.

    CAS  Google Scholar 

  • — 1948b. Épuisement des réserves glucidiques de fragments de tubercules de Topinambour cultivés in vitro sur milieux dépourvus de sucres: influence de l’acide indole-3-acetique. Comp. Rend. Acad. Sci. [Paris]226: 742–744.

    CAS  Google Scholar 

  • — 1954. Transformation glucidiques intratissulaires. Année Biol.30: 297–318.

    Google Scholar 

  • Hannay, J. W., andButcher, D. N. 1961. An ageing process in excised roots of groundsel (Senecio vulgaris L.) New Phytol.60: 9–20.

    Article  CAS  Google Scholar 

  • —,Fletcher, B. H., andStreet, H. E. 1959. Studies on the growth of excised roots. IX. The effects of other nutrient ions upon the growth of excised tomato roots supplied with various nitrogen sources. New Phytol.58: 142–154.

    Article  Google Scholar 

  • —, andStreet, H. E. 1954. Studies on the growth of excised roots. III. The molybdenum and manganese requirement of excised tomato roots. New Phytol.53: 68–80.

    Article  Google Scholar 

  • Harland, S. C., andSkinner, J. C. 1954. Genetic aspects of excised roots inSenecio vulgaris L. Atti IX Cong. Int. Genet. Caryologia (Suppl): 719–724.

  • Harris, G. P. 1956. Amino acids as sources of nitrogen for the growth of isolated oat embryos. New Phytol.55: 253–268.

    Article  CAS  Google Scholar 

  • — 1959. Amino acids as nitrogen sources for the growth of excised roots of red clover. New Phytol.58: 330–344.

    Article  CAS  Google Scholar 

  • Heimsch, C. 1960. A new aspect of cortical development in roots. Amer. Jour. Bot.47: 195–201.

    Article  Google Scholar 

  • Heller, R. 1953. Recherches sur la nutrition minérale des tissus végétaux cultivés in vitro. Ann. Sci. Nat. Bot. et Biol. Veg. II: 1–225.

  • Henderson, J. H. M., andStauffer, F. F. 1944. The influence of some respiratory inhibitors and intermediates on growth and respiration of excised tomato roots. Amer. Jour. Bot.31: 528–535.

    Article  CAS  Google Scholar 

  • Hewitt, E. J. 1957. Some aspects of micronutrient element metabolism in plants. Nature [London]180: 1020–1022.

    Article  CAS  Google Scholar 

  • Heyes, J. K. 1960. Nucleic acid changes during cell expansion in the root. Proc. Roy. Soc. B.152: 218–230.

    CAS  Google Scholar 

  • Hoagland, D. R. 1919. Relation of concentration and reaction of the nutrient medium to the growth and absorption of the plant. Jour. Agr. Res.18: 73.

    CAS  Google Scholar 

  • Hughes, E. W. D., andStreet, H. E. 1960. Effects of inhibitory concentrations of 3-indolylacetic acid and 3-indolylacetonitrile on cell division and tissue differentiation in excised tomato roots. Jour. Exp. Bot.11: 198–205.

    Article  CAS  Google Scholar 

  • Isikawa, H. 1956. Eine präliminäre Mitteilung über das Wachstum der isolierten Wurzeln vonPinus densiflora undPinus Thunbergn. Jour. Jap. For. Soc.38: 5–7.

    Google Scholar 

  • Kandler, O. 1951. Papierchromatographischer Nachweis der aminosauren-ausscheidung in vitro kultivierter Maiswurzeln. Zeits. Naturf.66: 437–445.

    Google Scholar 

  • —, andEberle, G. 1955. Über den Einfluss von α-Parachlorphenoxy-isobuttersäure auf den Stoffwechsel in vitro kultivierter Maizwurzeln. Phyton5: 31–45.

    CAS  Google Scholar 

  • —, andVieregg, A. 1953. Über den Einfluss von β-Indolylessigsaure auf den Stoffwechsel in vitro kulturierter Maizwurzeln und Spargelsprosse. Planta41: 613–641.

    Article  CAS  Google Scholar 

  • Knop, W. 1865. Quantitative Untersuchungen über die Ernahrungsprocesse der Pflanzen. Landw. Versta.7: 93.

    Google Scholar 

  • Knudson, L. 1915. Toxicity of galactose for certain of the higher plants. Ann. Mo. Bot. Garden.2: 659–666.

    Article  CAS  Google Scholar 

  • — 1917. The toxicity of galactose and mannose for green plants and the antagonistic action of sugars towards these. Amer. Jour. Bot.4: 430–437.

    Article  CAS  Google Scholar 

  • — 1925. Physiological study of the symbiotic germination of orchid seeds. Bot. Gaz.79: 345–379.

    Article  CAS  Google Scholar 

  • Kotte, W. 1922a. Wurzelmeristem in Gewebekultur. Ber. Deut. Bot. Ges.40: 269–272.

    Google Scholar 

  • — 1922b. Kulturversuche mit isolierten Wurzelspitzen. Beitr. Allg. Bot.2: 413–434.

    Google Scholar 

  • Lahiri, A. N., andAudus, L. J. 1960. Growth substances in the roots ofVicia faba. Jour. Exp. Bot.11: 341–350.

    Article  CAS  Google Scholar 

  • —— 1961. Growth substances in the roots ofVicia faba. II. The effects of ageing and excision of the main tap root meristem. Jour. Exp. Bot.12: 364–367.

    Article  CAS  Google Scholar 

  • Lampton, R. K. 1952. Developmental and experimental morphology of the ovule ofAsimina triloba. Dunal. Thesis, Univ. Michigan.

    Google Scholar 

  • Lee, A. E. 1958. Comparative growth of excised tomato roots of clones carrying dwarf and normal alleles. Amer. Jour. Bot.45: 744–748.

    Article  Google Scholar 

  • — 1959. The effect of various substances on the comparative growth of excised tomato clones carrying dwarf and normal alleles. Amer. Jour. Bot.46: 16–21.

    Article  CAS  Google Scholar 

  • Leopold, A. C. andGuernsey, F. S. 1953. Auxin polarity in theColeus Plant. Bot. Gaz.115: 147–154.

    Article  CAS  Google Scholar 

  • Lioret, C. 1955. Recherches sur le métabolisme des cultures de tissus normaux et pathologiques. Année Biol.31: 185–194.

    Google Scholar 

  • Lipetz, J., andGalston, A. W. 1959. Indole acetic acid oxidase and peroxidase activities in normal and crown gall tissue cultures ofParthenocissus tricuspidata. Amer. Jour. Bot.46: 193–196.

    Article  CAS  Google Scholar 

  • Loening, U. E. 1962. Messenger ribonucleic acid in pea seedlings. Nature [London]195: 467–469.

    Article  CAS  Google Scholar 

  • Lundegårdh, H., andStenlid, G. 1944. On the oxidation of nucleotides and flavonone from living roots. Ark. Bot.31A: 1–27.

    Google Scholar 

  • Lyttleton, J. W. 1960. Stabilisation by manganese ions of ribosomes from embryonic plant tissue. Nature [London]187: 1026–1027.

    Article  CAS  Google Scholar 

  • Malyschev, N. 1932. Das Wachstum des isolierten Wurzelmeristems auf sterilen Nährböden. Biol. Zentralbl.52: 257–265.

    Google Scholar 

  • Martin, G. J. 1951. Biological Antagonism. The Blackiston Co., New York.

    Google Scholar 

  • Mazé, P. 1915. Determination des elements mineraux rares necessaires au development du mais. Comp. Rend. Acad. Sci. [Paris]160: 211.

    Google Scholar 

  • McClary, J. E. 1940. Synthesis of thiamin by excised roots of maize. Proc. Nat. Acad. Sci. [Wash.]26: 581–587.

    Article  CAS  Google Scholar 

  • McGregor, S. M., andStreet, H. E. 1953. The carbohydrate nutrition of tomato roots. IV. The nature and distribution of acid phosphatases. Ann. Bot. [London]17: 385–394.

    CAS  Google Scholar 

  • Meister, A. 1957. The Biochemistry of Amino Acids. Academic Press, New York.

    Google Scholar 

  • Melhuish, F. M. 1962. Aspects of the amino acid metabolism of roots. Ph. D. Thesis, Univ. Wales.

    Google Scholar 

  • Melin, E. 1954. Growth factor requirements of mycorrhizal fungi of forest trees. Svensk. bot. Tidskr.48: 86–94.

    CAS  Google Scholar 

  • —, andDas, V. S. R. 1954. Influence of root-metabolites on the growth of the mycorrhizal fungi. Physiol. Plant.7: 851–858.

    Article  Google Scholar 

  • Moreno, C. L. 1951. El cultivo de raices aisladas deAtropa belladonna L. como método en la investigacion de la genesis de sus alkaloides. Farmacognosia11: 1–126.

    PubMed  CAS  Google Scholar 

  • Morgan, D. R., andStreet, H. E. 1959. The carbohydrate nutrition of tomato roots. VII. Sugars, sugar phosphates and sugar alcohols as respiratory substrates for excised roots. Ann. Bot. [London]23: 89–105.

    Google Scholar 

  • Myers, J. W., andAdelberg, E. A. 1954. The biosynthesis of isoleucine and valine. I. Enzymic transformation of the dihydroxy acid precursors to the keto acid precursors. Proc. Nat. Acad. Sci. [Wash.]40: 493–499.

    Article  CAS  Google Scholar 

  • Naylor, A. W., andRappaport, B. N. 1950. Studies on the growth factor requirements of pea roots. Physiol. Plant.3: 315–333.

    Article  Google Scholar 

  • Neales, T. F. 1959. The boron requirement of flax roots grown in sterile culture. Jour. Exp. Bot.10: 426–436.

    Article  CAS  Google Scholar 

  • -. 1964. A comparison of the boron requirements of intact tomato plants and excised tomato roots grown in sterile culture. Jour. Exp. Bot. (in press).

  • Nickell, L. G., andBurkholder, P. R. 1950. Atypical growth of plants. II. Growth in vitro of virus tumors ofRumex in relation to temperature, pH and various sources of nitrogen, carbon and sulphur. Amer. Jour. Bot.37: 538–547.

    Article  CAS  Google Scholar 

  • Nitsch, J. P., andNitsch, C. 1957. Auxin-dependent growth of excisedHelianthus tuberosus tissues. Amer. Jour. Bot.44: 555–564.

    Article  CAS  Google Scholar 

  • Ojima, K., andFujiwara, A. 1959a. Studies on the growth-promoting substance of the excised wheat roots. I. Effects of peptone on growth. Tohoku Jour. Agr. Res.10: 111–128.

    CAS  Google Scholar 

  • —— 1959b. Studies on the growth-promoting substance of the excised wheat roots. II. Changes in the beneficial effects of peptone by fractionation. Tohoku Jour. Agr. Res.10: 201–208.

    CAS  Google Scholar 

  • —— 1962. Studies on the growth-promoting substance of the excised wheat root. III. Effects of tryptophane and some related substances. Tohoku Jour. Agr. Res.13: 69–98.

    CAS  Google Scholar 

  • Ordin, L., andBonner, J. 1957. Effect of galactose on growth and metabolism ofAvena coleoptile sections. Plant Physiol.32: 212–215.

    PubMed  CAS  Google Scholar 

  • Ory, R. L., Hood, D. W., andLyman, C. M. 1954. The role of glutamine in arginine synthesis byLactobacillus arabinosus. Jour. Biol. Chem.207: 267–273.

    CAS  Google Scholar 

  • Pecket, R. C. 1957a. The initiation and development of lateral meristems in the pea root. I. The effect of young and mature tissues. Jour. Exp. Bot.8: 172–180.

    Article  CAS  Google Scholar 

  • —. 1957b. The initiation and development of lateral meristems in the pea root. II. The effect of indole-3-acetic acid. Jour. Exp. Bot.8: 181–194.

    Article  CAS  Google Scholar 

  • Pfeffer, W. 1905. The Physiology of Plants. 2nd German Ed. 1900, 3 vols, trans. A. J. Ewart, Clarendon Press, Oxford.

    Google Scholar 

  • Pilet, P. E. 1951a. Répartition et variation des auxines dans la racine duLens culinaris Med. Experientia7: 762–764.

    Article  Google Scholar 

  • —. 1951b. Contribution à l’étude des hormones de croissance (auxines) dans la racine deLens culinaris. Mem. Soc. Vaud. Sci. Nat.10: 137–244.

    Google Scholar 

  • —. 1961a. Les Phytohormones de Croissance. Masson et Cie, Paris.

    Google Scholar 

  • —. 1961b. Culture in vitro de tissus des Carotte et organogenèse. Ber. Schweiz. Bot. Ges.71: 189–208.

    CAS  Google Scholar 

  • -, andBonhôte, J. Sur la culture in vitro des racines duZea mays. Ber. Schweiz. Bot. Ges.72: 5–17.

  • Pollard, J. K., Bollard, E. G., and Steward, F. C. 1957. The relative utilisation of C14 from urea and C14O2. Plant Physiol. (Supp)32: XLV.

    Google Scholar 

  • Possingham, J. V., andBrown, R. 1958. The nuclear incorporation of iron and its significance in growth. Jour. Exp. Bot.9: 277–284.

    Article  CAS  Google Scholar 

  • Raggio, M., andRaggio, N. 1956. A new method for the cultivation of isolated roots. Physiol. Plant.9: 466–469.

    Article  Google Scholar 

  • —— andTorrey, J. G. 1957. The nodulation of isolated leguminous roots. Amer. Jour. Bot.44: 325–334.

    Article  CAS  Google Scholar 

  • Rappaport, J. 1954. In vitro culture of plant embryos and factors controlling their growth. Bot. Rev.20: 201–225.

    Article  CAS  Google Scholar 

  • Riggs, T. R., Coyne, B. A., andChristensen, H. N. 1954. Amino acid concentration by a free cell neoplasm. Structural influences. Jour. Biol. Chem.209: 395–411.

    CAS  Google Scholar 

  • Robbins, W. J. 1922a. Cultivation of excised root tips and stem tips under sterile conditions. Bot. Gaz.73: 376–390.

    Article  Google Scholar 

  • — 1922b. Effect of autolized yeast and peptone on growth of excised corn root tips in the dark. Bot. Gaz.74: 59–79.

    Article  CAS  Google Scholar 

  • — 1940. Light and the growth of excised roots ofDatura. Bull. Torrey Bot. Club67: 761.

    Google Scholar 

  • — 1941. Growth of excised roots and heterosis in tomatoes. Amer. Jour. Bot.28: 216–225.

    Article  Google Scholar 

  • — 1946. A report on the growth of excised tomato roots. Jour. Am. Arb.27: 480.

    Google Scholar 

  • -, 1951. Vitamin and amino acid requirements for the growth of higher plants.In: Skoog, F. [ed.] Plant Growth Substances: 463. Univ. Wisconsin Press. 1951.

  • — andManeval, W. E. 1924. Effect of light on growth of excised root tips under sterile conditions. Bot. Gaz.78: 424–432.

    Article  CAS  Google Scholar 

  • — andSchmidt, M. B. 1938. Growth of excised roots of tomato. Bot. Gaz.99: 671–728.

    Article  CAS  Google Scholar 

  • ——. 1939a. Vitamin Be, a growth substance for excised tomato roots. Proc. Nat. Acad. Sci. [Wash.]25: 1–3.

    Article  CAS  Google Scholar 

  • —— 1939b. Further experiments on excised tomato roots. Amer. Jour. Bot.26: 149–159.

    Article  CAS  Google Scholar 

  • —— 1939c. Growth of excised tomato roots in a synthetic solution. Bull. Torrey Bot. Club66: 193–200.

    Article  CAS  Google Scholar 

  • — andStebbins, M. 1949. An additional report on the growth of excised tomato roots. Bull. Torrey Bot. Club.76: 136–140.

    Article  CAS  Google Scholar 

  • — andWhite, V. B. 1936. Limited growth and abnormalities of excised corn root tips. Bot. Gaz.98: 209–242.

    Article  CAS  Google Scholar 

  • Roberts, E. H., andStreet, H. E. 1955. The continuous culture of excised rye roots. Physiol. Plant8: 238–262.

    Article  CAS  Google Scholar 

  • Rudman, D., andMeister, A. 1953. Transamination inEscherichia coli. Jour. Biol. Chem.200: 591–604.

    CAS  Google Scholar 

  • Scott, E. G., Carter, J. E., andStreet, H. E. 1961. Studies of the growth in culture of excised wheat roots. III. The quantitative and qualitative requirement for light. Physiol. Plant.14: 725–733.

    Article  CAS  Google Scholar 

  • Seeliger, I. 1956. Über die Kulture isolierter Wurzeln der Robinie (Robinia pseudoacacia L.). Flora144: 47–83.

    Google Scholar 

  • Segelitz, S. 1938. Den Einfluss von Licht und Dunkelheit auf Wurzebildung und Wurzelwachstum. Planta28: 617–643.

    Article  CAS  Google Scholar 

  • Shantz, E. M., and Steward, F. C. 1959. Investigations on growth and metabolism of plant cells. VII. Sources of nitrogen for tissue cultures under optimal conditions for their growth. Ann. Bot.23: 371–390.

    CAS  Google Scholar 

  • Sheat, D. E. G., Fletcher, B. H., andStreet, H. E. 1959. Studies on the growth of excised roots. VIII. The growth of excised tomato roots supplied with various sources of nitrogen. New Phytol.58: 128–141.

    Article  CAS  Google Scholar 

  • Skinner, J. C. 1952. Genetical variation in excised root cultures ofSenecio vulgaris L. Jour. Hered.43: 299–302.

    Google Scholar 

  • — 1953. Genetical and physiological studies of the behaviour of excised root cultures of the groundsel,Senecio vulgaris L. Ph.D. Thesis, Univ. Manchester.

    Google Scholar 

  • — andStreet, H. E. 1954. Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytol.53: 44–67.

    Article  CAS  Google Scholar 

  • Slankis, V. 1947. Influence of the sugar concentration on the growth of isolated pine roots. Nature [London]160: 645–646.

    Article  Google Scholar 

  • —. 1948. Verschiedene Zuckerarten als Kohlen-hydratquelle für isolierte Wurzeln vonPinus silvestris. Physiol. Plant.1: 278–289.

    Article  CAS  Google Scholar 

  • -,. 1951. Über den Einfluss von β-Indolylessigasäure und anderen Wuchsstoffen auf das Wachstum von Kiefernwurzeln. I. Symb. Bot. Upsal.

  • Solt, M. L. 1957. Nicotine production and growth of excised tobacco root cultures. Plant Physiol.32: 480–484.

    PubMed  CAS  Google Scholar 

  • —,Dawson, R. F., andChristman, D. R. 1960. Biosynthesis of anabasine and of nicotine by excised roots ofNicotiana glauca, Grah. Plant Physiol.35: 887–894.

    PubMed  CAS  Google Scholar 

  • Steinberg, R. A. 1947. Growth responses to organic compounds by tobacco seedlings in aseptic culture. Jour. Arg. Res.75: 81–92.

    CAS  Google Scholar 

  • Stenlid, G. 1950. Methylene blue and α-α-’dipyridyl, two different types of inhibitors for aerobic metabolism in young wheat roots. Physiol. Plant.3: 197–203.

    Article  Google Scholar 

  • —. 1954. Toxic effects of D-mannose, 2-desoxy-D-glucose and Dglucosamine upon respiration and ion absorption in wheat roots. Physiol. Plant.7: 173–181.

    Article  Google Scholar 

  • —. 1957. A comparison of the toxic effects of some sugars upon growth and chloride accumulation in young wheat roots. Physiol. Plant.10: 807–823.

    Article  CAS  Google Scholar 

  • -. 1959a. Studies on the inhibitory effects of sugars upon plant roots. Inaugural Diss. Uppsala.

  • —. 1959b. On the effect of some sugars and of 2–4-dinitrophenol upon the absorption of phosphate ions by excised roots. Physiol. Plant.12: 199–217.

    Article  Google Scholar 

  • Steward, F. C., Pollard, J. K., Patchett, A. A., andWitkop, B. 1958. The effects of selected nitrogen compounds on the growth of plant tissue cultures. Biochim. & Biophys. Acta28: 308–317.

    Article  CAS  Google Scholar 

  • —, andStreet, H. E. 1947. The nitrogenous constituents of plants. Ann. Rev. Biochem.16: 471–502.

    Article  CAS  Google Scholar 

  • Straus, J., andLaRue, C. D. 1954. Maize endosperm tissue grown in vitro. 1. Cultural requirements. Amer. Jour. Bot.41: 687–694.

    Article  CAS  Google Scholar 

  • Street, Hz. E. 1949. Nitrogen metabolism of higher plants. Adv. Enzym.9: 391–454.

    CAS  Google Scholar 

  • — 1954a. Factors controlling meristematic activity in excised roots. V. Effects of β-indolylacetic acid, β-indolylacetonitrile and α-(l-naphthylmethylsulphide)-propionic acid on the growth and survival of roots ofLycopersicum esculentum, Mill. Physiol. Plant.1: 212–230.

    Article  Google Scholar 

  • — 1954b. Effects of α-(l-naphthylmethylsulphide)-propionic acid on the growth of excised tomato roots. Nature [London]73: 253–254.

    Article  Google Scholar 

  • — 1955. Factors controlling meristematic activity in excised roots. VI. Effects of various ‘anti-auxins’ on the growth and survival of excised roots ofLycopersicum esculentum Mill. Physiol. Plant.8: 48–62.

    Article  CAS  Google Scholar 

  • — 1956. Nutrition and metabolism of plant tissue cultures. Jour. Nat. Cancer Inst.19: 467–485.

    Google Scholar 

  • — 1957. Excised root culture. Biol. Rev.32: 117–155.

    Article  CAS  Google Scholar 

  • -, 1959. Special problems raised by organ and tissue culture. Correlation between organs of higher plants as a consequence of specific metabolic requirements.In: Ruhland, W. [ed.] Encyclopaedia of Plant Physiology. Vol.11: 153–178.

  • — 1960. Hormones and the control of root growth. Nature [London]188: 272–274.

    Article  Google Scholar 

  • Butcher, D. N., Handoll, C., andWinter, A. 1964. Natural Regulators of Root Growth.In Régulateurs Naturel de la Croissance Végétale. Centre Nationale Recherche Scientifique, Paris. 529–541.

    Google Scholar 

  • Carter, J. E., Scott, E. G., andSutton, D. 1961. Studies of the growth in culture of excised wheat roots. I. The growth effects of an acid-hydrolysed casein and of light. Physiol. Plant.14: 621–631.

    Article  CAS  Google Scholar 

  • -, andHenshaw, G. G. 1963. Cell division and differentiation in suspension cultures of higher plant cells. Symp. XVII, Soc. Exp. Biol.: 234–256. Univ. Cambridge Press.

  • Hughes, J. C., andLewis, J. M. S. 1960. Studies on the growth of excised roots. X. Individual amino acids and acid-hydrolysed casein as nitrogen sources for the growth of excised tomato roots. New Phytol.59: 273–287.

    Article  CAS  Google Scholar 

  • — andJones, O. P. 1963. Nutritional problems raised by work with root cultures. Plant Tissue and Organ Culture—a Symposium. International Society of Plant Morphologists, Delhi. 58–81.

    Google Scholar 

  • — andLowe, J. S. 1950. The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorption by excised roots. Ann. Bot.14: 307–329.

    CAS  Google Scholar 

  • — andMcGonagle, M. P. 1953. Factors controlling meristematic activity in excised roots. IV. Habituation of the main axis meristem of excised tomato roots to repeated subculture. Physiol. Plant.6: 707–722.

    Article  Google Scholar 

  • —— andLowe, J. S. 1951. Observations on the ‘staling’ of White’s medium by excised roots. Physiol. Plant.4: 592–616.

    Article  Google Scholar 

  • —— andMcGregor, S. M. 1952. Observations on the ‘staling’ of White’s medium by excised tomato roots. II. Iron availability. Physiol. Plant.5: 248–276.

    Article  CAS  Google Scholar 

  • —— andRoberts, E. H. 1953. Factors controlling meristematic activity in excised roots. II. Experiments involving repeated subculture of the main axis meristems of roots ofLycopersicum esculentum Mill. andLycopersicum pimpinellifolium Dunal. Physiol. Plant.6: 1–16.

    Article  Google Scholar 

  • — andMcGregor, S. M. 1952. The carbohydrate nutrition of tomato roots. III. The effect of external sucrose concentration on the growth and and anatomy of excised roots. Ann. Bot.16: 185–205.

    CAS  Google Scholar 

  • — andSussex, I. M. 1954. Effects of 3-indolylacetic acid and 3-indolylacetonitrile on the growth of excised tomato roots. Jour. Exp. Bot.5: 204–214.

    Article  CAS  Google Scholar 

  • — andRoberts, E. H. 1952. Factors controlling meristematic activity in excised roots. I. Experiments showing the operation of internal factors. Physiol. Plant.5: 498–509.

    Article  CAS  Google Scholar 

  • -, andSheat, D. E. G. 1958. The absorption and availability of nitrate and ammonia.In: Ruhland, H. [ed.] Encyclopaedia of Plant Physiology. Vol.8: 150–161.

  • — andWinter, A. 1963. Studies on the hormonal control of the growth of excised roots. Plant Tissue and Organ Culture—a Symposium. International Society of Plant Morphologists, Delhi. 82–104.

    Google Scholar 

  • Sutton, D., Scott, E. G., andStreet, H. E. 1961. Studies on the growth in culture of excised wheat roots. II. The growth-promoting activity of amino acids. Physiol. Plant.14: 712–724.

    Article  CAS  Google Scholar 

  • Swanson, C. A. 1959. Translocation of organic solutes.In: Steward, F. C. [ed.] Plant Physiology Vol.2: 481–558. Academic Press.

  • Szember, A. 1960. Influence on plant growth of the breakdown of organic phosphorus compounds by micro-organisms. Plant & Soil13: 147–158.

    Article  CAS  Google Scholar 

  • Tesar, I. S., andKutacfk, M. 1955. Root excretions of higher plants. I. Excretion of amino acids by the roots of wheat in culture. Ann. Acad. Tchécose Agr.28: 927.

    Google Scholar 

  • Thomas, D. R., Craigie, J. S., andStreet, H. E. 1963. Carbohydrate nutrition of the excised root. Plant Tissue and Organ Culture—a Symposium. International Society of Plant Morphologists, Delhi. 26–43.

    Google Scholar 

  • Thurman, D. A., andStreet, H. E. 1960. The auxin activity extractable from excised tomato roots by cold 80% methanol. Jour. Exp. Bot.11: 188–197.

    Article  CAS  Google Scholar 

  • —— 1962. Metabolism of some indole auxins in excised tomato roots. Jour. Exp. Bot.13: 369–377.

    Article  CAS  Google Scholar 

  • Torrey, J. G. 1950. The induction of lateral roots by indoleacetic acid and root decapitation. Amer. Jour. Bot.37: 257–264.

    Article  CAS  Google Scholar 

  • — 1951. Cambial formation in isolated pea roots following decapitation. Amer. Jour. Bot.38: 596–604.

    Article  Google Scholar 

  • — 1952. Effect of light on elongation and branching in pea roots. Plant Physiol.27: 591–602.

    PubMed  CAS  Google Scholar 

  • — 1954. The role of vitamins and micronutrient elements in the nutrition of the apical meristem of pea roots. Plant Physiol.29: 279–287.

    PubMed  CAS  Google Scholar 

  • — 1955. On the determination of vascular patterns during tissue differentiation in excised pea roots. Amer. Jour. Bot.42: 183–198.

    Article  Google Scholar 

  • — 1956. Chemical factors limiting lateral root formation in isolated pea roots. Physiol. Plant.9: 370–388.

    Article  CAS  Google Scholar 

  • — 1957. Auxin control of vascular pattern formation in regenerating pea root meristem grown in vitro. Amer. Jour. Bot.44 859–870.

    Article  CAS  Google Scholar 

  • — 1958. Endogenous bud and root formation by isolated roots of Convolvulus grown in vitro. Plant Physiol.33: 258–263.

    PubMed  CAS  Google Scholar 

  • — 1959. A chemical inhibitor of auxin-induced lateral root initiation in roots. ofPisum. Physiol. Plant.12: 873–887.

    Article  Google Scholar 

  • -, 1963. Cellular patterns in developing roots. Symp. XVII. Soc. Exp. Biol: 285–314. Cambridge Univ. Press.

  • Ulrich, J. M. 1962. Cultural requirements for growth of excised ponderosa pine roots. Physiol. Plant.15: 59–71.

    Article  CAS  Google Scholar 

  • Uspenski, E. E., andUspenskaia, W. J. 1925. Reinkultur und ungeschlectliche Fortplanzung desVolvox minor undVolvox globator in einer synthetischen Nährlösung. Zeits. Bot.17: 273–308.

    Google Scholar 

  • Vaidyanathan, C. S., andStreet, H. E. 1959. Nitrate reduction by aqueous extracts of excised tomato roots. Nature [London]184: 531–533.

    Article  CAS  Google Scholar 

  • Viets, E. G. Jr., Moxon, A. L., andWhitehead, E. I. 1946. Nitrogen metabolism of corn (Zea mays) as influenced by ammonium nutrition. Plant Physiol.21: 271–289.

    PubMed  CAS  Google Scholar 

  • Wachtel, H. K. 1943. Inhibitory action of mannose upon the growing plant. Arch. Biochem.2: 395–401.

    CAS  Google Scholar 

  • Weissman, G. S. 1959. Influence of ammonium and nitrate on the protein and free amino acids in shoots of wheat seedlings. Amer. Jour. Bot.46: 339–346.

    Article  CAS  Google Scholar 

  • West, F. R., andMika, E. S. 1957. Synthesis of atropine by isolated roots and root callus cultures of belladonna. Bot. Gaz.119: 50–54.

    Article  CAS  Google Scholar 

  • West, P. M. 1939. Excretion of thiamin and biotin by the roots of higher plants. Nature [London]144: 1050–1051.

    Article  CAS  Google Scholar 

  • White, P. R. 1932. The influence of some environmental conditions on the growth of excised root tips of wheat seedlings in liquid media. Plant Physiol.7: 613–628.

    PubMed  CAS  Google Scholar 

  • — 1933. Concentrations of inorganic ions as related to growth of excised root tips of wheat seedlings. Plant Physiol.8: 489–508.

    PubMed  CAS  Google Scholar 

  • — 1934. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol.9: 585–600.

    PubMed  CAS  Google Scholar 

  • — 1936. Plant tissue cultures. Bot. Rev.2: 419–437.

    Article  Google Scholar 

  • — 1937a. Vitamin B1 in the nutrition of excised tomato roots. Plant Physiol.12: 803–811.

    PubMed  CAS  Google Scholar 

  • — 1937b. A comparison of nutrient salt solutions for the cultivation of excised tomato roots. Growth1: 182–188.

    CAS  Google Scholar 

  • — 1938a. Accessory salts in the nutrition of excised tomato roots. Plant Physiol.13: 391–399.

    Article  PubMed  CAS  Google Scholar 

  • — 1938b. Cultivation of excised roots of dicotyledonous plants. Amer. Jour. Bot.25: 348–356.

    Article  Google Scholar 

  • — 1939. Glycine in the nutrition of excised tomato roots. Plant Physiol.14: 527–538.

    PubMed  CAS  Google Scholar 

  • — 1940. Sucrose versus dextrose as carbohydrate source for excised tomato roots. Plant Physiol.15: 355–358.

    PubMed  CAS  Google Scholar 

  • -. 1943a. A Handbook of Plant Tissue Culture. Lancaster.

  • — 1943b. Further evidence on the significance of glycine, pyridoxine and nicotinic acid in the nutrition of excised tomato roots. Amer. Jour. Bot.30: 33–36.

    Article  CAS  Google Scholar 

  • — 1943c. Nutrient deficiency studies with an improved inorganic nutrition for cultivation of excised tomato roots. Growth7: 53–65.

    CAS  Google Scholar 

  • — 1946. Plant tissue cultures. II. Bot. Rev.12: 521–529.

    Article  CAS  Google Scholar 

  • Wiggans, S. C. 1954. Growth and organ formation in callus tissues derived fromDaucus carota. Amer. Jour. Bot.41: 321–326.

    Article  CAS  Google Scholar 

  • Willemot, C., andBoll, W. G. 1962. Changed response of excised tomato roots to pyridoxin deficiency following prolonged sterile culture. Canad. Jour. Bot.40: 1107–1113.

    CAS  Google Scholar 

  • Winter, A., andStreet, H. E. 1963. A new natural auxin isolated from ‘staled’ root culture medium. Nature [London]198: 1283–1288.

    Article  CAS  Google Scholar 

  • Wood, H. N., andBraun, A. C. 1961. Studies on the regulation of certain essential biosynthetic systems in normal and crown gall tumor. Proc. Nat. Acad. Sci. [Wash.]47: 1907–1913.

    Article  CAS  Google Scholar 

  • Woolley, D. W. 1952. A Study of Antimetabolites. Chapman & Hall, London.

    Google Scholar 

  • Wren, M. J., andHannay, J. W. 1963. Ageing in roots of groundsel (Senecio vulgaris, L.). I. The root system of seedlings cultured aseptically in darkness. New Phytol.62: 249–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butcher, D.N., Street, H.E. Excised root culture. Bot. Rev 30, 513–586 (1964). https://doi.org/10.1007/BF02858651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858651

Keywords

Navigation