The Botanical Review

, Volume 67, Issue 2, pp 141–238 | Cite as

Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—A review

  • Angelika Otto
  • Volker Wilde


Chemosystematics is a common tool in systematics and taxonomy of extant plants. Terpenoids have been found to be especially valuable for chemosystematic investigations of conifers. A review of data in the extensive literature revealed some characteristic distribution patterns of sesqui-, di-, and triterpenoids in extant conifer families. The numerous terpenoids can be assigned to approximately 40 sesquiterpenoid, 17 diterpenoid, and only a few triterpenoid structural classes. Some of these terpenoid classes (e.g., cadinanes, humulanes, labdanes, pimaranes) are unspecific and distributed among all conifers. Other structural classes occur in certain clusters of families (e.g., totaranes in Podocarpaceae, Taxodiaceae, and Cupressaceae s.str.) or were restricted to species of only one conifer family (e.g., cuparanes in Cupressaceae s.str.).

Cupressaceae s.str. and Taxodiaceae show great similarities in their terpenoid composition (cedranes, thujopsanes) but can be separated by the occurrence of some sesquiterpenoids (cuparanes, widdranes), which were hitherto known only in Cupressaceae s.str. This supports a monophyletic clade of Cupressaceae s.str. within the major Taxodiaceae/Cupressaceae lineage (= Cupressaceae s.l.). Pinaceae differ from the other conifer families because they commonly lack several diterpenoid classes (phenolic abietanes, tetracyclic diterpenoids) and because they contain some distinct sesquiterpenoids (longicyclanes, sativanes), diterpenoids (cembranes), and triterpenoids (serratanes, lanostanes). With the exception of diterpenoid alkaloids (taxanes), Taxaceae contain terpenoids common in the other conifer families. This supports their inclusion as a separate family in the major conifer clade.


Botanical Review Tropolones Kauranes Abietanes Farnesanes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Chemosystematik wird häufig in der Systematik und Taxonomie rezenter Pflanzen eingesetzt. Für die chemosystematische Untersuchung von Koniferen haben sich in früheren Arbeiten die Terpenoide als besonders geeignet erwiesen. Aus der Zusammenstellung der bisher publizierten Daten wurden einige charakteristische Verbreitungsmuster der Sesqui-Di-, und Triterpenoide in rezenten Familien der Koniferen deutlich.

Die zahlreichen Terpenoide können zu etwa 40 Strukturklassen der Sesquiterpenoide, 18 Klassen der Diterpenoide und wenige Klassen der Triterpenoide zugeordnet werden. Einige dieser Terpenoidklassen sind unspezifisch und unter allen Koniferen verbreitet (z.B. Cadinane, Humulane, Labdane, Pimarane). Andere Strukturklassen treten in bestimmten Clustern von Familien auf (z.B. Totarane in Podocarpaceae, Taxodiaceae und Cupressaceae s.str.) oder sind zum gegenwärtigen Wissensstand auf die Gattungen einer einzigen Koniferenfamilie beschränkt (z.B. Cuparane in Cupressaceae s.str.).

Cupressaceae s.str. und Taxodiaceae zeigen große Ähnlichkeiten in der Zusammensetzung ihrer Terpenoide, (Cedrane, Thujopsane), können aber durch einige Sesquiterpenoide unterschieden werden, die ausschließlich in den Cupressaceae s.str. auftreten (Cuparane, Widdrane). Dies unterstützt den monophyletischen Charakter der Cupressaceae s.str. innerhalb einer Gruppe, die die Taxodiaceae und Cupressaceae im klassischen Sinne umfaßt (= Cupressaceae s.l.). Die Pinaceae unterscheiden sich von den übrigen Familien der Koniferen durch das Fehlen von phenolischen Abietanen und tetrazyklischen Diterpenoiden sowie durch die Bildung bestimmter Sesquiterpenoide (Longicyclane, Sativane), Diterpenoide (Cembrane) und Triterpenoide (Serratane, Lanostane). Die Taxaceae enthalten mit Ausnahme der Diterpenoidalkaloide (Taxane) typische Terpenoide der Koniferen, was ein zusätzliches Argument gegen ihre Abtrennung auf einem höheren taxonomischen Level ist.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, R. P. 1990.Juniperus procera of East Africa: Volatile leaf oil composition and putative relationship toJuniperus excelsa. Biochem. Syst. Ecol. 18: 207–210.Google Scholar
  2. — 1991. Cedar wood oil—Analysis and properties. Pp. 159–173in H. F. Linskens & J. F. Jackson (eds.), Essential oils and waxes. Modern methods of plant analysis, n.s., 12. Springer-Verlag, Berlin.Google Scholar
  3. —,E. von Rudloff, T. A. Zanoni &L. Hogge. 1980. The terpenoids of an ancestral/advanced species pair ofJuniperus. Biochem. Syst. Ecol. 8: 35–37.Google Scholar
  4. —,T. A. Zanoni &L. Hogge. 1984. The volatile oils ofJuniperus flaccida var.flaccida and var.poblana. J. Nat. Prod. (Lloydia) 47: 1064–1065.Google Scholar
  5. —,S. Z. Zhang &G. L. Chu. 1995. Essential oil ofJuniperus formosana HAYATA leaves from China. J. Essential Oil Res. 7: 687–689.Google Scholar
  6. Agrawal, P. K. &R. P. Rastogi. 1981. Terpenoids fromCedrus deodara. Phytochemistry 20: 1319–1321.Google Scholar
  7. ——. 1984. Chemistry of the true cedars. Biochem. Syst. Ecol. 12: 133–144.Google Scholar
  8. Ahond, A., P. Garnero &B. Gastambide. 1964. Isolation of communic acid from the cones of a dwarf variety of cypress. Bull. Soc. Chim. France 1964: 348–349.Google Scholar
  9. Akiyoshi, S., H. Erdtman &T. Kubota. 1960. The identity of junipene, kuromatsuene and longifolene and of juniperol, kuromatsuol, macrocarpol and longiborneol. Tetrahedron 9: 237.Google Scholar
  10. Allen, F. H., J. P. Kutney, J. Trotter &N. D. Westcott. 1971. The structures and absolute stereochemistry of cyclograndisolide and epicyclograndisolide, novel triterpene lactones ofAbies grandis. Tetrahedron Lett. 1971: 282–286.Google Scholar
  11. Andersen, N. H. &D. D. Syrdal. 1970. Terpenes and sesquiterpenes ofChamaecyparis nootkatensis leaf oil. Phytochemistry 9: 1325–1340.Google Scholar
  12. Anderson, A. B. 1954. Rosin from Jeffrey pine stumpwood. Tappi 37: 316–320.Google Scholar
  13. —,R. Riffer &A. Wong. 1969. Monoterpenes, fatty and resin acids ofPinus ponderosa andPinus jeffreyi. Phytochemistry 8: 873–875.Google Scholar
  14. Aplin, R. T. &R. C. Cambie. 1964. Taxonomic distribution of some diterpene hydrocarbons. New Zealand J. Sci. (Wellington) 7: 258–260.Google Scholar
  15. —— &P. S. Rutledge. 1963. The taxonomic distribution of some diterpene hydrocarbons. Phytochemistry 2: 205–214.Google Scholar
  16. Appendino, G. 1995. The phytochemistry of the yew tree. Natural Prod. Rep. 12: 349–360.Google Scholar
  17. —,P. Gariboldi, A. Pisetta et al. 1992. Taxanes fromTaxus baccata. Phytochemistry 31: 4253–4257.Google Scholar
  18. Appleton, R. A., R. McCrindle &K. H. Overton. 1970. The diterpenes from the leaves ofCryptomeria japonica. Phytochemistry 9: 581–583.Google Scholar
  19. Arbuzov, B. A. &A. G. Khismatullina. 1958. Composition of rosin acids from resins ofPinus pithyusa andPinus insignis. Chem. Abstr. 52: 12823g.Google Scholar
  20. Arya, V. P. 1962. Neutral constituents of the bark extractive ofJuniperus commuais. J. Scientific & Industrial Res. (New Delhi) B21: 236–237.Google Scholar
  21. Avcibasi, H., H. Anil &M. Toprak. 1987. Four terpenoids fromCedrus lebanotica. Phytochemistry 26: 2852–2854.Google Scholar
  22. —,—— 1988. Terpene acids fromCedrus libani. Phytochemistry 27: 3967–3968.Google Scholar
  23. Baggaley, K. H., H. Erdtman &T. Norin. 1968. Some new cedrane derivatives fromJuniperus foetidissima WILLD. Configuration of cedrolic acid. Tetrahedron 24: 3399–3405.Google Scholar
  24. Balansard, G., A. Hannan, P. Bernard et al. 1976. Chemical composition of the fertilized female strobuli ofThuja: Thuja occidentalis L., I. Trav. Soc. Pharm. Montpellier 36: 231–237.Google Scholar
  25. Bambagiotti, M., F. F. Vincieri &G. Cosi. 1972. Monoterpene and sesquiterpene hydrocarbons ofPinus mugo. Phytochemistry 11: 1455–1460.Google Scholar
  26. Banthorpe, D. V., R. J. H. Duprey, J. F. Jones &C. M. Voller. 1977. Distribution of longibornane sesquiterpenes, I. Re-examination of some reported sources. Pl. Med. 31: 278–285.Google Scholar
  27. Barboni, L., P. Gariboldi, E. Torregiani et al. 1993. Taxanes from the needles ofTaxus wallichiana. Phytochemistry 33: 145–150.Google Scholar
  28. Bardyshev, I.I., L. Badam, R. I. Zen’ko et al. 1969. Properties and chemical composition of a mixture of terpenoids extracted from the oleoresin of Scotch pine. Chem. Abstr. 72: 51774z.Google Scholar
  29. Barnes, M. A. &W. C. Barnes. 1983. Oxic and anoxic diagenesis of diterpenes in lacustrine sediments. Pp. 289–298in M. Bjorøy (ed.), Advances in organic geochemistry, 1981. John Wiley & Sons, Chichester, England.Google Scholar
  30. Barrero, A. F., J. F. Sanchez &J. Altarejos. 1987. Resin acids in the woods ofJuniperus sabina L. andJuniperus oxycedrus L. Chem. Abstr. 110: 111701p.Google Scholar
  31. —,—,E. J. Alvarez-Manzaneda &M. Munoz Dorado. 1989. Sesquiterpenoids related to juvabione inAbies pinsapo. Phytochemistry 28: 2617–2619.Google Scholar
  32. —,—,J. E. Oltra et al. 1991. Oxygenated sesquiterpenes from the wood ofJuniperus oxycedrus. Phytochemistry 30: 1551–1554.Google Scholar
  33. —,—,E. J. Alvarez-Manzaneda et al. 1992. Diterpenoids and cyclolanostanolides fromAbies marocana. Phytochemistry 31: 615–620.Google Scholar
  34. —,—,—et al. 1993. Terpenoids and sterols from the wood ofAbies pinsapo. Phytochemistry 32: 1261–1265.Google Scholar
  35. —,—,—et al. 1994. Terpenoids in the wood ofAbies marocana. Phytochemistry 35: 1271–1274.Google Scholar
  36. —. 1996. Novel tricyclic sesquiterpenes fromJuniperus thurifera L. Chemical confirmation of the duprezianane skeleton. Tetrahedron Lett. 37: 3757–3760.Google Scholar
  37. Barreto, H. S.&C. Enzell. 1961. The chemistry of the natural order Cupressales 39. Heartwood constituents ofCupressus torulosa DON. Acta Chem. Scand. 15: 1313–1318.Google Scholar
  38. Baset, Z. H., R. J. Pancirov &T. R. Ashe. 1980. Organic compounds in coal: Structure and origin. Pp. 619–630in A. G. Douglas & J. R. Maxwell (eds.), Advances in organic geochemistry, 1979. Pergamon Press, Oxford.Google Scholar
  39. Batt, R. D. &C. H. Hassel. 1950. The essential oilof Libocedrus bidwillii, New Zealand cedar. J. Soc. Chemical Industry (London) 68: 359–361.Google Scholar
  40. Bennett, C. R. &R. C. Cambie. 1967. Chemistry of the Podocarpaceae, XIII. Constituents of the heartwoods ofPodocarpus nivalis HOOK, andP. acutifolius KIRK. Phytochemistry 6: 883–887.Google Scholar
  41. Berry, K. M., N. B. Perry &R. T. Weavers. 1985. Foliage sesquiterpenes ofDacrydium cupressinum: Identification, variation and biosynthesis. Phytochemistry 24: 2893–2898.Google Scholar
  42. Bisarya, S. C. &Sukh Dev. 1964. Allohimachalol, a new type in sesquiterpenoids. Tetrahedron Lett. 1964:3761–3765.Google Scholar
  43. Bol’shakova, V. I., L. I. Demenkova, E. N. Shmidt &V. A. Pentegova. 1988. Neutral diterpenoids in resin of five conifer species of Transcarpathia. Chem. Abstr. 111: 4244r.Google Scholar
  44. —,V. A. Khan, Z. V. Dubovenko et al. 1985. Terpenoids of the oleoresin ofLarix leptolepis. Chem. Abstr. 104: 183304k.Google Scholar
  45. Bower, C. L. &J. W. Rowe. 1967. Extractives of Jack pine bark: Occurrence of (+)-l3-epimanoyl oxide and related labdanes diterpenes. Phytochemistry 6: 151–153.Google Scholar
  46. Brandt, C. W. &B. R. Thomas. 1952a. Chemical differentiation of the generaPodocarpus andDacrydium. Nature 170: 1018.Google Scholar
  47. ——. 1952b. Resins of theDacrydium andPodocarpus genera: The wood resin fromDacrydium cupressinum. New Zealand J. Sci. Technol. B33: 30–37.Google Scholar
  48. Brassell S. C., G. Eglinton &J. R. Maxwell. 1983. The geochemistry of terpenoids and steroids. Biochem. Soc. Trans. 11: 575–586.PubMedGoogle Scholar
  49. Braun, S. &H. Breitenbach. 1977. Strukturaufklaerung einer neuen Diterpensäure ausMetasequoia glyptostroboides mit Hilfe der13-C NMR-Spektroskopie. Tetrahedron 33: 145–150.Google Scholar
  50. Brecknell, D. J. &R. M. Carman. 1978. Callitrin, callitrisin, dihydrocallitrisin, columellarin and dihydrocolumellarin, new sesquiterpene lactones from the heartwood ofCallitris columellaris. Tetrahedron Lett. 1978: 73–76.Google Scholar
  51. Bredenberg, J. B. 1957a. The non-occurrence of cedrene and cedrol inJuniperus communis L. Acta Chem.Scand. 11: 98–100.Google Scholar
  52. —. 1957b. Ferruginol and Δ9-dehydroferruginol. Acta Chem. Scand. 11: 932–935.Google Scholar
  53. Briasco, J. D. &J. Murray. 1952. Essential oils of New Zealand Podocarpaceae, I.Dacrydium colensoi. J. Appl. Chem. 2: 187–192.Google Scholar
  54. Briggs, L. H. 1937. The identity of dacrene and sciadopitene with phyllocladene. J. Chem. Soc. 1937: 79–80.Google Scholar
  55. —. 1940. Isolation of phyllocladene from the leaf oil ofPodocarpus hallii and its significance on the botanical classification of this species. Trans. Roy. Soc. New Zealand 70: 173–174.Google Scholar
  56. — &R. W. Cawley. 1948. Diterpenes, I. The identity of kaurene with podocarprene. J. Chem. Soc. 1948: 1888–1889.Google Scholar
  57. — &J. A. Loe. 1950. Diterpenes, IV. The isolation of phyllocladene from the essential oil ofPodocarpus spicatus grown in the North Island of New Zealand. J. Chem. Soc. 1950: 958–959.Google Scholar
  58. — &M. D. Sutherland. 1942. The essential oil ofCupressus macrocarpa. J. Organic Chem. 7: 397–407.Google Scholar
  59. —. 1948. The essential oil ofPhyllocladus trichomanoides. J. Organic Chem. 13: 1–9.Google Scholar
  60. — &G. W. White. 1975. Constituents of the essential oil ofAraucaria araucaria. Tetrahedron 31: 1311–1314.Google Scholar
  61. —,R. W. Cawley, J. A. Loe &W. I. Taylor. 1950. Diterpenes, III. The diterpenes fromPodocarpus ferrugineus. J. Chem. Soc. 1950: 955–958.Google Scholar
  62. —,R. C. Cambie, R. N. Seelye &A. D. Warth. 1959. Chemistry of the Podocarpaceae, IV. Constituents of the heartwood ofPodocarpus dacrydioides A. RICH. Tetrahedron 7: 270–276.Google Scholar
  63. —,M. Kingsford &G. W. White. 1974. New Zealand phytochemical survey, 10. Essential oil ofAgathis australis. New Zealand J. Sci. (Wellington) 17: 9–12.Google Scholar
  64. Brooker, E. G. 1959. Constituents ofPhyllocladus glaucus. New Zealand J. Sci. 2: 212–214.Google Scholar
  65. Brossi, A. &O. Jeger. 1950. Zur Kenntnis der Diterpene 59. Über die Identität der Miropinsäure und der Isodextropimarsäure. Helv. Chim. Acta 33: 722–724.Google Scholar
  66. Brummit, R. K., comp. 1992. Vascular plant families and genera. Roy. Bot. Gard., Kew, London.Google Scholar
  67. Bruns, K. &G. Weissmann. 1966. Die Konfiguration der Diterpene ausAraucaria imbricata PAVON (A. araucana). Tetrahedron Lett. 1966: 1901–1903.Google Scholar
  68. Brunsfeld, S. J., P. S. Soltis D. E. Soltis et al. 1994. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: Evidence fromrbcL Sequenzen. Syst. Bot. 19: 253–262.Google Scholar
  69. Bulgakov, A. N. 1988. Terpenoid composition of balsams ofPinus taeda L.,P. maritima LAMB.,P. pseudostrobus andP. contorta DOUGL. introduced in the U.S.S.R. Chem. Abstr. 109:89785z.Google Scholar
  70. Cairness, D. A., R. L. Eagan, O. Ekundaya &D. G. I. Kingston 1983. Plant anticancer agents, XIII. Constituents ofAustrocedrus chilensis. J. Nat. Prod. (Lloydia) 46: 135–139.Google Scholar
  71. Cambie, R. C. &L. N. Mander. 1961. The absolute configuration of hydroxytotarol. Chemistry & Industry (London) 1961: 1877–1878.Google Scholar
  72. ——. 1962. Chemistry of the Podocarpaceae, VI. Constituents of the heartwood ofPodocarpus totara G. BENN. Tetrahedron 18: 465–475.Google Scholar
  73. ——. 1964. Extractives ofDacrydium biforme. New Zealand J. Sci. 7: 188–195.Google Scholar
  74. —,W. R. J. Simpson &L. D. Colebrook 1963. Chemistry of the Podocarpaceae, VII. Podototarin and the constituents of the heartwood ofPodocarpus hallii KIRK. Tetrahedron 19: 209–217.Google Scholar
  75. —,P. K. Grant, C. Huntrakul &R. J. Weston. 1969. Diterpenes ofDacrydium kirkii. Austral. J. Chem. 22: 1691–1697.Google Scholar
  76. —,R. J. Madden &J. C. Parnel. 1971. Chemistry of the Podocarpaceae, 28. Constituents of some Podocarpus—and other species. Austral. J. Chem. 24: 217–221.Google Scholar
  77. —,I. R. Burfitt, T. E. Goodwin &E. Wenkert. 1975. The structure of hallol. J. Organic Chem. 40: 3789–3791.Google Scholar
  78. —,B. A. Grigor &T. Mee-Ing. 1981. Chemistry of the Podocarpaceae, LVI. Resin acids fromPhyllocladus trichomanoides. Austral. J. Chem. 34: 1073–1078.Google Scholar
  79. —,R. E. Cox, K. D. Croft &D. Sidwell. 1983. Phenolic diterpenoids of some Podocarps. Phytochemistry 22: 1163–1166.Google Scholar
  80. —— &D. Sidwell. 1984. Phenolic diterpenoids ofPodocarpus ferrugineus and other Podocarps. Phytochemistry 23: 333–336.Google Scholar
  81. —,J. M. Coddington, M. J. Stone et al. 1989. Diterpenoids from the wood ofAgathis vitiensis. Phytochemistry 28: 1675–1679.Google Scholar
  82. Caputo, R. &L. Mangoni. 1974. Diterpenes fromAraucaria bidwillii. Phytochemistry 13: 467–470.Google Scholar
  83. —,— &P. Monaco. 1972. Diterpenesof Araucaria excelsa. Phytochemistry 11: 839–840.Google Scholar
  84. —,——. 1974a. Araucariaceae, III. Two new labdane norditerpenediols fromAraucaria excelsa. Gazz. Chim. Ital. 104: 491–498.Google Scholar
  85. —,—,— &L. Previtera. 1974b. New labdane diterpenes fromAraucaria cookii. Phytochemistry 13:471–174.Google Scholar
  86. —,V. Dovinola &L. Mangoni. 1974c. New diterpenes fromAraucaria cunninghamii. Phytochemistry 13:475–478.Google Scholar
  87. —,L. Mangoni, P. Monaco &L. Previtera. 1975. Araucariaceae, V. Diterpenes fromAraucaria angustifolia. Gazz. Chim. Ital. 105: 639–642.Google Scholar
  88. Carman, R. M. &D. E. Cowley. 1967. Diterpenoids, XII. “Dundatholic acid.” Austral. J. Chem. 20: 193–196.Google Scholar
  89. — &H. C. Deeth. 1967. Diterpenoides, XIV. 4-Epidehydroabietic acid from the oleoresin ofCallitris columellaris. Austral. J. Chem. 20: 2789–2793.Google Scholar
  90. —— 1971. Diterpenoids, XXVI. New diterpenoid acid from the oleoresin ofCallitris columellaris. Austral. J. Chem. 24: 353–359.Google Scholar
  91. — &N. D. Dennis. 1964. Diterpene acids ofAgathis robusta oleoresin. Austral. J. Chem. 17: 390–392.Google Scholar
  92. — &P. K. Grant. 1961. Biformene. J. Chem. Soc. 1961: 2187–2191.Google Scholar
  93. — &R. A. Marty. 1966. Diterpenoids, IX.Agathis microstachya oleoresin. Austral. J. Chem. 19: 2403–2406.Google Scholar
  94. ——. 1968. Diterpenoids, XVI. Agathalic acid—A new naturally occurring diterpenoid. Austral. J. Chem. 21: 1923–1925.Google Scholar
  95. -,R. E. Corbett, P. K. Grant et al. The diterpenesof Dacrydium colensoi, V. Tetrahedron Lett. 1966:3173–3179.Google Scholar
  96. —,W. J. Craig &I. M. Shaw. 1973. Diterpenoids, XXXI. Three new resin acids. Austral. J. Chem. 26: 209–214.Google Scholar
  97. Cassady, J. M., T. K. Lightner, T. G. McCloud et al. 1984. Revised structure of podolactone C, the antileukemic componentof Podocarpus milanjanus RENDLE. J. Organic Chem. 49: 942–945.Google Scholar
  98. Chalchat, J. C., R. P. Garry, A. Michet &A. Remery. 1985. The essential oils of two chemotypes ofPinus sylvestris. Phytochemistry 24: 2443–2444.Google Scholar
  99. Chaw, S.-M., H. Long, B.-S. Wang et al. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. J. Molec. Evol. 37: 624–630.PubMedGoogle Scholar
  100. —,H.-M. Sung, H. Long et al. 1995. The phylogenetic positions of the conifer generaAmento-taxus, Phyllocladus, andNageia inferred from 18S rRNA sequences. J. Molec. Evol. 41:224–230.PubMedGoogle Scholar
  101. —,A. Zharkikh, H.-M. Sung et al. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: Analysis of nuclear 18S rRNA sequences. Molec. Biol. & Evol. 14: 56–68.Google Scholar
  102. Chen, W., P. Chang, B. Wu &Q. Zheng. 1991. Studies of the chemical constituents ofTaxus yunnanensis. Chem. Abstr. 116: 191082z.Google Scholar
  103. Cheng, Y. S. &M. D. Tsai. 1972. Terpenes and sterols ofCunninghamia konishii. Phytochemistry 11: 2108–2109.Google Scholar
  104. — &E. von Rudloff. 1970. The volatile oil of the leaves ofChamaecyparis nootkatensis. Phytochemistry 9: 2517–2527.Google Scholar
  105. —,T. Nishino &T. Toda. 1971. Essential oil components of the Benihi tree. Chem. Abstr. 76: 70134q.Google Scholar
  106. —,E. H. T. Chen &G. J. M. Fang. 1975. The neutral part of the bark ofPinus luchuensis MAYER. Chem. Abstr. 84: 132658q.Google Scholar
  107. Cherches, K. A., I.I. Bardyshev &O. T. Tkachenko. 1960. Resin acids from the oleoresin of Ayansk spruce. Chem. Abstr. 55: 7466d.Google Scholar
  108. —,—,A. N. Bulgakov &E. A. Akinchits. 1965. Resin acids of the oleoresinsof Pinus pityusa andPinus pallasiana and their hybrid. Chem. Abstr. 64: 10090b.Google Scholar
  109. Chernenko, G. F., L. I. Demenkova, E. E. Ivanova &E. N. Shmidt. 1990. Extractives from the bark ofPicea ajanensis. Chem. Abstr. 115: 25973a.Google Scholar
  110. Chernyaeva, G. N. &T. V. Barakov. 1983. Seasonal dynamics ofAbies sibirica essential oils. Chem. Abstr. 100: 135959y.Google Scholar
  111. Cheung, H. T. A., T. Miyase, M. P. Lenguyen &M. A. Smal. 1993. Further acidic constituents and neutral componentsof Pinus massoniana resin. Tetrahedron 49: 7903–7915.Google Scholar
  112. —,S. L. Fu &M. A. Smal. 1994. Inhibition of a platelet aggregation by diterpene acids fromPinus massoniana resin. Arzneimittelforsch. 44: 17–25.PubMedGoogle Scholar
  113. Chirkova, M. A. &V. A. Pentegova. 1962. The sesquiterpenes ofAbies sibirica. Chem. Abstr. 57: 14183b.Google Scholar
  114. —. 1969. Neutral substances inAbies sibirica oleoresin, II. Structure of neoabienol. Chem. Abstr. 72: 32057b.Google Scholar
  115. Chow, Y. L. &H. Erdtman. 1962. The chemistry of the natural order Cupressales 42. Heartwood constituents ofTetraclinis articulata (VAHL) MAST. Acta Chem. Scand. 16: 1291–1295.Google Scholar
  116. Chu, A., J. Zajicek, L. B. Davin et al. 1992. Mixed acetoxy-benzoxy taxanes esters fromTaxus brevifolia. Phytochemistry 31: 4249–4249.Google Scholar
  117. Clarke, D. B., S. F. R. Hinkley &R. T. Weavers. 1997. Waihoensene: A new laurenene-related diterpene fromPodocarpus totara var.waihoensis. Tetrahedron Lett. 38: 4297–4300.Google Scholar
  118. Conner, A. H. &J. W. Rowe. 1977. New neutral diterpenes from southern pine tall oil. Phytochemistry 16: 1777–1781.Google Scholar
  119. —,B. A. Nagasampagi &J. W. Rowe. 1980. Terpenoid and other extractives of western white pine bark. Phytochemistry 19: 1121–1131.Google Scholar
  120. —,T. P. Haromy &M. Sundaralingam. 1981. 30-Nor-3b-methoxyserrat-14-en-21-one: First reported natural occurrence of a norserratene triterpene. J. Organic Chem. 46: 2987–2988.Google Scholar
  121. Cool, L. G. 1996. Sesquiterpene alcohols from foliage ofFitzroya cupressoides. Phytochemistry 42: 1015–1019.Google Scholar
  122. — &K. Jiang. 1995a. Thujopsene and cis-muurolane-related sesquiterpenoids fromCupressus bakeri. Phytochemistry 40: 177–181.Google Scholar
  123. —— 1995b. A seco-amorphane tri-ether fromCupressus macnabiana foliage. Phytochemistry 40:857–859.Google Scholar
  124. —,A. B. Power &E. Zavarin. 1991. Variability of foliage terpenes ofFitzroya cupressoides. Biochem. Syst. Ecol. 19:421–432.Google Scholar
  125. Coppen, J. W., C. Gay, D. J. James et al. 1993a. Variability in xylem resin composition amongst natural populations of IndonesianPinus merkusii. Phytochemistry 33: 129–136.Google Scholar
  126. —,—,—et al. 1993b. Xylem resin composition and chemotaxonomy of three varieties ofPinus caribaea. Phytochemistry 33: 1103–1 111.Google Scholar
  127. Corbett, R. E. &W. G. Hanger. 1954. The structure of metrosiderene. J. Chem. Soc. 1954:1179–1181.Google Scholar
  128. — &R. A. J. Smith. 1967a. Diterpenes from the volatile oil ofDacrydium colensoi. J. Chem. Soc. C 1967: 300–302.Google Scholar
  129. —— 1967b. Selin-11-en-4a-ol from the essential oilof Podocarpus dacrydioides. Tetrahedron Lett. 1967: 1009–1012.Google Scholar
  130. — &L. C. K. Wong. 1956. Volatile oil ofDacrydium biforme. J. Sci. Food Agric. 6: 739–743.Google Scholar
  131. —,D. R. Lauren &R. T. Weavers. 1979. The structure of laurenene, a new diterpene from the essential oil ofDacrydium cupressinum. J. Chem. Soc. Perkin Trans. 1 1979: 1774–1790.Google Scholar
  132. Couchman, F. M. &E. von Rudloff. 1965. Gas-liquid chromatography of terpenes, XIII. The volatile oil of the leavesof Juniperus horizontalis MOENCH. Canad. J. Chem. 43: 1017–1021.Google Scholar
  133. Crawford, D. J. &D. E. Giannasi. 1982. Plant Chemosystematics. BioScience 32: 114–124.Google Scholar
  134. Das, B., S. P. Rao, K. V. N. S. Srinivas et al. 1995. A taxoid from needles of HimalayanTaxus baccata. Phytochemistry 38: 671–674.Google Scholar
  135. Dauben, W. G. &V. F. German. 1966. The structure of lambertianic acid, a new diterpenic acid. Tetrahedron 22: 679–683.Google Scholar
  136. —,B. Weinstein, P. Ilm &A. B. Anderson. 1961. The structure of δ-cadinol. Tetrahedron 15: 217–222.Google Scholar
  137. Dawidar, A. M., S. T. Ezmirly &M. Abdel-Mogib. 1991. Sesquiterpenes and diterpenes fromJuniperus phoenicea L. Pharmazie 46: 472–473.Google Scholar
  138. Dembitskii, A., R. A. Yuring, L. A. Ignatova &M. I. Goryaev. 1969. Substances found in essential oils, L. Composition ofJuniperus pseudosabina essential oil. Chem. Abstr. 73: 28759k.Google Scholar
  139. Deng, J., J. Liu &S. Zhao. 1997. Diterpenes from the root bark of Chinese fir (Cunninghamia lanceolata). Chem. Abstr. 127: 260112a.Google Scholar
  140. De Paiva Campello, J. &S. Ferreira Fonseca. 1975. Diterpenes fromAraucaria angustifolia. Phytochemistry 14: 2299–2300.Google Scholar
  141. —,—,C. J. Chang &E. Wenkert. 1975. Terpenes ofPodocarpus lambertius. Phytochemistry 14: 243–248.Google Scholar
  142. De Pascual Teresa, J., A. San Feliciano &J. M. del Corral. 1974. Components ofJuniperus oxycedrus fruits. An. Quim. 70: 1015–1019.Google Scholar
  143. —,I. S. Bellido, A. San Feliciano &A. Barrero. 1976. Components ofJuniperus communis L. fruits, II. Essential oil. An. Quim. 72: 657–660.Google Scholar
  144. —,S. San Feliciano, T. Egido &A. F. Barrero. 1977a. Components ofJuniperus thurifera L. berries, II. 8-α-Acetoxyelemol. An. Quim. 73: 151–152.Google Scholar
  145. —,A. F. Barrero, A. San Feliciano &I. Sanchez Bellido. 1977b. Components of the berries ofJuniperus communis L., IV. Neutral fraction. An. Quim. 73: 568–573.Google Scholar
  146. —,—,— &M. C. Caballero. 1978a. Components of the berries ofJuniperus oxycedrus L., V. γand β1-bulgarene. An. Quim. 73: 1527–1528.Google Scholar
  147. —,A. San Feliciano, M. L. Tabernero et al. 1978b. Components of the berries ofJuniperus phoenicea L., I. Acid fraction. An. Quim. 74: 459–464.Google Scholar
  148. —,— &A. F. Barrero. 1978c. Components of the berriesof Juniperus phoenicea L., II. Neutral fraction. An. Quim. 74: 465–469.Google Scholar
  149. —,A. F. Barrero, M. C. Caballero &A. San Feliciano. 1978d. Components ofJuniperus oxycedrus berries, VI. Essential oil. An. Quim. 74: 966–971.Google Scholar
  150. —,—,——. 1978e. Components ofJuniperus sabina L. berries, I. Hydrocarbons of essential oil. An. Quim. 74: 1093–1096.Google Scholar
  151. —,—,A. San Feliciano &M. C. Caballero. 1980a. Components of the essential oils ofJuniperus thurifera berries. Chem. Abstr. 93: 245243e.Google Scholar
  152. —,—,L. Muriel et al. 1980b. New natural diterpene acids fromJuniperus communis. Phytochemistry 19: 1153–1156.Google Scholar
  153. —,S. San Feliciano, J. M. del Corral &A. F. Barrero. 1983. Terpenoids fromJuniperus sabina. Phytochemistry 22: 300–301.Google Scholar
  154. Dhar, K. L., O. P. Suri, S. Sood &R. P. Sood. 1990. Three new labdane diterpenes from leaves and twigs ofJuniperus pseudosabina HOOK, andp2D-NMR-studies of 3-acetoxymanool. Indian J. Chem., B. 29:911–917.Google Scholar
  155. Ding, T., H. Liu &Q. Pu. 1982. Studies on the resin constituents of Taxodiaceae, I. Sesquiterpene and diterpene components. Chem. Abstr. 98: 86222g.Google Scholar
  156. Doi, K. &T. Kawamura. 1972. A new diterpene fromJuniperus rigida. Phytochemistry 11: 841–842.Google Scholar
  157. — &T. Shibuya. 1972a. Sesquiterpenes ofJuniperus conferta. Phytochemistry 11: 1174.Google Scholar
  158. ——. 1972b. Diterpenes ofJuniperus conferta. Phytochemistry 11: 1175.Google Scholar
  159. ——,T. Matsuo &S. Miki. 1971. Longifol-7(15)-en-5β-ol and longifol-3α,7α-oxide: New sesquiterpenes fromJuniperus conferta PARL. Tetrahedron Lett. 1971: 4003–4006.Google Scholar
  160. Do Khac, D., J. Bastard &M. Fetizon. 1979. Acide nor-anticopalique d’Agathislanceolata. Phytochemistry 18: 1839–1842.Google Scholar
  161. Dolejs, L. &V. Herout. 1961. Composition of the oil and root extract fromFokienia hodginsii. Chem. Abstr. 56: 7367g.Google Scholar
  162. Drebushchak, T. D., E. N. Shmidt, V. A. Khan et al. 1982. Terpenoid resins ofPinus pithyusa andPinus eldarica. Chem. Abstr. 97: 159493n.Google Scholar
  163. Dubovenko, Z. V., V. A. Babkin &V. A. Pentegova. 1970a. Sesquiterpenoids ofPicea ajanensis andPinus koraiensis oleoresin. Chem. Abstr. 75: 137513n.Google Scholar
  164. —,M. A. Chirkova, N. K. Kashtanova et al. 1970b. Siberian conifer resin sesquiterpenoids. Chem. Abstr. 76: 23030t.Google Scholar
  165. Dyachenko, L. G., V. I. Roshchin, V. E. Kovalev et al. 1986. Neutral compounds of extractible substance ofLarix gmelini. Chem. Abstr. 105: 75875j.Google Scholar
  166. Eberhardt, T. L., J. S. Han, J. A. Micales &R. A. Young. 1994. Decay resistance in conifer seed cones: Role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforsch. 48: 278–284.Google Scholar
  167. Eckenwalder, J. E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger. Madroño 23: 237–300.Google Scholar
  168. Edwards, O. E., A. Nicholson &M. N. Rodger. 1960. The structure of sandaracopimaric acid. Canad. J. Chem. 38: 663–667.Google Scholar
  169. Eglinton G. &G. A. Logan. 1991. Molecular preservation. Philos. Trans. Roy. Soc. London, B, 333: 315–328.Google Scholar
  170. Ekundayo, O. 1980a. Essential oils, III. Analysis of Table Mountain pine (Pinus pungens LAMB.) needle oil by gas chromatography-mass spectrometry (GC/MS). J. Chromatogr. Sci. 18: 368–369.Google Scholar
  171. Ekundayo, O. 1980b. Essential oils, IV. Composition of the volatile leaf (needle) oils ofPinus species. Z. Pflanzenphysiol. 99: 235–239.Google Scholar
  172. Enzell, C. &M. Krolikowska. 1963. The chemistry of the natural order Cupressales 48. Heartwood constituents ofCupressus arizonica GREENE. Ark. Kemi 20: 157–162.Google Scholar
  173. — &O. Theander. 1962. The constituents of conifer needles, II. Pinifolic acid, a new diterpene acid isolated fromPinus sylvestris L. Acta Chem. Scand. 16: 607–614.Google Scholar
  174. Erdtman, H. 1955. The chemistry of heartwood constituents of conifers and their taxonomic importance. Experientia, Suppl. II: 156–180.Google Scholar
  175. —. 1968. Chemical principles in chemosystematics. Rec. Adv. Phytochem. 1: 13–26.Google Scholar
  176. — &J. Hamatha. 1979. Phenolic and terpenoid heartwood constituents ofLibocedrus yateensis. Phytochemistry 18: 1495–1500.Google Scholar
  177. — &T. Norin. 1966. The chemistry of the order Cupressales. Progr. Chem. Organic Natural Prod. 24: 207–287.Google Scholar
  178. — &Z. Pelchowicz. 1955. The chemistry of the natural order Cupressales, XV. Heartwood constituents ofAustrocedrus chilensis (DON) FLORIN et BOUTELJE. Acta Chem. Scand. 9: 1728–1729.Google Scholar
  179. — &B. R. Thomas. 1958. The chemistry of the natural order Cupressales, XX. Heartwood constituents of the genusWiddringtonia. Acta Chem. Scand. 12: 267–273.Google Scholar
  180. — &J. G. Topliss. 1957. The chemistry of the natural order Cupressales, XVIII. Nootkatene, a new sesquiterpene type hydrocarbon from the heartwood ofChamaecyparis nootkatensis (LAMB.) SPACH. Acta Chem. Scand. 11: 1157–1161.Google Scholar
  181. — &H. Vorbrüggen. 1960. Die Chemie der natürlichen Ordnung Cupressales XXXII. Über die Inhaltsstoffe des Kernholzes vonAthrotaxis selaginoides DON,A. cupressoides DON undChamaecyparis pisifera SIEB, et ZUCC. Acta Chem. Scand. 14: 2161–2168.Google Scholar
  182. — &L. Westfelt. 1963. The neutral diterpenes from pine wood resin. Acta Chem. Scand. 17: 1826–1827.Google Scholar
  183. —,B. Kimland &T. Norin. 1966. Wood constituents ofDucampopinus krempfii (LECOMTE) CHEVALIER (Pinus krempfii LECOMTE). Phytochemistry 5: 927–931.Google Scholar
  184. —,—,— &P. J. L. Daniels. 1968. The constituents of the “pocket resin” from Douglas firPseudotsuga menziesii (MIRB.) FRANCO. Acta Chem. Scand. 22: 938–942.Google Scholar
  185. Ettouati, L., A. Ahond, O. Convert et al. 1988. Plants from New Caledonia, 114. Taxanes isolated from the leaves ofAustrotaxus spicata COMPTON (Taxaceae). Bull. Soc. Chim. France 1988: 749–755.Google Scholar
  186. Fang, J. M., S. K. Wu &Y. S. Cheng. 1985. A study of the constituents of the bark ofTsuga chinenesis PRITZ. var.formosana. J. Chin. Chem. Soc. 32: 477–480.Google Scholar
  187. —,S. T. Jan &Y. S. Cheng. 1987. Terpenoids fromCalocedrus formosana. Phytochemistry 26: 853–854.Google Scholar
  188. —,W. C. Su, W. C. Chuan &Y. S. Cheng. 1989a. A study of the constituents of the wood of Armand pine. J. Chin. Chem. Soc. 36: 483–485.Google Scholar
  189. —,K. C. Hsu &Y. S. Cheng. 1989b. Terpenoids from leaves ofCalocedrus formosana. Phytochemistry 28: 1173–1175.Google Scholar
  190. —,W. Y. Tsai &Y. S. Cheng. 1991a. Serratene triterpenoids fromPinus armandii bark. Phytochemistry 30: 1333–1336.Google Scholar
  191. —,C. I. Lang, W. L. Chen &Y. S. Cheng. 1991b. Diterpenoid acids from the leaves of Armand pine. Phytochemistry 30: 2793–2795.Google Scholar
  192. —,C. K. Lee &Y. S. Cheng. 1993a. Diterpenes from leaves ofJuniperus chinensis. Phytochemistry 33: 1169–1172.Google Scholar
  193. —,Y. C. Sou, Y. H. Chiu &Y. S. Cheng. 1993b. Diterpenes from the bark ofJuniperus chinensis. Phytochemistry 34: 1581–1584.Google Scholar
  194. —,Y. C. Chen, B. W. Wang &Y. S. Cheng. 1996. Terpenes from the heartwoodof Juniperus chinensis. Phytochemistry 41: 1361–1365.Google Scholar
  195. Fang, S., Y. Xu, Y. Li &M. Chen. 1990. Fleurylactones, a new type of sesquiterpene dilactone fromPodocarpus fleuryi HICKLE. Chem. Abstr. 113: 55897e.Google Scholar
  196. Figueiredo, M. R., M. A. C. Kaplan &O. R. Gottlieb. 1995. Diterpenes, taxonomic markers? Pl. Syst. & Evol. 195:149–158.Google Scholar
  197. Fleck, E. E. &S. Palkin. 1939. The presence of dihydroabietic acid in pine oleoresin and rosin. J. Amer. Chem. Soc. 61: 1230–1232.Google Scholar
  198. Florin, R. 1948. On the morphology and relationships of the Taxaceae. Bot. Gaz. (Crawfordsville) 110: 31–39.Google Scholar
  199. —. 1951. Evolution in Cordaites and Conifers. Acta Horti Berg. 15: 285–388.Google Scholar
  200. Fozdar, B. I., S. Khaan &K. M. Shansuddin. 1989. Norditerpenenedilactones, macrophyllic acid and biflavones fromPodocarpus latifolius. J. Indian Chem. Soc. 66: 423–424.Google Scholar
  201. Franich, R. A., E. Jakobsson, S. Jensen et al. 1993. Development of non-destructive methods for the determination of airborne pollutants in pine needles. Fresenius’ J. Anal. Chem. 347: 337–343.Google Scholar
  202. Fu, D.-Z. 1992. Nageiaceae—A new gymnosperm family. Acta Phytotax. Sinica 30: 515–528.Google Scholar
  203. Fujita, S. &K. Kawai. 1991. Components of the essential oils ofMetasequoia glyptostroboides HU et CHEN, III. Changes in the oxidation products of β-caryophyllene and α-humulene during growth. Chem. Abstr. 117:248540z.Google Scholar
  204. Gabetta, B., F. Peterlongo, G. Zini et al. 1995. Taxanes fromTaxus ×media. Phytochemistry 40:825–1828.Google Scholar
  205. Gallagher, M. J. &M. D. Sutherland. 1960. Terpenoid chemistry, IV. The turpentine ofAraucaria cunninghamii AIT. Austral. J. Chem. 13: 367–371.Google Scholar
  206. Gambliel, H. A. &R. G. Cates. 1995. Terpene changes due to maturation and canopy level in Douglasfir (Pseudotsuga menziesii) flush needle oil. Biochem. Syst. Ecol. 23: 469–476.Google Scholar
  207. Gamov, N. S., M. A. Chirkova, T. F. Titova et al. 1981. Labdane and cembrane diterpenoids fromPicea ajanensis resin. Chem. Abstr. 95: 220180k.Google Scholar
  208. Garnero, J., P. Buil, D. Goulain &R. Tabacchi. 1979. Contribution to the study of the chemical components of the essential oil from the terminal branches of the Cypress tree in the Grasse area. Chem. Abstr. 92: 99427d.Google Scholar
  209. Glasby, J. S. 1991. Dictionary of plants containing secondary metabolites. Taylor & Francis, London.Google Scholar
  210. Gleizes, M., A. Marpeau, G. Pauly &C. Bernard-Dagan. 1984. Sesquiterpene biosynthesis in maritime pine needles. Phytochemistry 23: 1257–1259.Google Scholar
  211. Gornostaeva, L. I., S. M. Repyakh &E. D. Levin. 1981. Sesquiterpene content of coniferous essential oils from the family Pinaceae. Chem. Abstr. 95: 192197a.Google Scholar
  212. Gorunovic, M., N. Mimica-Dukic, G. Kite &D. Stosic. 1992. Sur l’huile essentielle dePinus peuce GRISEB., Pinacées de Monténégro. Pharmazie 47: 647–648.Google Scholar
  213. Goryaev, M. I. &D. R. Dzhalilov. 1959. Analysis of the essential oil of Cossack juniper. Chem. Abstr. 54: 23203d.Google Scholar
  214. —,L. A. Ignatova, R. A. Yurina &A. D. Dembitskii. 1967. The composition of essential oils, XXXIII. Composition ofJuniperus turkestanica essential oil. Chem. Abstr. 68: 89823v.Google Scholar
  215. Gough, L. J. 1964. Conifer resin constituents. Chem. Ind. 1964: 2059–2060.Google Scholar
  216. — &J. S. Mills. 1970. The occurrence of imbricatolic acid inCupressus resins. Phytochemistry 9: 1093–1096.Google Scholar
  217. ——. 1974. Diterpenes ofCalocedrus decurrens. Phytochemistry 13: 1612–1613.Google Scholar
  218. Grant, P. K. &M. J. A. McGrath. 1970. The diterpenes ofDacrydium colensoi, VI. Tetrahedron 26: 1619–1629.Google Scholar
  219. — &M. H. G. Munro. 1965. The diterpenes ofDacrydium colensoi, III. Tetrahedron 21: 3599–3604.Google Scholar
  220. —,— &N. R. Hill. 1965. The diterpenes ofDacrydium colensoi, II. J. Chem. Soc. 1965: 3846–3850.Google Scholar
  221. —,C. Huntrakul &D. R. J. Sheppard. 1967. Diterpenes ofDacrydium bidwillii. Austral. J. Chem. 20: 969–972.Google Scholar
  222. —,— &J. M. Robertson. 1969. Diterpenes ofDacrydium colensoi, VIII. Sandaracopimaradien-19-ol and 2α-carboxycolensen-2β-ol. Austral. J. Chem. 22: 1265–1270.Google Scholar
  223. Grantham, P. J. &A. G. Douglas. 1980. The nature and origin of sesquiterpenoids in some tertiary fossil resins. Geochim. Cosmochim. Acta 44: 1801–1810.Google Scholar
  224. Gray, P. S. &J. S. Mills. 1964. The isolation of abienol from Canada balsam, the oleoresinof Abies balsamea (L.) Mill. J. Chem. Soc. 1964: 5822–5825.Google Scholar
  225. Grigoryuk, G. P., V. A. Khan, A. N. Kislitsyn et al. 1987. Sesquiterpene and diterpene hydrocarbons of stumpwood extracts fromPinus sylvestris L. Chem. Abstr. 106: 192814v.Google Scholar
  226. GRIN, [].Google Scholar
  227. Gupta, B. K., V. Paul &K. L. Handa. 1963. Isolation of sugiol fromJuniperus macropoda. Indian J. Chem., B. 1: 188–189.Google Scholar
  228. Gupta, K., K. S. Ayyar &R. Dayal. 1987. Essential oil of IndianCyphomeria japonica. J. Indian Chem. Soc. 64: 66–67.Google Scholar
  229. GYMNOSPERM DATA BASE. [].Google Scholar
  230. Haagen-Smit, A. J., T. H. Wang &N. T. Mirov. 1951. Composition of gum turpentine of pines, XIII. A report onPinus albicaulis. J. Amer. Pharm. Assoc. 40: 557–559.Google Scholar
  231. Haeuser, J. 1965. Structure du larixol. Bull. Soc. Chim. France 1965: 2645–2648.Google Scholar
  232. Hafizoglu, H. 1987. Studies on the chemistry ofCedrus libani A. RICH, I. Wood extractives ofCedrus libani. Holzforsch. 41: 27–38.Google Scholar
  233. — &M. Reunanen. 1994. Composition of oleoresins from bark and conesof Abies nordmanniana andPicea orientalis. Holzforsch. 48: 7–11.Google Scholar
  234. Harborne, J. B. &H. Baxter (eds.). 1993. Phytochemical dictionary. Taylor & Francis, London.Google Scholar
  235. Harris, G. C. 1948. Resin acids, V. The composition of the gum oleoresin acids ofPinus palustris. J. Amer. Chem. Soc. 70: 3671–3674.Google Scholar
  236. — &T. F. Sanderson. 1948a. Resin acids, I. An improved method of isolation of resin acids: The isolation of neoabietic acid. J. Amer. Chem. Soc. 70: 334–339.Google Scholar
  237. —. 1948b. Resin acids, III. The isolation of dextropimaric acid and a new pimaric-type acid, isodextropimaric acid. J. Amer. Chem. Soc. 70: 2079–2081.Google Scholar
  238. Harrison, L. &Y. Asakawa. 1987. 18-Oxoferruginol from the leaf ofTorreya nucifera. Phytochemistry 26: 1211–1212.Google Scholar
  239. Hart, J. A. 1987. A cladistic analysis of conifers: Preliminary results. J. Arnold Arbor. 68: 269–307.Google Scholar
  240. Hasegawa, S. &Y. Hirose. 1982. Terpenoids from the seed ofThujopsis dolabrata var.dolabrata. Phytochemistry 21: 643–646.Google Scholar
  241. ——. 1983. The structure of potamogetonin. Chem. Lett. 1983: 1–4.Google Scholar
  242. ——. 1985. Diterpenes from the seed ofSciadopitys verticillata, Phytochemistry 24: 2041–2046.Google Scholar
  243. —,T. Miura, Y. Hirose &Y. Iitaka. 1985a. A new rearranged lanostanoid, mariesiic acid, from the seedof Abies mariesii. Chem. Lett. 1985: 1589–1592.Google Scholar
  244. —,T. Kojima &Y. Hirose. 1985b. Terpenoids from the seed ofChamaecyparis pisifera: The structures of six diterpenoids. Phytochemistry 24: 1545–1551.Google Scholar
  245. Hashi, M. 1961. Natural resins, X. Acidic constituents in balsam ofAbies sachalinensis. Chem. Abstr. 56: 2615e.Google Scholar
  246. Hayashi, T., H. Kakisawa, S. Ito et al. 1972. Structure of the further norditerpenoids ofPodocarpus macrophyllus. Tetrahedron Lett. 1972: 3385–3388.Google Scholar
  247. Hayashi, Y., Y. Yuki, T. Matsumoto &T. Sakan. 1977. New congeners of cytotoxic nor-diterpenoid dilactones inPodocarpus nagi. Tetrahedron Lett. 1977: 2953–2956.Google Scholar
  248. Hayata, B. 1931. The Sciadopityaceae represented bySciadopitys verticillata Sieb, et Zucc, an endemic species of Japan. Bot. Mag. (Tokyo) 45: 567–569.Google Scholar
  249. Hayman, A. R. &R. T. Weavers. 1990. Terpenes of foliage oils fromHalocarpus bidwillii. Phytochemistry 29: 3157–3162.Google Scholar
  250. —,N. B. Perry &R. T. Weavers. 1986. Juvenile-adult dimorphism in foliage ofDacrydium biforme. Phytochemistry 25: 649–653.Google Scholar
  251. He, K., L. Zeng, G. Shi et al. 1997. Bioactive compounds fromTaiwania cryptomerioides. J. Nat. Prod. (Lloydia) 60: 38–40.Google Scholar
  252. Hegnauer, R. 1962. Chemotaxonomie der Pflanzen. Vol. 1. Birkhäuser, Basel.Google Scholar
  253. —. 1992. Chemotaxonomie der Pflanzen. Vol. 7. Birkhäuser, Basel.Google Scholar
  254. Hembree, J. A., C. J. Chang, J. L. McLaughlin et al. 1979. The cytotoxic norditerpene dilactones ofPodocarpus milanjanus andPodocarpus sellowii. Phytochemistry 18: 1691–1694.Google Scholar
  255. Hieda, T., M. Tazaki, Y. Morishita et al. 1996. Sesquiterpene alcohols fromChamaecyparis obtusa leaf oil. Phytochemistry 42: 159–162.Google Scholar
  256. Hinkley, S. F. R., N. B. Perry &R. T. Weavers. 1994. Confirmation of structure and absolute stereo-hemistry of 9-epi-β-caryophyllane fromDacrydium cupressinum. Phytochemistry 35: 1489–1494.Google Scholar
  257. Hirose, Y., S. Hasegawa, N. Ozaki &Y. Jitaka. 1983. Three new terpenoid quinone methides from the seed ofChamaecypanis obtusa. Tetrahedron Lett. 24: 1535–1538.Google Scholar
  258. Holeman, M., Ait Igri &M. Berrada. 1990. Validity ofCupressus atlantica as a separate species, I. Steam distillation oftwigs and wood, II. Petroleum ether extract of wood. Pl. Med. Phytotherap. 24: 165–174.Google Scholar
  259. Hunt, R. S., M. D. Meagher &J. F. Manville. 1990. Morphological and foliar terpene characteristics to distinguish between western and eastern white pine. Canad. J. Bot. 68: 2525–2530.Google Scholar
  260. Hürlimann, H. &E. Cherbuliez. 1981. Konstitution und Vorkommen der organischen Pflanzenstoffe (exclusive Alkaloide). Supplement 2. Birkhäuser, Basel.Google Scholar
  261. Iconomu, N. &G. Valkanas. 1966. Über die Zusammensetzung des Harzbalsams einiger Pinus-Arten Griechenlands. Pharm. Acta Helv. 41: 59–63.Google Scholar
  262. Hoff, P. M. &N. T. Mirov. 1953a. Composition of gum turpentines of pines, XVI. A report onPinus oocarpa andP. pseudostrobus from Chiapas andP. cooperi from Durango. J. Amer. Pharm. Assoc. 42: 46–49.Google Scholar
  263. ——. 1953b. Composition of gum turpentines of pines, XII.Pinus montezumae from Chiapas andP. oocarpa var.trifoliata andP. durangensis from Durango, Mexiko. J. Amer. Pharm. Assoc. 42: 464–467.Google Scholar
  264. ——. 1956. Composition of gum turpentines of pines, XXV. A report on two pines:Pinus koraiensis from Korea andP. peuce from Macedonia. J. Amer. Pharm. Assoc. 45: 77–81.Google Scholar
  265. Inoue, M., S. Hasegawa &Y. Hirose. 1985. Terpenoids from the seed ofPlaytcladus orientalis. Phytochemistry 24: 1602–1604.Google Scholar
  266. Ito, S., K. Endo &H. Narita. 1974. α-Pseudowiddrene, a new sesquiterpene hydrocarbon fromThujopsis dolabrata SIEB, et ZUCC. Tetrahedron Lett. 1974: 1041–1043.Google Scholar
  267. Jiang, Z. &R. Li. 1988. Chemical constituents of the essential oil from twigs and barkof Abies nephrolepis (TRAUTV.) MAXIM. Chem. Abstr. 111: 150556k.Google Scholar
  268. Jin, Q., Y. Guo, D. Shi et al. 1994. Composition of volatile needle oil fromPinus pumila REGEL. Chem. Abstr. 122: 286659f.Google Scholar
  269. Jolad, S. D., J. J. Hoffmann, K. H. Schram &J. R. Cole. 1984. A new diterpene fromCupressus goveniana var.abramsiana: 5β-hydroxy-6-oxasugiol (cupresol). J. Nat. Prod. (Lloydia) 47: 983–987.Google Scholar
  270. Joye, N. A. &R. V. Lawrence. 1963. The isolation of a new diterpene acid. J. Organic Chem. 28:3274.Google Scholar
  271. —,— &L. J. Gough. 1964. Presence of sandaracopimaric and Δ8(9)-isopimaric acids in pine oleoresin. J. Organic Chem. 31: 320–321.Google Scholar
  272. Kaneko, N., S. Hasegawa &Y. Hirose. 1985. Terpenoids from seeds ofAbies firma. Phytochemistry 24: 185–186.Google Scholar
  273. Kariyone, T. (ed.) 1957–1983. Annual index of the reports on plant chemistry. Hirokawa Publ. Co., Tokyo.Google Scholar
  274. Karlsson, B., A. M. Pilotti, A. C. Soederholm et al. 1978. Structure and absolute configuration of verticillol, a macrocyclic diterpene alcohol from the wood ofSciadopitys verticillata Sieb, et Zucc. (Taxodiaceae). Tetrahedron 34: 2349–2354.Google Scholar
  275. Karrer, W. 1958. Konstitution und Vorkommen der organischen Pflanzenstoffe (exclusive Alkaloide). Birkhäuser, Basel.Google Scholar
  276. —,E. Cherbuliez &C. H. Eugster. 1977. Konstitution und Vorkommen der organischen Pflanzenstoffe (exclusive Alkaloide). Supplement 1. Birkhäuser, Basel.Google Scholar
  277. Kashtanova, N. K. &V. A. Pentegova. 1962. The rosin acids of the oleoresinof Pinus sibirica. Chem. Abstr. 57: 8885a.Google Scholar
  278. —,V. A. Raldugin &V. A. Pentegova. 1970. Korean pine (Pinus koraiensis) diterpene compounds. Chem. Abstr. 76: 1886z.Google Scholar
  279. Kawai, K., C. Takahashi, T. Miyamoto et al. 1993. Chemical differences between two populations ofAbies sachalinensis. Phytochemistry 32: 331–334.Google Scholar
  280. Kelch, D. G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Syst. Bot. 22:113–131.Google Scholar
  281. Keng, H. 1978. The genusPhyllocladus (Phyllocladaceae). J. Arnold Arbor. 59: 249–273.Google Scholar
  282. Khan, V. A. 1974. Monoand sesquiterpenoids of Siberian larch. Chem. Abstr. 84: 86742n.Google Scholar
  283. — &V. A. Pentegova. 1988. Volatile compounds in the resinof Abies alba. Chem. Abstr. 109: 125888n.Google Scholar
  284. — &V. L. Salenko. 1990. Gas Chromatographic determination of volatiles in resins from five conifer species. Chem. Abstr. 114: 203585q.Google Scholar
  285. —,Y. Gatilov, V. Yu, Z. V. Dubovenko &V. A. Pentegova. 1980. Monoand sesquiterpenoids fromPinus koraiensis andPinus pumila oleoresins. Chem. Abstr. 94: 47515c.Google Scholar
  286. —,Z. Dubovenko &V. A. Pentegova. 1983a. Oxygen-containing monoand sesquiterpenoids of the oleoresin ofPicea koraiensis. Chem. Abstr. 99: 16619z.Google Scholar
  287. —,V. I. Bol’schakova, E. N. Shmidt et al. 1983b. Oleoresin terpenoids ofLarix olgensis. Chem. Abstr. 98: 212834y.Google Scholar
  288. —,N. A. Pankushina, E. N. Shmidt et al. 1984a. Terpenoids of resins fromAbies semenovii. Chem. Abstr. 100: 188796z.Google Scholar
  289. —,V. I. Bol’shakova, E. N. Shmidt et al. 1984b. Terpenoids of resins fromPinus pallasiana. Chem. Abstr. 101:69327h.Google Scholar
  290. Killops, S. D. &V. Killops. 1993. An introduction to organic geochemistry. Longman Scientific & Technical, London.Google Scholar
  291. Kim, Y. K., L-G. Cool &E. Zavarin. 1994. Cis-calamenene-related sesquiterpenoids fromCupressus bakeri foliage. Phytochemistry 36: 961–965.Google Scholar
  292. Kimland, B. &T. Norin. 1967. The oeleoresin of Norwegian spruce,Picea abies (L.) KARST: Isolation of geranyllinalool. Acta Chem. Scand. 21: 825–826.Google Scholar
  293. ——. 1972. Wood extractives of common spruce,Picea abies (L.) Karst. Svensk Papperstidning 75: 403–409.Google Scholar
  294. Kirtany, J. K. &S. K. Paknikar. 1981. α-Duprezianene, a new sesquiterpene with a tricyclo [,5]undecane skeleton. Indian J. Chem., B. 20: 506–507.Google Scholar
  295. Kitadani, M. 1970. Diterpenes in the essential oil extracted from the leaf ofThuja standishii. Chem. Abstr. 73: 131160g.Google Scholar
  296. —,K. Ito &A. Yoshikoshi. 1975. Terpenoids inPodocarpus elatus. Chem. Pharm. Bull. 18:402.Google Scholar
  297. Kobayashi, M., K. Ishida, S. Terabayashi &H. Mitsuhashi. 1991. 10-Hydroxy-phaeophytins and a new norlabdane diterpene from the leaves ofCupressus funebris ENDL. Chem. Pharm. Bull. 39:3348–3349.Google Scholar
  298. Kolbe, M. &L. Westfelt. 1967. Copaborneol, a major sesquiterpene alcohol inPinus silvestris wood and sulphate turpentine. Acta Chem. Scand. 21: 585–587.Google Scholar
  299. Kolesnikova, K. D., A. I. Chernodubov &R. I. Deryuzkin. 1980. Composition of essential oils in somePinus andCedrus species. Chem. Abstr. 92: 152875b.Google Scholar
  300. —,—,V. G. Latysh et al. 1977. Composition of the essential oils of some pine species from the Caucasus and Krymsk regions. Chem. Abstr. 87: 35863g.Google Scholar
  301. Kondo, R. &H. Imamura. 1986. Antifungal compounds in the heartwood extractives of Hinoki (Chamaecyparis obtusa ENDL:). Chem. Abstr. 105: 112196m.Google Scholar
  302. Kubo, I. &B. P. Ying. 1991. Two nor-diterpene dilactones fromPodocarpus nagi. Phytochemistry 30: 1967–1969.Google Scholar
  303. —,M. Himejima &B. P. Ying. 1991. An antifungal norditerpenelactone fromPodocarpus nagi. Phytochemistry 30: 1467–1469.Google Scholar
  304. Kuo, Y. H. &W. C. Chen. 1990. 15-Hydroxypinusolidic acid, a new diterpene from the pericarp ofPlatycladus orientalis FRANCO. Heterocycles 31: 1705–1709.Google Scholar
  305. ——. 1992. 7β-Hydroxysandaracopimaric acid, a new diterpene from the root ofJuniperus chinensis. Chem. Express 7: 833–836.Google Scholar
  306. ——. 1994. Three new diterpenes, 1,3-dioxototarol, isototarolenone, and l-oxo-3β-hydroxytotarol from the roots ofJuniperus chinensis L. Chem. Pharm. Bull. 42: 1774–1776.Google Scholar
  307. —— &M. T. Yu. 1996a. Two new sesquiterpenes from the heartwood ofJuniperus formosana HAY. var.concolor HAY. Chem. Abstr. 126: 16769p.Google Scholar
  308. ——. 1996b. Dehydroabietane diterpenes fromJuniperus formosana HAY. var.concolor HAY. Phytochemistry 42: 779–781.Google Scholar
  309. ——. 1997. 6-Oxoferruginol and 6α-acetoxy-ferruginol, new abietane-type diterpenes from the heartwoodof Juniperus formosana. J. Nat. Prod. (Lloydia) 60: 648–650.Google Scholar
  310. —,J. S. Shin, Y. T. Lin &Y. T. Lin. 1979. 6β-Acetoxy-7α-hydroxy-royleanone, a new compound fromTaiwania cryptomerioides HAYATA. J. Chin. Chem. Soc. 26: 71–73.Google Scholar
  311. —,I. C. Yang, C. S. Chen &Y. T. Lin. 1987. Five new sesquiterpenes from the heartwood ofJuniperus squamata LAMB. J. Chin. Chem. Soc. (Taipei) 34: 125–134.Google Scholar
  312. Kupchan, S. M., A. Karim &C. Marcks. 1969. Tumor inhibitors, XLVI1I. Taxodione and taxodone, two novel diterpenoid quinone methide tumor inhibitors fromTaxodium distichum. J. Organic Chem. 34:3912–3918.Google Scholar
  313. Kutney, J. P. &I. H. Rogers. 1968. Novel triterpenes from Sitka Spruce (Picea sitchensis [BONG.] CARR.) Tetrahedron Lett. 1968: 761–766.Google Scholar
  314. Kyogoku, K. &Y. Sayama. 1974. Essential oils fromPicea polita. Chem. Abstr. 81: 54309r, 54310s, 54311t.Google Scholar
  315. Lange, W. &G. Weissmann. 1986. 12β, 18-Dihydroxypimara-8(14), 15-diene in the neutral fraction ofPinus massoniana rosin. Holzforsch. 40: 289–292.Google Scholar
  316. —,T. Stevanovic-Janezic &M. Spanoudaki. 1994a. Cembratrienols and other components of white bark pine (Pinus heldreichii) oleoresin. Phytochemistry 36: 1277–1279.Google Scholar
  317. —,M. Spanoudaki &S. Janezic. 1994b. The composition of Balkan white pine (Pinus peuce GRISEB.) oleoresin. Holzforsch. 48: 368–370.Google Scholar
  318. Langenheim, J. H. 1969. Amber: A botanical inquiry. Science 163: 1157–1169.PubMedGoogle Scholar
  319. Lee, C. K., K. Snajberk &E. Zavarin. 1974. Chemical composition of the cortical essential oil fromAbies balsamea. Phytochemistry 13: 179–183.Google Scholar
  320. —,J. M. Fang &Y. S. Cheng. 1994. Abietanes from leaves ofJuniperus chinensis. Phytochemistry 35: 983–986.Google Scholar
  321. —,——. 1995. Norditerpenes fromJuniperus chinensis. Phytochemistry 39: 391–394.Google Scholar
  322. Li, Z., K. Chen, D. Pan &G. Xu. 1989. New diterpenoic constituents of Tu-gin-Pi, IV. Isolation and identification of pseudolaric acid D and pseudolaric acid E. Chem. Abstr. 111: 130703c.Google Scholar
  323. Lian, J. Y., Z. D. Min, M. Mizuno et al. 1988. Two taxane diterpenes fromTaxus mairei. Phytochemistry 27:3674–3675.Google Scholar
  324. Lin, W. H., J. M. Fang &Y. S. Cheng. 1995. Uncommon diterpenes with the skeleton of six-five-six fused-rings fromTaiwania cryptomerioides. Phytochemistry 40: 871–873.Google Scholar
  325. Lin, V. T., T. B. Lo &E. H. Shin. 1955. Extractive components from the heartwood ofTaiwania “crypto- merioides,” I. Isolation of four crystalline compounds from the acetone extract. Chem. Abstr. 50:7086a.Google Scholar
  326. —,Y. H. Kuo &B. H. Chang. 1975. Studies on the extractive constituents of the bark ofLibocedrus formosana FLORIN, II. J. Chin. Chem. Soc. 22: 331–334.Google Scholar
  327. Lindström, J. O. &L. Westfelt. 1966. Sesquiand diterpenes from the wood of Pinus albicaulis ENGELM. Ark. Kemi 26: 539–543.Google Scholar
  328. Lisina, A. I., S. M. Yasnetskaya &V. A. Pentegova. 1972. Bicyclic diterpenic acids fromPinus sibirica resin. Chem. Abstr. 78: 1966s.Google Scholar
  329. Loeblich, V. M., D. E. Baldwin &R. V. Lawrence. 1955. The isolation of a new resin acid from gum rosin—Palustric acid. J. Amer. Chem. Soc. 77: 2823–2825.Google Scholar
  330. Logan G. A., C. J. Smiley &G. Eglinton. 1995. Preservation of fossil leaf waxes in association with their source tissues, Clarkia, N. Idaho, U.S.A. Geochim. Cosmochim. Acta 59: 751–763.Google Scholar
  331. Lorbeer, E. &N. Zelman. 1988. Investigation of the distribution of the non-volatile lipophilic part of rosin in spruce (Picea abies). Holzforsch. 42: 241–246.Google Scholar
  332. Lorimer, S. D. &R. T. Weavers. 1987. Foliage sesquiterpenes and diterpenesof Podocarpus spicatus. Phytochemistry 26: 3207–3215.Google Scholar
  333. Mamontova, G. A., A. I. Lisina &V. A. Pentegova. 1970. Extractive substances ofPinus pumila. Chem. Abstr. 74: 88849v.Google Scholar
  334. Mangoni, L. &M. Belardini. 1964a. Constituents ofCupressus sempervirens, II. Isolation and structure of two terpene ketones. Gazz. Chim. Ital. 96: 206–219.Google Scholar
  335. —— 1964b. The isolation and the structure of two diterpene 1,3-diones. Tetrahedron Lett. 1964:2643–2649.Google Scholar
  336. — &R. Caputo. 1967. Sempervirol, a novel type of diterpene phenol. Tetrahedron Lett. 1967: 673–675.Google Scholar
  337. Manning, T. D. R. 1973. Diterpene constituents ofPinus contorta bark. Austral. J. Chem. 26: 2735–2739.Google Scholar
  338. Manville, J. F. &Tracey, M. 1989 Chemical differences between alpine firs of British Columbia. Phytochemistry 28: 2681–2686.Google Scholar
  339. McChesney, J. D. 1966. Aspects of the chemistry of ferruginol-type diterpenes and proton magnetic resonance characteristics of diterpenic substances. Diss. Abstr. B27: 414.Google Scholar
  340. McGimpsey, J. R. &J. Murray. 1960. Essential oils of New Zealand Podocarpaceae, II.Podocarpus spicata. J. Appl. Chem. 10: 340–344.Google Scholar
  341. Mills, J. S. 1973. Diterpenes ofLarix oleoresins. Phytochemistry 12: 2407–2412.Google Scholar
  342. Mirov, N. T. 1952a. Composition of gum turpentines of pines, XIV. A report on three Mexican pines:Pinus ayacahuite, P. cembroides andP. pineana. J. Amer. Pharm. Assoc. 41: 673–676.Google Scholar
  343. — 1952b. Composition of gum turpentines of pines, XV. A report onPinus resinosa andPinus reflexa. J. Amer. Pharm. Assoc. 41: 677–679.Google Scholar
  344. — 1953. Chemical aspects of diploxylon pines. Z. Forst. Forstpflanz. 2: 93–96.Google Scholar
  345. — &P. M. Iloff. 1955. Composition of gum turpentine of pines XXIV. A report on two Asiatic pines:Pinus armandii andPinus bungeana. J. Amer. Pharm. Assoc. 44: 424–427.Google Scholar
  346. —,— &L. B. Gordon. 1954. Composition of gum turpentines of pines, VIII. A report onPinus pungens, P. glabra andP. teocote. J. Amer. Pharm. Assoc. 43: 13–15.Google Scholar
  347. Monaco, P., L. Previtera &L. Magoni. 1982. Terpenes from the bled resin ofAraucaria hunsteinii. Chem. Abstr. 98: 86269c.Google Scholar
  348. Morita, H., L. Wie, A. Gonda et al. 1997. A taxoid fromTaxus cuspidata var.nana. Phytochemistry 46: 583–586.Google Scholar
  349. Morozkov, V. K., E. N. Shmidt &V. A. Pentegova. 1972. Neutral fraction of the oleoresinof Pinus sylvestris, 3. Norditerpene compounds. Chem. Abstr. 77: 98751h.Google Scholar
  350. Mossa, J. S., I. Muhammad, F. S. El-Feraly &C. D. Hufford. 1992. 3β,12-Dihydroxyabieta-8,l 1,13-triene-l-one and other constituents fromJuniperus excelsa leaves. Phytochemistry 31:2789–2792.Google Scholar
  351. Motl, O. &S. K. Paknikar. 1968. Terpenes, CXCIII. Composition of the oil fromCupressus funebris leaves. Coll. Czech. Chem. Comm. 33: 1939–1942.Google Scholar
  352. Muhammad, I., J. S. Mossa, M. A. Al-Yahya et al. 1995. Further antibacterial diterpenes from the bark and leaves ofJuniperus procera HOCHST. ex ENDL. Phytotherap. Res. 9: 584–588.Google Scholar
  353. —,— &F. S. El Feraly. 1992. Antibacterial diterpenes from the leaves and seedsof Juniperus excelsa. Chetn. Abstr. 118: 97908t.Google Scholar
  354. Murray, J. 1960. Essential oils of New Zealand Podocarpaceae, III.Podocarpus nivalis andDacrydium laxifolium. J. Appl. Chem. 10: 366.Google Scholar
  355. Nagahama, S. 1964a. Terpenoids, VII. The isolation of sandaracopimarol from the wood oil of sugi (Cryptomeria japonica). Bull. Chem. Soc. Japan 37: 886–887.Google Scholar
  356. — 1964b. Terpenoids, VIII. Sesquiterpenoids from the wood oil ofCryptomeria japonica. Bull. Chem. Soc. Japan 37: 1029–1032.Google Scholar
  357. — &M. Tajima. 1996. Diterpene hydrocarbons from the leaf oil ofThujopsis dolabrata var.dolabrata. Biochem. Syst. Ecol. 24: 49–52.Google Scholar
  358. —,M. Tazaki, H. Kobayashi &M. Sumimoto. 1993. Sesquiterpene alcohols fromCryptomeria japonica andC. fortunei leaf oil. Phytochemistry 33: 879–882.Google Scholar
  359. Nayak, U. R. &Sukh Dev. 1963. Longicyclene, the first tetracyclic sesquiterpene. Tetrahedron Lett. 1963:243–246.Google Scholar
  360. Niklas, K. J. &D. E. Giannasi. 1978. Angiosperm palaeobiochemistry of the Succor Creek flora (Miocene) Oregon, USA. Amer. J. Bot. 65: 943–952.Google Scholar
  361. Norin, T. &B. Winell. 1972a. Extractives from the bark of common sprucePicea abies (L.) KARST. Acta Chem. Scand. 26: 2289–2296.Google Scholar
  362. ——. 1972b. Extractives from the bark of Scots pinePinus sylvestris L. Acta Chem. Scand. 26: 2297–2304.Google Scholar
  363. ——. 1974. Neutral constituents ofLarix decidua bark. Phytochemistry 13: 1290–1292.Google Scholar
  364. Numata, A., K. Kawai, C. Takahashi &T. Miyamoto. 1992. Occurrence of epijuvabione-type sesquiterpenoids inAbies sachalinensis. Phytochemistry 31: 3773–3780.Google Scholar
  365. Oda, J., A. Nobuharu, Y. Nakajima &Y. Inouye. 1977. Studies on insecticidal constituents ofJuniperus recurva BUCH. Agric. Biol. Chem. 41: 201–204.Google Scholar
  366. Ognyanov, I. &E. Tsankova. 1968. Sesquiterpene compounds in Bulgarian coniferous trees. Chem. Abstr. 78: 163926f.Google Scholar
  367. Ohashi, H., T. Asai &S. Kawai. 1994. Screening of main Japanese conifers for antifungal leaf components: Sesquiterpenes ofJuniperus chinensis pyramidalis. Holzforsch. 48: 193–198.Google Scholar
  368. Ohira, T. &M. Yatagai. 1992. Extractives ofAbies mariesii MASTERS: A new triterpene from the bark. Chem. Abstr. 117: 44547x.Google Scholar
  369. Ohmoto, T., K. Kanatani &K. Yamaguchi. 1987. Constituents of pollen, XIII. Constituents ofCedrus deodara LOUD. Chem. Pharm. Bull. 35: 229–234.Google Scholar
  370. Okazaki, K. &A. Homma, 1953. Antibacterial activity of higher plants, XXVI. Antimicrobial effects of essential oils, 7. Oil ofThujopsis dolabrata and its components. Chem. Abstr. 48: 8318e.Google Scholar
  371. Otto, A., H. Walther &W. Püttmann. 1997. Sesquiand diterpenoid biomarkers preserved inTaxo- dium-rich Oligocene oxbow lake clays, Weisselster basin, Germany. Organic Geochem. 26: 105–115.Google Scholar
  372. Oyarzun, M. L. &J. A. Garbarino. 1988. Sesquiterpenoids fromPilgerodendron uvifera. Phytochemistry 27: 1121–1123.Google Scholar
  373. Ozaki, N., S. Hasegawa &Y. Hirose. 1983. Terpenoids from the seed ofChamaecyparis obtusa. Phytochemistry 22: 1771–1773.Google Scholar
  374. Page, C. N. 1990. Coniferophytina. In K. Kubitzky (ed.), The families and genera of vascular plants. Vol. 1. Springer-Verlag, Berlin.Google Scholar
  375. Pandita, K., S. G. Agarwal, R. K. Thappa &K. L. Dhar. 1987. Seven new labdane diterpenesfrom Juniperus pseudosabina HOOK. Indian J. Chem., B. 26: 453–458.Google Scholar
  376. Pauly, G., M. Gleizes &C. Bernard-Dagan. 1973. Identification des constituants de l’essence dePinus pinaster. Phytochemistry 12: 1395–1398.Google Scholar
  377. —,A. Yani, L. Piovetti &C. Bernard-Dagan. 1983. Volatile constituents of the leavesof Cupressus dupreziana andCupressus sempervirens. Phytochemistry 22: 957–959.Google Scholar
  378. Pentegova, V. A., O. Motl &V. Herout. 1961. Terpenes, XXVI. Composition of the neutral part of the essential oil ofPinus sibirica. Chem. Abstr. 56: 7367c.Google Scholar
  379. —,Z. V. Dubovenko &V. Vol’skii. 1968. Sesquiterpene hydrocarbons of the oleoresins of some Siberian conifers. Chem. Abstr. 69: 84075p.Google Scholar
  380. Perry, N. B. &R. T. Weavers. 1985a. Infraspecific variation of foliage diterpenes ofDacrydium cupressinum. Phytochemistry 24: 2233–2237.Google Scholar
  381. ——. 1985b. Foliage diterpenes ofDacrydium cupressinum: Identification, variation and biosynthesis. Phytochemistry 24: 2899–2904.Google Scholar
  382. Peters, K. E. &J. M. Moldowan. 1993. The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  383. Philp, R. P. 1985. Fossil fuel biomarkers: Applications and spectra. Methods in geochem. and geophys., 23. Elsevier, Amsterdam.Google Scholar
  384. Pilger, R. 1926. Phylogenie und Systematik der Coniferae. In A. Engler (ed.), Die natürlichen Pflanzenfamilien. Vol. 13, Gymnospermae. Wilhelm Engelmann, Leipzig.Google Scholar
  385. Piovetti, L. &A. Diara. 1977. Les sequiterpénes deCupressus dupreziana. Phytochemistry 16:103–106.Google Scholar
  386. —,G. Combaut &A. Diara. 1980a. Monoterpénes et sesquiterpénes oxygenes deCupressus dupreziana. Phytochemistry 19: 2117–2120.Google Scholar
  387. —,E. Gonzalez &A. Diara. 1980b. Diterpene composition ofCupressus dupreziana andCupressus sempervirens. Phytochemistry 19: 2772–2773.Google Scholar
  388. —,C. Francisco, G. Pauly et al. 1981. Volatile constituents ofCupressus dupreziana and the volatiles ofCupressus sempervirens. Phytochemistry 20: 1299–1302.Google Scholar
  389. Powell, R. A. &R. P. Adams. 1973. Seasonal variation in the volatile terpenoidsof Juniperus scopulorum (Cupressaceae). Amer. J. Bot. 60:1041–1050.Google Scholar
  390. Prasad, J. S. &H. G. Krishnamurty. 1977a. Diterpene constituents of the leaves and barkof Cupressus torulosa DON. Indian J. Chem., B.15: 397–398.Google Scholar
  391. ——. 1977b. 4-Epiisocommunic acid and amentoflavone fromCallitris rhomboidea. Phytochemistry 16: 801–803.Google Scholar
  392. Price, R. A. &J. M. Lowenstein. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Syst. Bot. 14: 141–149.Google Scholar
  393. Pu, Z. &Y. Huang. 1988. Study on the chemical constituents of the essential oil fromAbies squamata MAST. Chem. Abstr. 110: 72532n.Google Scholar
  394. Quon, H. H. &E. P. Swan. 1969. Norditerpene alcohols in the bark ofThuja plicata DONN. Canad. J. Chem. 47: 4389–4392.Google Scholar
  395. Rafii, Z., L. G. Cool &E. Zavarin. 1992. Variability of foliar monoand sesquiterpenoids ofCupressus bakeri. Biochem. Syst. Ecol. 20: 123–131.Google Scholar
  396. Raharivelomanana, P., R. Faure, A. Cambon &M. Azzaro. 1993. β-Acoradienol, a sesquiterpene alcohol fromNeocaliitropsis pancheri. Phytochemistry 33: 235–236.Google Scholar
  397. —,J. P. Bianchini, R. Faure et al. 1994. Jincoholic acid, a prezizane sesquiterpene fromNeocaliitropsis pancheri. Phytochemistry 35: 1050–1060.Google Scholar
  398. —,—,A. Cambon et al. 1995. Two-dimensional NMRof sesquiterpenes, 8. Complete assignment of1H and13C NMR spectra of seven sesquiterpene alcohols fromNeocaliitropsis pancheri. Magnetic Resonance Chem. 33: 233–235.Google Scholar
  399. —,—,R. Faure et al. 1996. Two guaiane and eudesmane-type sesquiterpenoids fromNeocallitropsis pancheri. Phytochemistry 41: 243–246.Google Scholar
  400. Raldugin, V. A. &V. A. Pentegova. 1971. Diterpenoids fromPinus (pine)koraiensis oleoresin. Stereochemistry of neoabienol. Chem. Abstr. 76: 153961h.Google Scholar
  401. ——. 1974. Tricyclic neutral diterpenoids fromPinus koraiensis soft resin. Chem. Abstr. 82: 121652r.Google Scholar
  402. ——. 1976. New diterpenoid components ofPinus koraiensis soft resin. Chem. Abstr. 85: 94526f.Google Scholar
  403. —,N. K. Kashtanova &V. A. Pentegova. 1970. Neutral part of thePinus koraiensis oleoresin, I. Main diterpenoide compounds. Chem. Abstr. 74: 10350f.Google Scholar
  404. —,L. I. Demenkova &V. A. Pentegova. 1978. New diterpene components ofPinus pumila. Chem. Abstr. 89: 147090a.Google Scholar
  405. —,N. V. Zubtsova, L. M. Schmakova et al. 1983. Some terpenoid components of the needles ofPinus sibirica R. MAYR. Chem. Abstr. 98: 212835z.Google Scholar
  406. —,L. I. Demenkova &V. A. Pentegova. 1984. Group composition ofPinus sibirica R. MAYR resin. Chem. Abstr. 102: 75695p.Google Scholar
  407. —,——. 1985. Labdane acids and other components of needles ofPinus pumila. Chem.Abstr. 103:68271q.Google Scholar
  408. —,S. A. Shevtsov, V. I. Roshchin &V. A. Pentegova. 1988. Triterpenoidsfrom Abies species, VI. Isofirmanoic acid and (24E)-lanosta-8,24-dien-3,23-dion-26-oic acid from needles of Siberian fir. Chem.Abstr. 111:4245s.Google Scholar
  409. —,T. A. Tsitsenko &M. M. Shakirov. 1993. 18-Norpalustrol and 15-hydroxyabietinol: New diterpenoids from oleoresin of shrenk spruce. Chem. Abstr. 120: 73330p.Google Scholar
  410. Rao, K. V., R. S. Bhankun, J. B. Hanuman et al. 1996. Taxanes from the bark ofTaxus brevifolia. Phytochemistry 41: 863–866.Google Scholar
  411. Rao, P. S. &V. K. Sood. 1962. Pine needle oil from the Himalayan silver fir. Chem. Abstr. 57: 975c.Google Scholar
  412. Retana Ramos, A., E. M. Escamilla, J. Calderon &B. Rodriguez. 1984. 8β-Hydroxypimar-15-en-19oic acid fromTaxodium mucronatum. Phytochemistry 23: 1329–1330.Google Scholar
  413. Ribo, J. M., M. R. Mitja &J. Rametol. 1974. Diterpenoids inAbies alba. Phytochemistry 13: 1614.Google Scholar
  414. Riffer, R. &A. B. Anderson. 1966. Chemistry of the genusPinus, II. Composition of resin acids in ponderosa pine heartwood (P. ponderosa). Holzforsch. 20: 36–38.Google Scholar
  415. —,—,E. V. Cabotage &A. Yhalvez. 1966. Composition of turpentine and resin acids in Benguet pine stump heartwood (Pinus insularis). Tappi 49: 415–417.Google Scholar
  416. —,— &A. Wong. 1969. Terpenoid constituents of the pocket resin from Coast Redwood (Sequoia sempervirens). Phytochemistry 8: 923–925.Google Scholar
  417. Roberts, E. M. &R. V. Lawrence. 1956. The occurrence of dextropimarinal and isodextropimarinal in commercial gum rosin. J. Amer. Chem. Soc. 78: 4087–4089.Google Scholar
  418. Rogers, I. H. &L. R. Rozon. 1970. Neutral diterpenes from the bark of Sitka Spruce [Picea sitchensis (BONG.) CARR.]. Canad. J. Chem. 48: 1021–1025.Google Scholar
  419. Roshchin, V. I., L. A. Kolodynskaya, V. A. Raldugin &V. A. Pentegova. 1985. Abietic and dehydroabietic acid derivatives from needle-free shoots ofPinus sylvestris. Chem. Abstr. 103: 102018z.Google Scholar
  420. —,—,R. A. Baranova &N. Y. Nagibina. 1989. Composition of extractives from needles and twigs of Siberian fir. Chem. Abstr. 112: 195182x.Google Scholar
  421. Rowe, J. W. 1964. Triterpenes of pine barks: Identity of pinusenediol and serratenediol. Tetrahedron Lett. 1964: 2347–2353.Google Scholar
  422. — &C. L. Bower. 1965. Triterpenes of pine barks: Naturally occurring derivatives of serratenediol. Tetrahedron Lett. 1965: 2745–2750.Google Scholar
  423. — &J. H. Scroggins. 1964. Benzene extractives of lodgepole pine bark: Isolation of new diterpenes. J. Organic Chem. 29: 1554–1562.Google Scholar
  424. —,B. A. Nagasampagi, A. W. Burgstahler &J. W. Fitzsimmons. 1971. Derivatives of nordehydroabietane from pine bark. Phytochemistry 10: 1647–1651.Google Scholar
  425. —,R. C. Ronald &B. A. Nagasampagi. 1972. Terpenoids of lodgepole pine bark. Phytochemistry 11:365–369.Google Scholar
  426. Rücker, G. 1973. Sesquiterpene. Angew. Chem. 85: 895–907.Google Scholar
  427. Runeberg, J. 1960a. The chemistry of the natural order Cupressales, XXVII. Heartwood constituents ofJuniperus utahensis LEMM. Acta Chem. Scand. 14: 797–804.Google Scholar
  428. — 1960b. The chemistry of the natural order Cupressales, XXX. Heartwood constituents ofJuniperus cedrus L. Acta Chem. Scand. 14: 1991–1994.Google Scholar
  429. — 1960c. The chemistry of the natural order Cupressales, XXXI. Heartwood constituents ofJuniperus phoenicea L. Acta Chem. Scand. 14: 1995–1998.Google Scholar
  430. — 1961. The chemistry of the natural order Cupressales, XXXV. Heartwood constituents ofJuniperus foetidissima WILLD. Acta Chem. Scand. 15: 721–726.Google Scholar
  431. Russell, G. B. 1975. Lignans and sugiol fromLibocedrus bidwillii. Phytochemistry 14: 2708.Google Scholar
  432. Ruzicka, L., L. Sternbach &O. Jeger. 1941. Zur Kenntnis der Diterpene, 47. Über die Halogen-trioxyabietinsäuren und deren weitere Umwandlung zum 8-Aza-reten. Helv. Chim. Acta 24: 504–515.Google Scholar
  433. Sakai, T. &Y. Hirose. 1973. Structures of new sesquiterpenes related to pseudotsuganal and todomatuic acid isolated from Douglas fir wood. Chem. Lett. 1973: 825–828.Google Scholar
  434. —,K. Nishimura, H. Chikamatsu &Y. Hirose. 1963a. The composition of the volatile oil obtained from the leaves ofTorreya nucifera and the structure of torreyol. Bull. Chem. Soc. Japan 36: 1261–1264.Google Scholar
  435. Sakai, T., K. Nishimura &Y. Hirose. 1963b. The constituents of the volatile oil from the wood ofTorreya nucifera. Tetrahedron Lett. 1963: 1171–1173.Google Scholar
  436. Sakar, M. K. &A. San Feliciano. 1992. Diterpenoids ofJuniperus foetidissima ripe fruits. Fitoterapia 63: 327–328.Google Scholar
  437. ——. 1994. Diterpenoids ofJuniperus foetidissima unripe berries. Fitoterapia 65:304–306.Google Scholar
  438. —,E. Dilek, E. Del Olmo &A. San Feliciano. 1996. Diterpenoids ofAbies nordmanniana ssp.equi-trojani. Chem. Abstr. 127: 3005g.Google Scholar
  439. Sakharov, E. &N. V. Belova. 1967. Composition of the essential oils from the fruits ofBiota orientalis andCupressus sempervivens. Chem. Abstr. 68: 16064p.Google Scholar
  440. Sandermann, W. &K. Bruns. 1962. Über die Biogenese von Longifolen inPinus longifolia ROXB. Tetrahedron Lett. 1962: 261–262.Google Scholar
  441. San Feliciano, A. &J. L. Lopez. 1991. Recent chemistry of conifer terpenoids. Pp. 1–27in J. B. Harborne & F. A. Tomas-Barberan (eds.), Ecological chemistry and biochemistry of plant terpenoids: Proceedings of the Phytochemical Society of Europe. Clarendon Press, Oxford.Google Scholar
  442. —,M. Medarde, J. L. Lopez et al. 1988. Terpenoids from leaves ofJuniperus thurifera. Phytochemistry 27: 2241–2248.Google Scholar
  443. —,J. M. M. del Corral, M. Gordaliza &M. A. Castro. 1991. Two diterpenoids from leaves ofJuniperus sabina. Phytochemistry 30: 695–697.Google Scholar
  444. —,—,J. L. Lopez &B. de Pascual Teresa. 1992. 8-Hydroxy-labdanes fromJuniperus thurifera. Phytochemistry 31: 1713–1717.Google Scholar
  445. Sato, A. &E. von Rudloff. 1964. The heartwood extractivesof Pinus resinosa AIT. Canad. J. Chem. 42: 635–640.Google Scholar
  446. Sayama, Y., K. Kyogoku &H. Murayama. 1971. New diterpenes ofTorreya nucifera. Agric. Biol. Chem. 35: 1069–1073.Google Scholar
  447. Schlarbaum, S. E. &T. Tsuchiya. 1985. Karyological derivation ofSciadopitys verticillata Sieb. et Zucc. from a pro-taxodiaceous ancestor. Bot. Gaz. (Crawfordsville) 146: 264–267.Google Scholar
  448. Schmidt, E. N. &V. A. Pentegova. 1974. Chemical composition ofLarix dahurica soft resin. Chem. Abstr. 82: 121653s.Google Scholar
  449. Schulze, T.&W. Michaelis. 1989. Structure and origin of terpenoid hydrocarbons in some German coals. Organic Geochem. 16: 1051–1058.Google Scholar
  450. Sha, H., H. Takenokuchi, Y. Iizuka &Y. Matsubara. 1979. Essential oil ofCryptomeria japonica andChamaecyparis obtusa. Chem. Abstr. 92: 194429q.Google Scholar
  451. Shankaranarayan, R., S. Krishnappa, S. C. Bisraya &Sukh Dev. 1977. Studies in sesquiterpenes, LIII. Deodarone and atlantolone, new sesquiterpenoids from the wood ofCedrus deodara LOUD. Tetrahedron 33: 1201–1205.Google Scholar
  452. Sharma, S., V. Nagar, B. K. Mehta &P. Singh. 1993. Diterpenoids fromThuja orientalis leaves. Fitoterapia 64: 476–477.Google Scholar
  453. Shaw, A. C. 1953. The essential oil ofAbies balsamea. Canad. J. Chem. 31: 193–199.Google Scholar
  454. Shibuya, T. 1991. Diterpenoids inPinus densiflora pollen. Chem. Abstr. 116: 211117v.Google Scholar
  455. — &K. Sasaki. 1991. Constituents of pine pollen, 3. ent-8,13-Epoxylabdene diterpenoids in the pollen and male flowersof Pinus densiflora. Chem. Abstr. 117: 4227m.Google Scholar
  456. Shmidt, E. N. &V. A. Pentegova. 1966. Diterpene compounds in the soft resin of Siberian larch,Larix sibirica. Chem. Abstr. 67: 32822u.Google Scholar
  457. ——. 1970. Chemical composition ofPicea oleoresins. Chem. Abstr. 74: 95497g.Google Scholar
  458. ——. 1977. Diterpenoids fromPicea koraiensis, Picea glehnii andPicea excelsa resins. Chem. Abstr. 88: 60090f.Google Scholar
  459. —,A. I. Lisina &V. A. Pentegova. 1964. Neutral substances from the resin of the Siberian larch. Chem. Abstr. 61: 12042h.Google Scholar
  460. —,L. E. Chupakhina &V. A. Pentegova. 1975. Diterpenoids of the oleoresins of three species of the genusLarix: Larix sibirica, Larix sukaczawii andLarix czekanovskii. Chem. Abstr. 84:74455h.Google Scholar
  461. —,Z. V. Dubovenko, M. A. Chirkova et al. 1978. Monoterpenoid hydrocarbons and resin acids ofPicea glehnii, Picea koraiensis andPicea ajanensis. Chem. Abstr. 88: 166736m.Google Scholar
  462. —,V. A. Khan, T. D. Drebushchak et al. 1981. Terpenoids ofPinus pinea resin. Chem. Abstr. 96: 48969g.Google Scholar
  463. Silba, J. 1986. Encyclopaedia coniferae. Phytologia Mem. 8: 1–217.Google Scholar
  464. Silva, M., M. Hoeneisen &P. G. Sammes. 1972. Some constituents ofPodocarpus saligna. Phytochemistry 11: 433–434.Google Scholar
  465. —,M. Bittner &G. Sammes. 1973. Diterpenoidsof Podocarpus nubigena. Phytochemistry 12: 883–886.Google Scholar
  466. Simoneit, B. R. T. 1986. Cyclic terpenoids of the geosphere. Pp. 43–99in R. B. Johns (ed.), Biological markers in the sedimentary record. Elsevier, Amsterdam.Google Scholar
  467. —,J. O. Grimait, T. G. Wang et al. 1986. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coal. Organic Geochem. 10: 877–889.Google Scholar
  468. Simonsen, J. L. 1923. The constituents of Indian turpentine fromPinus longifolia. III. J. Chem. Soc. 1923:2642–2666.Google Scholar
  469. Simpson, R. F. &M. McQuilkin. 1976. Terpenes of the bark ofPinus radiata. Phytochemistry 15: 328–329.Google Scholar
  470. Smedman, L. A., E. Zavarin &R. Teranishi. 1969. Composition of oxygenated monoterpenoid and sesquiterpenoid hydrocarbons from the cortical oleoresin ofAbies magnifica. Phytochemistry 8: 1457–1470.Google Scholar
  471. Smith, R. M., R. A. Marty &C. F. Peters. 1981. The diterpene acids in the bled resins of three Pacific kauri,Agathis vitiensis. A. lanceolata andA. macrophylla. Phytochemistry 20: 2205–2207.Google Scholar
  472. Snajberk, K. &E. Zavarin. 1975. Composition of turpentine fromPinus edulis wood oleoresin. Phytochemistry 14: 2025–2028.Google Scholar
  473. ——. 1976. Monoand sesquiterpenoid differentiation ofPseudotsuga of the United States and Canada. Biochem. Syst. Ecol. 4: 159–163.Google Scholar
  474. Spalding, B. P., D. F. Zinkel &D. R. Roberts. 1971. New labdane resin acids fromPinus elliottii. Phytochemistry 10: 3289–3292.Google Scholar
  475. Staccioli, G., G. Mellerio &M. B. Alberti. 1993. Investigation on terpene-related hydrocarbons from a Pliocenic fossil wood. Holzforsch. 47: 339–342.Google Scholar
  476. Stefanovic, S., M. Jager, J. Deutsch, J. Broutin &M. Masselot. 1998. Phylogenetic relationship of conifers inferred from partial 28S rRNA gene sequences. Amer. J. Bot. 85: 668–697.Google Scholar
  477. Steglich, W., M. Klaar, L. Zechlin &H. J. Hecht. 1979. Abietospiran, das Triterpen der Weisstannenrinde (Abies alba). Angew. Chem. 91: 751.Google Scholar
  478. Sturm, U., W. Francke, W. L. Mittak &J. P. Vité. 1983. Chemische Charakteristik des Kiefernharzes (Pinus spp.). Z. Angew. Entomol. 96: 132–139.Google Scholar
  479. Su, W. C., J. M. Fang &Y. S. Cheng. 1993. Hexacarbocyclic triterpenes from the leaves ofCryptomeria japonica. Phytochemistry 34: 779–782.Google Scholar
  480. —,——. 1994a. Abietanes and kauranes from leaves ofCryptomeria japonica. Phytochemistry 35: 1279–1284.Google Scholar
  481. —,——. 1994b. Labdanes fromCryptomeria japonica. Phytochemistry 37: 1109–1114.Google Scholar
  482. —,——. 1995. Sesquiterpenes from leaves ofCryptomeria japonica. Phytochemistry 39: 603–607.Google Scholar
  483. —,——. 1996. Diterpenoids from leaves ofCryptomeria japonica. Phytochemistry 41:255–261.Google Scholar
  484. Su, Z., S. Wang &Z. Zhao. 1996. Study on chemical taxonomy ofPinus massoniana by terpenoids in needles. Chem. Abstr. 126: 303657f.Google Scholar
  485. Sukh Dev. 1989. Terpenoids. Pp. 1: 697–807in J. W. Rowe (ed.), Natural products of woody plants. Springer-Verlag, Berlin.Google Scholar
  486. Sumimoto, M., H. Ito, H. Hirai &K. Wada. 1963. Cryptomeridiol, the direct precursor of the eudesmane series. Chem. Ind. 1963: 780–781.Google Scholar
  487. Swan, E. P. 1966. Chemical methods of differentiating the wood of several western conifers. Forest Products J. 16:51–54.Google Scholar
  488. Tabacik, C. &Y. Laporte. 1971. Diterpénes deJuniperus phoenicea—Constituants majeurs. Phytochemistry 10:2147–2153.Google Scholar
  489. Tabacik-Wlotzka, C. &Y. Laporthe. 1968. Diterpenes deJuniperus phoenicea L.: Acide hydroxy-6αsandaracopimarique. Tetrahedron Lett. 1968: 2531–2534.Google Scholar
  490. Takahashi, T., M. Yasue, H. Imamura et al. 1964. Wood extractives, VI. Identification of podototarin, totarol, 16-carboxytotarol, and macrophyllic acid fromPodocarpus monophylla wood. Chem. Abstr. 62: 9348b.Google Scholar
  491. Tanaka, R. &S. Matsunaga. 1990. Veitchiolide, a tetracyclic triterpene lactonefrom Abies veitchii. Phytochemistry 29: 3267–3269.Google Scholar
  492. ——. 1991. Triterpene lactones from the stem bark ofAbies firma. Phytochemistry 30: 1983–1987.Google Scholar
  493. ——. 1992. Saturated hopane and gammacerane triterpene-diols from the stem bark ofAbies veitchii. Phytochemistry 31: 3535–3539.Google Scholar
  494. —,A. Inosiri, M. Yoneda, T. Ishida, A. Namada &S. Matsunaga. 1990. A tetracyclic triterpene lactone and other constituents from the bark ofAbies firma. Phytochemistry 29: 3263–3265.Google Scholar
  495. —,Y. Takaoka, H. Yamaguchi &S. Matsunaga. 1993. 3β-Methoxycycloartan-27-oic acid and other constituents from the leaves ofPseudotsuga japonica. J. Nat. Prod. (Lloydia) 56:1753–1757.Google Scholar
  496. —,H. Ohtsu &S. Matsunaga. 1997. Abietanes diterpene acids and other constituents from the leaves ofLarix kaempferi. Phytochemistry 46: 1051–1057.Google Scholar
  497. Taylor, D. A. H. 1961. Diterpenes fromPodocarpus mannii. Chem. Ind. 1961: 1712.Google Scholar
  498. —. 1965. Extractives from East African timbers, I. J. Chem. Soc. 1965: 3495–3496.Google Scholar
  499. Thappa, R. K., S. G. Aggarwal, B. K. Kapahi &Y. K. Sarin. 1987.Juniperus excelsa leaf oil, a new source of cedrol. J. Nat. Prod. (Lloydia) 50: 323–324.Google Scholar
  500. Thomas, B. A. 1986. The biochemical analysis of fossil plants and its use in taxonomy and systematics. Pp. 39–51in R. A. Spicer & B. A. Thomas (eds.), Systematic and taxonomic approaches in palaeobotany. Syst. Assoc, Spec. Vol. 31. Clarendon Press, Oxford.Google Scholar
  501. Thomas, B. R. 1966. The chemistry of the order Araucariales, 4. The bled resin ofAgathis australis. Acta Chem. Scand. 20: 1074–1081.Google Scholar
  502. — 1970. Modern and fossil plant resins. Pp. 59–79in J. B. Harborne (ed.), Phytochemical phylogeny. Academic Press, London.Google Scholar
  503. Titova, T. F., V. A. Khan, V. I. Bol’schakova et al. 1980. Monoand sesquiterpenoids from the oleoresin ofAbies sachalinensis, Abies mayriana andAbies gracilis. Chem. Abstr. 93: 110561m.Google Scholar
  504. Toda, T., Y. S. Cheng &T. Nozoe. 1967. New constituents ofChamaecyparis formosensis. Chem. Pharm. Bull. 15:903–905.PubMedGoogle Scholar
  505. Tomita, B. &Y. Hirose. 1969. Terpenoids, XXIII. Chemotaxonomy of Cupressaceae, 2. Sesquiterpenes inBiota (Thuja)orientalis wood. Chem. Abstr. 73: 106318g.Google Scholar
  506. —,M. Hayashi &Y. Hirose. 1969. Terpenoids, XXVI. Chemotaxonomy of Cupressaceae, 3. Sesquiterpene hydrocarbons inJuniperus rigida wood. Chem. Abstr. 73: 106319h.Google Scholar
  507. —,T. Isono &Y. Hirose. 1970. Terpenoids, XXVIII. Acorane type sesquiterpenoids fromJuniperus rigida and hypothesis for the formation of new tricarbocyclic sesquiterpenoids. Tetrahedron Lett. 1970: 1371–1372.Google Scholar
  508. Tomlin, E. S., J. H. Borden &H. D. Pierce. 1996. Relationship between cortical resin acids and resistance of Sitka spruce to the white pine weevil. Canad. J. Bot. 74: 599–606.Google Scholar
  509. Torul, O. &A. Olcay. 1984. Terpene hydrocarbons of Soxhlet and supercirtical-gas extracts of oriental spruce and oriental beech. Holzforsch. 38: 221–224.Google Scholar
  510. Tripathi, M., L. Jain, V. B. Pandey et al. 1996. Pindrolactone, a lanostande derivative from the leaves ofAbies pindrow. Phytochemistry 43: 853–855.Google Scholar
  511. TROPICOS. [].Google Scholar
  512. Tsankova, E. 1969. Composition of essential oils fromPinus peuce. Chem. Abstr. 71: 53447y.Google Scholar
  513. — &I. Ognyanov. 1968. Sesquiterpene hydrocarbons fromPinus nigricans, Bulgarian coniferous oil. Chem. Abstr. 69: 61491g.Google Scholar
  514. Tsuda, Y., T. Sano, K. Kawaguchi &Y. Inubushi. 1964. α-Onoceradiene-serratene isomerization and the configuration of serratenediol. Tetrahedron Lett. 1964: 1279–1284.Google Scholar
  515. Tsumura, Y., K. Yoshimura, N. Tomaru &K. Ohba. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theor. Appl. Genet. 91: 1222–1236.Google Scholar
  516. Ueda, N., N. Dewa, Y. Hayashida et al. 1990. The diterpene hydrocarbons in the leaves of umbrella pine (Sciadopitys veticillata SIEB. & ZUCC.) Chem. Abstr. 115: 155070q.Google Scholar
  517. Vavra, N. &H. Walther. 1993. Chemofossilien aus dem Harz vonCunninghamia miocenica ETTING-SHAUSEN (Taxodiaceae; Oligo/Miozän). N. Jb. Geol. Paläont. Mh. 11: 693–704.Google Scholar
  518. Vernin, G., C. Boniface, J. Metzger et al. 1988. GC-MS-SPECMA bank analysisof Juniperus communis needles and berries. Phytochemistry 27: 1061–1064.Google Scholar
  519. —,J. Metzger, K. N. Suon et al. 1990a. GC-S-SPECMA bank analysis of essential oils and aromas. Chem. Abstr. 113: 112462k.Google Scholar
  520. —,R. Faure &J. C. Pieribattesti. 1990b. Two ent-kauranoid diterpene constituents ofCryptomeria japonica D. DON: α-kaurene and 16-hydroxy-α-kaurene. J. Essential Oil Res. 2: 211–214.Google Scholar
  521. Vlad, P. F., A. G. Russo &M. N. Koltska. 1975. Diterpene hydrocarbons fromPinus pallasiana oleoresin. Chem. Abstr. 83: 93864m.Google Scholar
  522. Von Rudloff, E. 1963. Gas-liquid chromatography of terpenes, IX. The volatile oil of the leaves ofJuniperus sabina L. Canad. J. Chem. 41: 2876–2881.Google Scholar
  523. — 1967. Chemosystematic studies in the genusPicea (Pinaceae), II. The leaf oil ofPicea glauca andP. mariana. Canad. J. Bot. 45: 1703–1714.Google Scholar
  524. — 1972. Chemosystematic studies in the genusPseudotsuga, 1. Leaf oil analysis of the coastal and Rocky Mountains varieties of Douglas fir. Canad. J. Bot. 50: 1025–1040.Google Scholar
  525. — 1975. Chemosystematic studies in the genusTsuga: Leaf and twig oil analysis of western hemlock. Canad. J. Bot. 53: 933–939.Google Scholar
  526. — 1981. The leaf oil terpene composition of incense cedar and coast redwood. Canad. J. Chem. 59: 285–287.Google Scholar
  527. — 1987. The volatile twig and leaf oil terpene compositions of three western North American larchesLarix laricana, Larix occidentalis andLarix lyallii. J. Nat. Prod. (Lloydia) 50: 317–321.Google Scholar
  528. — &F. M. Couchman. 1964. Gas-liquid chromatography of terpenes, XI. The volatile oil of the leaves ofJuniperus scopulorum SARG. Canad. J. Chem. 42: 1890–1895.Google Scholar
  529. — &R. S. Hunt. 1977. Chemosystematic studies in the genusAbies, II. Leaf and twig oil analysis of amabilis fir. Canad. J. Bot. 55: 3087–3092.Google Scholar
  530. — &M. S. Lapp. 1989. Some observations on the leaf oil terpene composition of mountain hemlock,Tsuga mertensiana. Canad. J. Forest Res. 19: 848–852.Google Scholar
  531. — &A. Sato. 1963. The heartwood extractives ofPinus banksiana LAMB. Canad. J. Chem. 41: 2165–2174.Google Scholar
  532. — &V. K. Sood. 1969. Gas-liquid chromatography of terpenes, XIII. The volatile oil of the leavesof Juniperus communis L. Canad. J. Chem. 47: 2081–2086.Google Scholar
  533. —,L. Hogge &M. Granat. 1980. The leaf oil terpene composition ofJuniperus occidentalis. Phytochemistry 19: 1701–1703.Google Scholar
  534. —,M. S. Lapp &F. C. Yeh. 1988. Chemosystematic study ofThuja plicata: Multivariate analysis of leaf oil terpene composition. Biochem. Syst. Ecol. 16: 119–125.Google Scholar
  535. Von Schantz, M. &S. Juvonen. 1967. Über die Sesquiterpene in der GattungPicea. Pl. Med. 15: 337–341.Google Scholar
  536. Wang, K. T. &B. Weinstein. 1963. Sesquiterpenoids, II. Minor constituents ofPinus parviflora. Experientia 19: 519–520.PubMedGoogle Scholar
  537. Weissmann, G. 1968. D8(9), 15-Isopimarsäuren im Balsam vonPinus peuce GR1SEBACH. Tetrahedron Lett. 1968: 2053–2055.Google Scholar
  538. Wenkert, E., J. de Paiva Campello, J. D. McChesney &D. J. Watts. 1974. Diterpenes ofPodocarpus ferrugineus bark. Phytochemistry 13: 2545–2549.Google Scholar
  539. Westfeit, L. 1966. High-boiling neutral constituents from the woodof Pinus sylvestris. Acta Chem. Scand. 20: 2829–2840.Google Scholar
  540. — &B. Wickberg. 1966. Sesquiterpenes from the wood ofAthrolaxis selaginoides DON. Ark. Kemi 26: 545–548.Google Scholar
  541. Weyerstahl, P., H. Marschall-Weyerstahl, E. Manteuffel &V. K. Kaul. 1988. Constituents ofJuniperus recurva var.squamata oil. Pl. Med. 54: 259–261.Google Scholar
  542. —,H. Marschall &G. Collin. 1996. Two new guaiadiene derivatives isolated fromThuja occidentalis L. wood oil. Liebigs Ann. 1996: 99–101.Google Scholar
  543. Yanegawa, T. &Y. Hirose. 1971. Terpenoids, XXIX. Diterpenes in the wood ofJuniperus rigida. Chem. Abstr. 75: 148545a.Google Scholar
  544. Yani, A., G. Pauly, M. Faye, F. Salin &M. Gleizes et al. 1993. The effect of a long-term water stress on the metabolism and emission of terpenes of the foliage ofCupressus sempervirens. Pl. Cell Environ. 16: 975–981.Google Scholar
  545. Yatagi, M. &T. Takahashi. 1980. New diterpenes fromChamaecyparis pisifera. Phytochemistry 19: 1149–1151.Google Scholar
  546. ——. 1994. Volatile components of the root ofChamaecyparis pisifera SIEB. & ZUCC. J. Essential Oil Res. 6: 456–461.Google Scholar
  547. —,T. Sato &T. Takahashi. 1985. Terpenes of leaf oils from Cupressaceae. Biochem. Syst. Ecol. 13:377–385.Google Scholar
  548. Ying, B. P. &I. Kubo. 1991. Complete1H and13C NMR assignments of totarol and its derivatives. Phytochemistry 30: 1951–1955.Google Scholar
  549. Yoshida, T., K. Endo, S. Ito &T. Nozoe. 1967. Chemical constituents in the essential oil of the leaves ofChamaecyparis taiwanensis. Chem. Abstr. 67: 76199a.Google Scholar
  550. Yoshihara, K. Y., Y. Ohta, T. Sakai &Y. Hirose. 1969. Germacrene D, a key intermediate of cadinene group compounds and bourbonenes. Tetrahedron Lett. 1969: 2263–2264.Google Scholar
  551. Zamir, L. O., M. E. Nedea, S. Bélair, F. Sauriol, O. Mamer, E. Jacqmain, F.-I. Jean &F.-X. Garneau. 1992. Taxanes isolated fromTaxus canadensis. Tetrahedron Lett. 33: 5173–5176.Google Scholar
  552. Zavarin, E., N. T. Mirov &K. Snajberk. 1966. Turpentine chemistry and taxonomy of three pines of southeastern Asia. Phytochemistry 5: 91–96.Google Scholar
  553. —,W. Hathaway, T. Reichert &Y. B. Linhart. 1967a. Chemotaxonomic studiesof Pinus torreyana PARRY turpentine. Phytochemistry 6:1019–1023.Google Scholar
  554. —,L. V. Smith &J. G. Bicho. 1967b. Tropolones of Cupressaceae, III. Phytochemistry 6: 1387–1394.Google Scholar
  555. Zhang, Z. &Z. Jia. 1991. Taxanes fromTaxus chinensis. Phytochemistry 30: 2345–2348.Google Scholar
  556. Zhou, W., J. Jiang, J. Wang &J. Song. 1994. Study on the chemical constituents of acidic fraction in chlorophyll-carotene paste from pine needles and twigs. Chem. Abstr. 122: 261012b.Google Scholar
  557. Zinkel, D. F. &A. H. Conner. 1973. Diterpenesof Pinus quadrifolia. Phytochemistry 12: 938–939.Google Scholar
  558. — &B. B. Evans. 1972. Terpenoids ofPinus strobus cortex tissue. Phytochemistry 11: 3387–3389.Google Scholar
  559. — &T. V. Magee 1987. Diterpene resin acids from the needle oleoresin ofPinus strobus. Phytochemistry 26: 769–774.Google Scholar
  560. ——. 1991. Resins acids ofPinus ponderosa. Phytochemistry 30: 845–848.Google Scholar

Copyright information

© The New York Botanical Garden 2001

Authors and Affiliations

  • Angelika Otto
    • 1
    • 2
  • Volker Wilde
    • 2
  1. 1.Johann Wolfgang Goethe-Universität Frankfurt/Main Institut für Mineralogie-UmweltanalytikFrankfurt/MainGermany
  2. 2.Forschungsinstitut Senckenberg Sektion PaläobotanikFrankfurt/MainGermany

Personalised recommendations