Skip to main content
Log in

Plant VOCs emission: a new strategy of thermotolerance

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Plant leaves may emit a substantial amount of volatile organic compounds (VOCs) into the atmosphere, which include isoprene, terpene, alkanes, alkenes, alcohols, aldehydes, eters, esters and carboxylic acids. Furthermore, most of these compounds actively participate in tropospheric chemistry. Great progresses have been made in linking emission of these compounds to climate. However, the VOCs emission function in plant is still not clear. Recently, some evidence has emerged that the production and the emission of VOCs, such as isoprene and monoterpenes, which account for 80% of total VOCs, exhibit plant protection against high temperatures. These increases in VOCs emissions could contribute in a significant way to plant thermotolerance. This perspective summarizes some latest literatures regarding the VOCs emission-dependent thermoprotection in plant species subjected to high temperature stress, presents the achievement in studies concerning plant VOCs emission-dependent thermotolerance, and then exhibits the proposed mechanisms of such plant thermotolerance. Finally, open questions regarding the plant VOCs emission were shown, and the future researches were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bukhov, N.G., Wiese, C., Neimanis, S., Heber, U. 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport [J]. Photosynthesis Research,59: 81–93.

    Article  CAS  Google Scholar 

  • Delfine, S., Csiky, O., Seufert, G., Loreto, F. 2000. Fumigation with exogenous monoterpenes of a non-isoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures [J]. New Phytologist,146: 27–36.

    Article  CAS  Google Scholar 

  • Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P. 1995. A global model of natural volatile organic compounds emissions [J]. Journal of Geophysical Research Atmosphere,100: 8873–8892.

    Article  CAS  Google Scholar 

  • Harborne, J.B. 1991. Recent advances in the ecological chemistry of plant terpeniods [C]. In: Harbore, J.B., Tomas-Barberan, F.A. (eds.), Ecological chemistry and biochemistry of plant terpeniods. Oxford, UK: Clarendon Press, 399–426.

    Google Scholar 

  • Harley, P.C., Monson, R.K., Lerdau, M.T. 1999. Ecological and evolutionary aspects of isoprene emission from plants [J]. Oecologia,118: 109–123.

    Article  Google Scholar 

  • Havaux, M. 1996. Short-term responses of photosystem I to heat stress—Induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynthesis Research,47: 85–97.

    Article  CAS  Google Scholar 

  • Hewitt, C.N., Monson, R.K., Fall, R. 1990. Isoprene emission from the grass Arundo donax L. are not linked to photorespiration [J]. Plant Science,66: 139–144.

    Article  CAS  Google Scholar 

  • Jones, C. and Rasmussen, R. 1975. Production of isoprene by leaf tissue [J]. Plant Physiology,55: 982–987.

    PubMed  CAS  Google Scholar 

  • Logan, B.A., Monson, R.K., Potosnak, M.J. 2000. Biochemistry and physiology of foliar isoprene production [J]. Trends in Plant Science,5: 477–481.

    Article  PubMed  CAS  Google Scholar 

  • Loreto, F., Ciccioli, P., Brancaleoni, E., Valentini, R., De Lillis, M., Csiky, O., Seufert, G. 1998a. A hypothesis on the evolution of isoprenoid emission by oaks based on the correlation between emission type andQuercus taxonomy [J].Oecologia,115: 302–305.

    Article  Google Scholar 

  • Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Fabozzi, C., Tricoli, D. 1996a. Evidence of the photosynthetic origin of monoterpenes emitted byQuercus ilex. L. leaves by C13 labeling [J]. Plant Physiology,110: 1317–1322.

    PubMed  CAS  Google Scholar 

  • Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Tricoli, D. 1996b. Influence of environmental factors and air composition on emission of α-pinene fromQuercus ilex leaves [J]. Plant Physiology,110: 267–275.

    PubMed  CAS  Google Scholar 

  • Loreto, F., Förster, A., Dürr, M., Csiky, O., Seufert, G. 1998b On the monoterpene emission under heat stress and on the increased thermotolerance of leaves ofQuercus ilex L. fumigated with selected monoterpenes [J]. Plant Cell, and Environment,21: 101–107.

    Article  CAS  Google Scholar 

  • Monson, R.K. and Fall, R. 1989. Isoprene emission from aspen leaves. The influence of environmental and relation to photosynthesis and photorespiration [J]. Plant Physiology,90: 267–274.

    PubMed  CAS  Google Scholar 

  • Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama H, Iba, K. 2000. Trienoic fatty acids and plant tolerance of high temperature [J]. Science,287: 476–479.

    Article  PubMed  CAS  Google Scholar 

  • Pastenes, C. and Horton, P. 1996. Effect of high temperature on photosynthesis in beans. 1. Oxygen evolution and chlorophyll fluorescence [J]. Plant Physiology,112: 1245–1251.

    PubMed  CAS  Google Scholar 

  • Peňuelas, J. and Llusià, J. 2002. Linking photorespiration, monoterpenes and thermotolerance inQuercus [J]. New Phytologist,155: 227–237.

    Article  Google Scholar 

  • Peňuelas, J., and Llusià, J. 2003. BVOCs: plant defense against climate warming? [J]. Trends in Plant Science,8: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Peňuelas, J. and Llusià, J. 2004. Plant VOC emissions: making use of the unavoidable [J]. Trends in Ecology and Evolution,19: 402–404.

    Article  PubMed  Google Scholar 

  • Peňuelas, J., Llusià, J., Asensio, D., Munné-Bosch, S. 2005. Linking isoprene with plant thermotolerance, antioxidants, and monoterpene emissions [J]. Plant, Cell and Environment,28: 278–286.

    Article  Google Scholar 

  • Robinson, S.P., Portis, A.R., Jr. 1988. Involvement of stromal ATP in the light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact isolated chloroplasts [J]. Plant Physiology,86: 293–298.

    PubMed  CAS  Google Scholar 

  • Seemann, J.R., Berry, J.A., Downton, W.J.S. 1984. Photosynthetic response and adaptation to high temperature in desert plants: a comparison of gas exchange and fluorescence methods for studies of thermal tolerance [J]. Plant Physiology,75: 364–368.

    Article  PubMed  Google Scholar 

  • Sharkey, T.D. 2005. Effect of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene [J]. Plant, Cell and Environment,28: 269–277.

    Article  CAS  Google Scholar 

  • Sharkey, T.D. and Singsaas, E.L. 1995. Why plants emit isoprene [J]. Nature,374: 769

    Article  CAS  Google Scholar 

  • Sharkey, T.D. and Yeh, S. 2001. Isoprene emission from plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,52: 407–436.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, T.D., Chen, X.Y., Yeh, S. 2001. Isoprene increases thermotolerance of fosmidomycin-fed leaves [J]. Plant Physiology,125: 2001–2006.

    Article  PubMed  CAS  Google Scholar 

  • Singsaas, E.L. 2000. Terpenes and the thermotolerance of photosynthesis [J]. New Phytologist,146: 1–4.

    Article  CAS  Google Scholar 

  • Singsaas, E.L. and Sharkey, T.D. 1998. The regulation of isoprene emission responses to rapid leaf temperature fluctuations [J]. Plant, Cell and Environment,21: 1181–1188.

    Article  CAS  Google Scholar 

  • Singsaas, E.L. Laporte, M.M., Shi, J.Z., Monson, R.K., Bowling, D.R., Johnson, K., Lerdau, M., Jasentuliyana, A., Sharkey, T.D. 1999 Leaf temperature fluctuation affects isoprene emission from red oak (Quercus rubra) leaves [J]. Tree Physiology,19: 917–924

    PubMed  CAS  Google Scholar 

  • Singsaas, E.L., Lerdau, M., Winter, K., Sharkey, T.D. 1997. Isoprene increases thermotolerance of isoprene emitting species [J]. Plant Physiology,115: 1413–1420.

    PubMed  CAS  Google Scholar 

  • Tardy, F. and Havaux, M. 1997. Thylakoid-membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts [J]. Biochimica et Biophysica Acta: Bio-Membranes,1330: 179–193

    Article  CAS  Google Scholar 

  • Velikova, V. and Loreto, F. 2005. On the relationship between isoprene emission and thermotolerance inPhragmites australis leaves exposed to high temperatures and during the recovery from heat stress [J]. Plant, Cell and Environment,28: 318–327.

    Article  CAS  Google Scholar 

  • Zeidler J., Schwender, J., Müller, C., Wiesner, J., Weidemeyer, C., Beck, E., Jomaa, H., Lichtenthaler, H.K. 1998. Inhibition of the non-mevalonate 1-deoxy-D-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin [J]. Z. Naturforsch. Teil C,53: 980–986.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Biography: CHEN Jun-wen (1978-), Male, Ph. Doctor. Research center for plant physiology under stress, Xishuangbanna Tropical Botanical Garden, the Chinese Academy of Sciences, Mengla, Yunnan 666303, P.R. China

Responsible editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun-wen, C., Cao, Kf. Plant VOCs emission: a new strategy of thermotolerance. Journal of Forestry Research 16, 323–326 (2005). https://doi.org/10.1007/BF02858200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858200

Keywords

CLC number

Document code

Navigation