Skip to main content

Sprouting in temperate trees: A morphological and ecological review

Abstract

Sprouting in trees, which results in the production of secondary trunks, is an induced response to injury or to a dramatic change in surrounding environmental conditions. This article reviews the forestry and ecology literature to produce an integrated view of the role of sprouting in both disturbed habitats and closed-canopy forests. Sprouting is a universal attribute of temperate angiosperm trees through the sapling stage of development but is much less common among gymnosperms. Four basic types of sprout morphologies are described: collar sprouts from the base of the trunk, sprouts from specialized underground stems (lignotubers and rhizomes), sprouts from roots, and opportunistic sprouts from layered branches. In a survey of 68 species of trees native to northeastern North America, 41% were found to retain the ability to sprout from the collar into adulthood; 26% sprout from branch layers under natural conditions; and 25% have the capacity to form root suckers.

Sprouting in seedlings promotes their survival under a variety of stressful conditions, including suppression by canopy trees, herbivory, site exposure, and desiccation. In contrast, sprouting in mature trees extends the life span of the individual following damage and, in the case of root-suckering species, promotes the colonization of new ground. Although the sprouting of mature trees is more conspicuous than the sprouting of seedlings, its ecological significance is not as great.

As a broad generalization, species that grow in stressful sites or sites with frequent disturbances are likely to sprout more vigorously and to retain the sprouting ability longer than are species that grow in less stressful sites or sites with less frequent disturbance. Near the limits of a species’ altitudinal or latitudinal range, the production of basal sprouts, root suckers, rhizomes, and/or branch layers allows trees to spread into adjacent areas, thereby circumventing the difficulties associated with seedling establishment.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Auclair, A. N. 1975. Sprouting response inPrunus serotina Erhr.: Multivariate analysis of site, forest structure and growth rate relationships. Amer. Midl. Naturalist 94: 72–87.

    Article  Google Scholar 

  • — &G. Cottatn. 1971. Dynamics of black cherry (Prunus serotina Erhr.) in southern Wisconsin oak forests. Ecol. Monogr. 41: 153–177.

    Article  Google Scholar 

  • Barnes, B. V., D. R. Zak, S. R. Denton &S. H. Spurr. 1998. Forest ecology. 4th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Bellingham, P. J. &A. D. Sparrow. 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89: 409–416.

    Article  Google Scholar 

  • Bond, W. J. &J. J. Midgley. 2001. Ecology of sprouting in woody plants: The persistence niche. Trends Ecol. Evol. 16:45–51.

    PubMed  Article  Google Scholar 

  • Borchert, R. 1976. The concept of juvenility in woody plants. Acta Hort. 56: 21–36.

    Google Scholar 

  • Bosela, M. J. &F. W. Ewers. 1997. The mode of origin of root buds and root sprouts in the clonal treeSassafras albidum (Lauraceae). Amer. J. Bot. 84: 1466–1481.

    Article  Google Scholar 

  • Brown, C. L., R. G. McAlpine &P. P. Kormanik. 1967. Apical dominance and form in woody plants: A reappraisal. Amer. J. Bot. 54: 153–162.

    Article  Google Scholar 

  • Brown, J. H. 1960. The role of fire in altering the species composition of forests in Rhode Island. Ecology 41: 310–316.

    Article  Google Scholar 

  • Burns, R. M. & B. H. Honkala (eds.). 1990. Silvics of North America. 2 vols. U.S. Forest Serv. Handb. 654.

  • Burrows, G. E. 1990. Anatomical aspects of root bud development in hop pine (Araucaria cunninghamii). Austral. J. Bot. 38: 73–78.

    Article  Google Scholar 

  • Butts, D. &J. T. Buchholz. 1940. Cotyledon numbers in conifers. Illinois State Acad. Sci. Trans. 1940: 58–62.

    Google Scholar 

  • Canadell, J. &P. H. Zedler. 1994. Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. Pp. 177–210in M. T. Kalin Arroya, P. H. Zedler & M. D. Fox (eds.), Ecology and biogeography of Mediterranean ecosystems in Chile, California, and Australia. Springer-Verlag, New York.

    Google Scholar 

  • Carr, D. J., R. Jahnke &S. G. M. Carr. 1984. Initiation, development, and anatomy of lignotubers in some speciesof Eucalyptus. Austral. J. Bot. 32: 415–437.

    Article  Google Scholar 

  • Christensen, N. L. 1985. Shrubland fire regimens and the evolutionary consequences. Pp. 86–100in S. T. A. Pickett & P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Church, T. W. &R. M. Godman. 1966. The formation and development of dormant buds in sugar maple. Forest Sci. 12: 301–306.

    Google Scholar 

  • Cook, J. E. &T. L. Sharik. 1998. Oak regeneration in the southern Appalachians: Potential, problems, and possible solutions. Southern J. Appl. Forest. 22: 11–18.

    Google Scholar 

  • Cooper-Ellis, S., D. R. Foster, G. Carlton &A. Lezberg. 1999. Forest response to catastrophic wind: Results from an experimental hurricane. Ecology 80: 2683–2696.

    Google Scholar 

  • Crow, T. R. 1988. Reproductive mode and mechanisms for self-replacement of northern red oak (Quercus rubra)—A review. Forest Sci. 34: 19–40.

    Google Scholar 

  • —. 1992. Population dynamics and growth patterns for a cohort of northern red oak (Quercus rubra) seedlings. Oecologia 91:192–200.

    Article  Google Scholar 

  • Curtis, J. D. 1946. Preliminary observations on northern white cedar in Maine. Ecology 27: 23–36.

    Article  Google Scholar 

  • DeByle, N. V. 1964. Detection of functional intraclonal aspen root connections by tracers and excavation. Forest Sci. 10: 386–396.

    Google Scholar 

  • De Kroon, H. &J. van Groenendael (eds.). 1997. The ecology and evolution of clonal plants. Backhuys Publ., Leiden.

    Google Scholar 

  • Del Tredici, P. 1992. Natural regeneration ofGinkgo biloba from downward growing cotyledonary buds (basal chichi). Amer. J. Bot. 79: 522–530.

    Article  Google Scholar 

  • —. 1995. Shoots from roots: A horticultural review. Amoldia 55(3): 11–19.

    Google Scholar 

  • —. 1998a. Aging, rejuvenation, and propagation in trees. Comb. Proc. Int. Pl. Propogag. Soc. 48: 637–642.

    Google Scholar 

  • —. 1998b. Lignotubers inSequoia sempervirens: Development and ecological significance. Madroño 45: 255–260.

    Google Scholar 

  • —,H. Ling &G. Yang. 1992. TheGinkgos of Tian Mu Shan. Conservation Biol. 6: 202–209.

    Article  Google Scholar 

  • Diller, O. D. &E. D. Marshall. 1937. The relation of stump height to the sprouting ofOstrya virginiana in northern Indiana. J. Forest. 35:1116–1119.

    Google Scholar 

  • Everham, E. M., III &N. V. L. Brokaw. 1996. Forest damage and recovery from catastrophic wind. Bot. Rev. (Lancaster) 62: 113–185.

    Article  Google Scholar 

  • Farmer, R. E. 1962. Aspen root sucker formation and apical dominance. Forest Sci. 8: 403–410.

    Google Scholar 

  • Fontanier, E. J. &H. Jonkers. 1976. Juvenility and maturity of plants as influenced by their ontogenetical and physiological aging. Acta Hort. 56: 37–44.

    Google Scholar 

  • Gilbert, E. F. 1966. Structure and development of sumac clones. Amer. Midl. Naturalist 75: 432–445.

    Article  Google Scholar 

  • Groff, P. A. &D. R. Kaplan. 1988. The relation of root systems to shoot systems in vascular plants. Bot. Rev. (Lancaster) 54: 387–422.

    Google Scholar 

  • Hallé, F. 1999. Ecology of reiteration in tropical trees. Pp. 93–107in M. H. Kurmann & A. R. Hemsley (eds.), The evolution of plant architecture. Roy. Bot. Gard., Kew, London.

    Google Scholar 

  • —,R. A. A. Oldeman &P. B. Tomlinson. 1978. Tropical trees and forests. Springer-Verlag, New York.

    Google Scholar 

  • Hara, M. 1987. Analysis of seedling banks of a climax beech forest: Ecological importance of seedling sprouts. Vegetatio 71: 67–74.

    Google Scholar 

  • Harcombe, P. A. &P. L. Marks. 1983. Five years of tree death in aFagus-Magnolia forest, southeast Texas (USA). Oecologia 57: 49–54.

    Article  Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, London.

    Google Scholar 

  • Henry, J. D. &J. M. A. Swan. 1974. Reconstructing forest history from live and dead plant material—An approach to the study of forest succession in southwest New Hampshire. Ecology 55:772–783.

    Article  Google Scholar 

  • Hibbs, D. E. &B. C. Fischer 1979. Sexual and vegetative reproduction of striped maple (Acer pensylvanicum L.). Bull. Torrey Bot. Club 106: 222–227.

    Article  Google Scholar 

  • Hough, A. F. 1937. A study of natural tree reproduction in the beech-birch-maple-hemlock type. J. Forest. 35: 376–378.

    Google Scholar 

  • James, S. 1984. Lignotubers and burls—Their structure, function, and ecological significance in Mediterranean ecosystems. Bot. Rev. (Lancaster) 50: 225–266.

    Google Scholar 

  • Jenik, J. 1994. Clonal growth in woody plants: A review. Folia Geobot. Phytotax. 29: 291–306.

    Article  Google Scholar 

  • Johnson, P. S. 1975. Growth and structural development of red oak sprout clumps. Forest Sci. 21: 413–418.

    Google Scholar 

  • -. 1978. Predicting oak stump sprouting and sprout development in the Missouri Ozarks. U.S. Forest Serv. Res. Pap. NC-149.

  • Jones, R. H. &D. J. Raynal. 1986. Spatial distribution and development of root sprouts inFagus grandifolia (Fagaceae). Amer. J. Bot. 73: 1723–1731.

    Article  Google Scholar 

  • Kajimoto, T. 1992. Dynamics and dry matter production of below ground woody organs ofPinus pumila trees growing on the Kiso mountain range in central Japan. Ecol. Research 7: 333–339.

    Article  Google Scholar 

  • Kays, J. S. &C. D. Canham. 1991. Effects of time and frequency of cutting on hardwood root reserves and sprout growth. Forest Sci. 37: 524–539.

    Google Scholar 

  • Keeley, J. E. &P. H. Zedler. 1998. Evolution of life histories inPinus. Pp. 219–249in D. M. Richardson (ed.), Ecology and biogeography ofPinus. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Kemperman, J. A. &B. V. Barnes. 1976. Clone size in American aspens. Canad. J. Bot. 54: 2603–2607.

    Google Scholar 

  • Koop, H. 1987. Vegetative reproduction of trees in some European natural forests. Vegetatio 72: 103–110.

    Google Scholar 

  • Kormanik, P. P. &C. L. Brown. 1967. Root buds and the development of root suckers in sweetgum. Forest Sci. 13:338–345.

    Google Scholar 

  • Kozlowski, T. T. 1971. Growth and development of trees. Academic Press, New York.

    Google Scholar 

  • Kruger, E. L. &P. B. Reich. 1993a. Coppicing alters ecophysiology ofQuercus rubra saplings in Wisconsin forest opening. Physiol. Pl. (Copenhagen) 89: 741–750.

    Article  Google Scholar 

  • ——. 1993b. Coppicing affects growth, root:shoot relations and ecophysiology of pottedQuercus rubra seedlings. Physiol. Pl. (Copenhagen) 89: 751–760.

    Article  Google Scholar 

  • Larson, D. W., U. Matthes &P. E. Kelley. 2000. Cliff ecology: Pattern and process in cliff ecosystems. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Leffelman,L. J. & R. C. Hawley. 1925. Studies of Connecticut hardwoods: The treatment of advance growth arising as a result of thinnings and shelterwood cuttings. Yale Univ. School Forest. Bull. 15.

  • Liming, F. G. &J. P. Johnson. 1944. Reproduction in oak-hickory forest stands of the Missouri Ozarks. J. Forest. 42: 175–180.

    Google Scholar 

  • Little, S. 1937. Relationships between vigor or resprouting and intensity of cutting in coppice stands. J. Forest. 36: 1216–1223.

    Google Scholar 

  • — &F. Mergen. 1966. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. Forest Sci. 12: 268–275.

    Google Scholar 

  • Loehle, C. 2000. Strategy space and the disturbance spectrum: A life history model for tree species coexistence. Amer. Naturalist 156: 14–33.

    Article  Google Scholar 

  • Luken, J. O. 1990. Gradual and episodic changes in the structure ofRhus typhina clones. Bull. Torrey Bot. Club 117: 221–225.

    Article  Google Scholar 

  • MacDonald, J. E. &G. R. Powell 1983. Relationship between stump sprouting and parent-tree diameter in sugar maple in the first year following clear-cutting. Canad. J. Forest Res. 13: 390–394.

    Article  Google Scholar 

  • Marr, J. W. 1977. The development and movement of tree islands near the upper limit of tree growth in the southern Rocky Mountains. Ecology 58: 1159–1164.

    Article  Google Scholar 

  • Matoon, F. E. 1909. The origin and early development of chestnut sprouts. Forest. Quart. 7: 34–47.

    Google Scholar 

  • McIntyre, A. C. 1936. Sprout groups and their relations to the oak forests of Pennsylvania. J. Forest. 34: 1054–1058.

    Google Scholar 

  • Merz, R. W. &S. G. Boyce. 1956. Age of oak “seedlings.” J. Forest. 54: 774–775.

    Google Scholar 

  • Mesleard, F. &J. Lepart. 1989. Continuous basal sprouting from a lignotuber:Arbutus unedo L. andErica arborea L., as woody Mediterranean examples. Oecologia 80: 127–131.

    Article  Google Scholar 

  • Mitton, J. B. &M. C. Grant. 1996. Genetic variation and the natural history of quaking aspen. BioScience 46(1): 25–31.

    Article  Google Scholar 

  • Molinas, M. L. &D. Verdaguer. 1993. Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae), II. Germination and young seedling. Amer. J. Bot. 80: 182–191.

    Article  Google Scholar 

  • Muller, C. H. 1951. The significance of vegetative reproduction inQuercus. Madroño 11: 129–137.

    Google Scholar 

  • Ng, F. S. P. 1999. The development of the tree trunk in relation to apical dominance and other shoot organizational concepts. J. Trop. Forest Sci. 11: 270–285.

    Google Scholar 

  • O’Dea, M. E., J. C. Zasada &J. C. Tappeiner. 1995. Vine maple clone growth and reproduction in managed and unmanaged coastal Oregon Douglas-fir forests. Ecol. App. 5: 63–73.

    Article  Google Scholar 

  • Ohkubo, T. 1992. Structure and dynamics of Japanese beech (Fagus japonica Maxim.) stools and sprouts in the regeneration of the natural forests. Vegetatio 101: 65–80.

    Article  Google Scholar 

  • —,T. Tanimoto &R. Peters. 1996. Response of Japanese beech (Fagus japonica Maxim.) sprouts to canopy gaps. Vegetatio 124: 1–8.

    Article  Google Scholar 

  • Paillet, F. L. 1984. Growth-form and ecology of American chestnut sprout clones in northeastern Massachusetts. Bull. Torrey Bot. Club 111: 316–328.

    Article  Google Scholar 

  • —. 1988. Character and distribution of American chestnut sprouts in southern New England woodlands. Bull. Torrey Bot. Club 115: 32–44.

    Article  Google Scholar 

  • Pate, J. S., R. H. Froend, B. J. Bowen, A. Hansen &J. Kuo. 1990. Seedling growth and storage characteristics of seeder and resprouter species of mediterranean-type ecosystems of S.W. Australia. Ann. Bot. (London) 65: 585–601.

    Google Scholar 

  • Perala, D. A. 1974. Growth and survival of northern hardwood sprouts after burning. U.S. Forest Serv. Res.Note NC-176.

  • Peterken, G. F. 1996. Natural woodland. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Peterson, C. J. &R. H. Jones. 1997. Clonality in woody plants: A review and comparison with clonal herbs. Pp. 263–289in H. de Kroon & J. van Groenendael (eds.), The ecology and evolution of clonal plants. Backhuys Publ., Leiden.

    Google Scholar 

  • — &S. T. A. Pickett. 1995. Forest reorganization: A case study in an old-growth forest catastrophic blowdown. Ecology 76: 763–774.

    Article  Google Scholar 

  • Powell, D. S. &E. H. Tryon. 1979. Sprouting ability of advance growth in undisturbed hardwood stands. Canad. J. Forest Res. 9: 116–120.

    Article  Google Scholar 

  • Putz, F. E. &R. R. Sharitz. 1991. Hurricane damage to old-growth forest in Congaree Swamp National Monument, South Carolina, U.S.A. Canad. J. Forest Res. 21:1765–1770.

    Article  Google Scholar 

  • Rackham, O. 1986. The history of the countryside. J. M. Dent, London.

    Google Scholar 

  • Reinartz, J. A. &J. W. Popp. 1987. Structure of clones of northern prickly ash (Xanthoxylum americanum). Amer. J. Bot. 74: 415–428.

    Article  Google Scholar 

  • Ross, M. S., T. L. Sharik &D. W. Smith. 1986. Oak regeneration after clear felling in southwest Virginia. Forest Sci. 32: 157–169.

    Google Scholar 

  • Roth, E. R. &G. H. Hepting. 1943. Origin and development of oak stump sprouts as affecting their likelihood to decay. J. Forest. 41: 27–36.

    Google Scholar 

  • ——. 1969. Prediction of butt rot in newly regenerated sprout oak stands. J. Forest. 67:756–760.

    Google Scholar 

  • Runkle, J. R. 1985. Disturbance regimens in temperate forests. Pp. 17–33in S. T. A. Pickett & P. S. White (eds.), The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Sakai, A. &S. Sakai. 1998. A test for the resource remobilization hypothesis: Tree sprouting using carbohydrates from above-ground parts. Ann. Bot. (London) 82: 213–216.

    Article  CAS  Google Scholar 

  • —,T. Ohsawa &M. Ohsawa. 1995. Adaptive significance of sprouting ofEuptelea polyandra, a deciduous tree growing on steep slopes with shallow soil. J. Pl. Res. 108: 377–386.

    Article  Google Scholar 

  • —,S. Sakai &F. Akiyama. 1997. Do sprouting tree species on erosion-prone sites carry large reserves of resources? Ann. Bot. (London) 79: 625–630.

    Article  Google Scholar 

  • Sander, I. L. 1971. Height growth of new oak sprouts depends on size of advance reproduction. J. Forest. 69: 809–811.

    Google Scholar 

  • Schier, G. A. 1983. Vegetative regeneration of Gamble oak and chokecherry from excised rhizomes. Forest Sci. 29:499–502.

    Google Scholar 

  • Sealy, J. R. 1949. The swollen stem-base inArbutus unedo. Kew Bull. 4: 241–251.

    Google Scholar 

  • Smith, D. M., B. C. Larson, M. J. Kelty &P. M. S. Ashton. 1997. The practice of silviculture: Applied forest ecology. 9th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Solomon,D. S. & B. M. Blum. 1967. Stump sprouting of four northern hardwoods. U.S. Forest Serv. Res. Pap. NE-59.

  • Sonoyama, N., N. Watanabe, O. Watanabe, S. Niwa &Y. Kubota. 1997. Ecological significance of sprouting traits of cool-temperate tree species in a northern mixed forest. Jap. J. Ecol. 47:21–29 (in Japanese).

    Google Scholar 

  • Stone, E. L. &S. M. Cornwell. 1968. Basal bud burls inBetula populifolia. Forest Sci. 14: 64–65.

    Google Scholar 

  • — &M. H. Stone. 1954. Root collar sprouts in pine. J. Forest. 52: 487–491.

    Google Scholar 

  • Sutton, R. F. & R. W. Tinus. 1983. Root and root system terminology. Forest Sci. Monogr. 24.

  • Swan, F. R. 1970. Post-fire response of four plant communities in south-central New York state. Ecology 51: 1074–1082.

    Article  Google Scholar 

  • Tiedemann, A. R., W. P. Clary &R. J. Barbour. 1987. Underground systems of Gambel oak (Quercus gambelii) in central Utah. Amer. J. Bot. 74:1065–1071.

    Article  Google Scholar 

  • Timell, T. T. 1986. Compression wood in gymnosperms. Springer-Verlag, New York.

    Google Scholar 

  • Van Groenendael,J. M., L. Klimes, J. Klimesova &R. J. J. Hendriks. 1997. Comparative ecology of clonal plants. Pp. 191–209in J. Silvertown, M. Franco& J. L. Harper (eds.), Plant life histories. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Ward, W. W. 1966. Oak-hardwood reproduction in central Pennsylvania. J. Forest. 64: 744–749.

    Google Scholar 

  • Wendel,G. W. 1975. Stump sprout growth and quality of several Appalachian hardwood species after clearcutting. U.S. Forest Serv. Res. Pap. NE-329.

  • White, P. S. &S. T. A. Pickett. 1985. Natural disturbance and patch dynamics: an introduction. Pp. 3–13in S. T. A. Pickett & P. S. White (eds.) The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Whitney, G. G. 1994. From coastal wilderness to fruited plain. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Wilson,B. F. 1968. Red maple stump sprouts: Development the first year. Harvard Forest Pap. 18.

  • Wong, K. M. 1994. A note on root sucker production in the coniferDacrydium xanthandrum (Podocarpaceae) on Mount Kinabalu, Sabah. Sandakania 4: 87–89.

    Google Scholar 

  • Zahner, R. &N. V. DeByle. 1965. Effect of pruning the parent root on growth of aspen suckers. Ecology 46: 373–375.

    Article  Google Scholar 

  • Zimmermann,M. H. & C. L. Brown. 1974. Trees: Structure and function. Springer-Verlag, New York.

  • Zon, R. 1904. Chestnut in southern Maryland. U.S.D.A. Bur. Forest. Bull. 53.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Del Tredici, P. Sprouting in temperate trees: A morphological and ecological review. Bot. Rev 67, 121–140 (2001). https://doi.org/10.1007/BF02858075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858075

Keywords

  • Botanical Review
  • Adventitious Root
  • Mature Tree
  • Cotyledonary Node
  • Root Sucker