The Botanical Review

, Volume 67, Issue 4, pp 417–440 | Cite as

Ecological response syndromes in the flora of southwestern Western Australia: Fire resprouters versus reseeders

  • David T. Bell

Abstract

Two fire-response syndromes can be described for species of the vegetation of Mediterranean-climate, southwestern Western Australia. Resprouters survive fires as individuals. Reseeders are killed by fire and must reestablish through germination and establishment of seedlings. Of the Western Australian plant families analyzed for fire-response strategies, 50% of the Proteaceae, 50% of the Restionaceae, 45% of the Orchidaceae, and 25% of the Epacridaceae are resprouter species. Within genera of the Proteaceae, the proportions of resprouters includeAdenanthos (56%),Hakea (52%),Dryandra (35%), andGrevillea (31%). WithinBanksia, 49% are resprouters, and it appears that the reseeding syndrome is the derived character in this genus. The proportion of resprouters within southwestern Western Australian plant communities ranges from 66% to 80%. These percentages are generally higher than in more arid parts of Western Australia and in comparable plant communities from other Mediterranean-type climates of the world. The relatively high proportion of resprouters within plant families and within plant communities probably indicates that the Western Australian vegetation experiences a harsher fire stress regime than do other Mediterranean-type climate areas. Western Australian plant communities have their highest diversity in the early years after fire, when the vegetation contains a higher number of reseeding species and individuals. Seed banks are dominated by the seeds of reseeders.

There are no basic differences in mean seed mass, viability, or germinability of seeds between resprouting species and reseeding species, but reseeders tend to have narrower optimum germination temperature regimes. Establishment success is related more to seed mass, seedling size, and leaf ecophysiology and morphology than to fire-response strategy. Reseeder seedlings tend to grow faster than do resprouter seedlings. Basic shrub morphology differs, with reseeders generally being umbrella shaped and resprouters urn shaped. Reseeding species most commonly have a shallow, fibrous root system. Resprouters have a massive, deeply penetrating root system. Shoot:root ratios of first-year seedlings and mature plants are higher for reseeders. Resprouter seedlings store starch in root tissue at a much greater rate than do reseeder seedlings. Although the concentrations of essential nutrients in seedlings are not different between fire-response types, reseeders tend to conserve nutrients to a greater extent through leaf retention. Reseeders tend to produce greater numbers of flowers and greater amounts of floral rewards, but the breeding systems, which lead to the higher seed set in reseeders, can vary between strict outcrossing and considerable selfing. Reseeding species are not likely to be wind pollinated. Species survival in a fire-prone environment can involve a wide range of combinations of attributes. It appears that in Western Australian reseeder species the lack of an ability to resprout is compensated for by a number of other structural and functional features.

Knowledge of the fire-response strategies of species of southwestern Western Australia can influence fire-regime management, conservation of rare species, and restoration of vegetation after disturbance. Further knowledge of the fire-response strategies of species of the southwestern Western Australian flora should result in better management of natural and restored plant communities of the region.

Zusammenfassung

Es können zwei Syndrome in bezug auf Waldbrände für Vegetationsarten des mediterranen Klimas im Südwesten Westaustraliens beschrieben werden. Pflanzen, die nach dem Waldbrand wieder austreiben, songenannte “resprouter,” überleben als Individuen. Pflanzen, die vom Feuer vernichtet werden, müssen sich durch Keimung der Samen und des Aufwachsens der Sämlinge neu etablieren (sogenannte “reseeder”). Eine Analyse der Strategien als Reaktion auf Waldbrände ergab für Pflanzenarten in Westaustralien, daß 50% der Proteaceae, 50% der Restionaceae, 45% der Orchidaceae, und 25% der Epacridaceae “resproter” sind. Innerhalb der Familie der Proteaceae sind Pflanzen, die wieder austreiben, anteilsmäßig zu 56% inAdenanthos, zu 52% inHakea, zu 35% inDryandra, und zu 31% inGrevillea vertreten. 49% derBanksia Arten sind “resprouter,” und es erscheint, daß das Syndrom der Wiederausbreitung durch Samen ein abgeleitetes Merkmal in deiser Familie ist. Der Anteil der “resprouter” beträgt in Pflanzengemeinschaften im Südwesten Westaustraliens 66 bis 80%. Diese prozentualen Anteile sind im allgemeinen höher als in mehr wüstenähnlichen Gebieten Westaustraliens und in vergleichbaren Pflanzengemeinschaften anderer mediterraner Klimate. Der relativ hohe Anteil von “resprouter” innerhalb Pflanzenfamilien un Pflanzengemeinschaften ist wahrscheinlich ein Anzeichen dafür, daß die Vegetation in Westaustralien stärker von der Einwirkung des Feuers geprägt ist als andere Gebiete mediterranen Klimas. Westaustralische Pflanzengemeinschaften haben ihren höchsten Grad an Vielfalt in frühen Jahren nach einem Waldbrand, wenn die Vegetation ein hohe Anzahl von Pflanzenarten und Individuen enthält, die “reseeder” sind. Samenbanken dominieren durch Samen von “reseeder.”

Es gibt keine grundlegenden Unterschiede zwischen “resprouter”- und “reseeder”-Pflanzen in bezug auf mittlerer Samenmasse, Überlebensfähigkeit oder Keimfähigkeit der Samen. Allerdings neigen die Samen der “reseeder”-Pflanzen zu einem engeren Temperaturoptimum währen der Keimung. Der Erfolg der Landbesiedelung hängt vornehmlich von Samenmasse, Sämlingsgröße und Blattökophysiologie und Morphologie ab und weniger von der Strategie als Reaktion auf Waldbrände. Sämlinge von “reseeder”-Pflanzen wachsen in der Regel schneller als Sämlinge von “resprouter”-Pflanzen. Die grundlegende Buschmorphologie unterscheidet sich im allgemeinen zwischen “reseeder”-Pflanzen, die eine Regenschirmform, und “resprouter”-Pflanzen, die eine Vasenform annehmen. “Reseeder”-Pflanzenarten besitzen zumeist ein flaches, fibriliäres Wurzelsystem. “Resprouter”-Pflanzen besitzen ein massives, tief durchdringendes Wurzelsystem. Trieb: Wurzel-Verhältnisse von einjährigen Sämlingen und ausgewachsenen Pflanzen sind höher für “reseeder”-Pflanzen. “Resprouter”-Sämlinge speichern Stärke im Wurzelgewebe in höherem Maße als “reseeder”-Sämlinge. Obwohl essentielle Nährstoffkonzentrationen in Sämlingen nicht differieren zwischen “reseeder” und “resprouter,” konservieren “reseeder”-Pflanzen, Nährstoffe in größerem Ausmaß durch Blatterhalt. “Reseeder”-Pflanzen neigen zu einer erhöhten Produktion der Blütenanzahl und einer größeren Menge von bestäubten Blüten. Züchtungssysteme hingenen, die zu einer höheren Samenanlage in “reseeder”-Planzen führen, können zwischen strikter Fremdbestäubung und beträchtlicher Selbstbestäubung variieren. Es ist unwahrscheinlich, daß “reseeder”-Pflanzenarten vom Wind bestäubt werden. Das Überleben von Pflanzenarten in einer von Waldbränden geprägten Umwelt kann eine Reihe von Kombinationen von Attributen einschleißen. Es erscheint, daß in westaustralischen “reseeder”-Pflanzenarten der Mangel an der Unfähigkeit, neu auszutreiben, durch eine Anzahl anderer struktureller und funktioneller Merkmale kompensert wird.

Kenntnisse der Strategien von Pflanzen im Südwesten Westaustraliens gegen Waldbrände können das Feuermanagement Regime, die Erhaltung seltener Arten und die Erneuerung der Vegetation nach einer Störung beeinflussen. Zusälzliche Kenntnisse der Strategien gegen Waidenbrände von Arten in der südwest-Avestaustralischen Flora sollen zu besserem Umgang mit natürlichen und erneuerten Pflanzengemeinschaften der Region führen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abbott, I. 1984. Emergence and early survival of seedlings of six tree species in Mediterranean forest of Western Australia. Forest Ecol. & Managern. 9: 51–66.CrossRefGoogle Scholar
  2. — 1985. Reproductive ecology ofBanksia grandis (Proteaceae). New Phytol. 99: 129–148.CrossRefGoogle Scholar
  3. Adamson, R. S. 1935. The plant communities of Table Mountain, III: A six years’ study of regeneration after burning. J. Ecol. 23: 52–55.Google Scholar
  4. Baird, A. M. 1977. Regeneration after fire in King’s Park, Perth, Western Australia. J. Roy. Soc. W. Australia 60: 1–22.Google Scholar
  5. —. 1984. Observations on regeneration after fire in the Yule Brook Reserve near Perth, Western Australia. J. Roy. Soc. W. Australia 67: 1–13.Google Scholar
  6. Bartle, J. R., J. McCormick &S. R. Shea. 1978. Direct seeding of native species: A technique for revegetation of disturbed areas in the jarrah (Eucalyptus marginata Sm.) forest. Pp. 99–104in J. E. D. Fox (ed.), Rehabilitation of mined lands in Western Australia. Western Australia Institute of Technology, Bentley, Australia.Google Scholar
  7. Beard, J. S. 1990. Plant life of Western Australia. Kangaroo Press, Kenthurst, Australia.Google Scholar
  8. Bell, D. T. 1985. Aspects of response to fire in the Northern Sandplain heathlands. Pp 33–40in J. Ford (ed.), Fire ecology and management in Western Australian ecosystems. Western Australia Institute of Technology, Environmental Studies Group Report No. 14. Bentley, Australia.Google Scholar
  9. —. 1988. Seed-related autecology in restoration of minesites in Western Australia. Pp. 5–33in E. B. Allen (ed.), The reconstruction of disturbed arid lands: An ecological approach. AAAS Selected Symposium 109. Westview Press, Boulder, CO.Google Scholar
  10. —. 1994. Interaction of fire, temperature and light in the germination response of 16 species from theEucalyptus marginata forest of south-western Western Australia. Austral. J. Bot. 42:501–509.CrossRefGoogle Scholar
  11. —. 1999. The process of germination in Australian species. Austral. J. Bot. 47: 475–517.CrossRefGoogle Scholar
  12. — &S. M. Bellairs. 1992. Effects of temperature on the germination of selected Australian native species used in rehabilitation of bauxite mining disturbance in Western Australia. Seed Sci. & Technol. 20: 47–55.Google Scholar
  13. — &J. M. Koch. 1980. Post-fire succession in the northern jarrah forest of Western Australia. Austral. J. Ecol. 5: 9–14.CrossRefGoogle Scholar
  14. — &W. A. Loneragan. 1985. The relationship of fire and soil type to floristic patterns within heathland vegetation near Badgingarra, Western Australia. J. Roy. Soc. W. Australia 67: 98–109.Google Scholar
  15. — &D. S. Williams. 1998. Tolerance of thermal shock in seeds from Western Australia. Austral. J. Bot. 46: 221–233.CrossRefGoogle Scholar
  16. —,A. J. M. Hopkins &J. S. Pate. 1984. Fire in the kwongan. Pp. 178–204in J. S. Pate & J. S. Beard (eds.), Kwongan: Plant life of the sandplain. Univ. of Western Australia Press, Nedlands.Google Scholar
  17. —,D. Carter &R. Hetherington. 1986. Experimental assessment of wind erosion after soil stabilization treatments at Eneabba, Western Australia. Environ. Geochem. Health 8: 99–104.CrossRefGoogle Scholar
  18. —,P. G. van der Moezel, J. C. Delfs &W. A. Loneragan. 1987. Northern Sandplain kwongan: Effect of fire onHakea obliqua andBeaufortia elegans population structure. J. Roy. Soc. W. Australia 69: 139–143.Google Scholar
  19. —,S. Vlahos &S. M. Bellairs. 1990. Seed ecology in relation to reclamation: Lessons from mined lands in Western Australia. Proc. Ecol. Soc. Australia 16: 531–535.Google Scholar
  20. —,W. A. Loneragan, W. J. Ridley, K. W. Dixon &I. R. Dixon. 1992. Response of tree species of Kings Park Bushland, Perth, Western Australia to the severe summer wildfire of January 1989. J. Roy. Soc. W. Australia 75: 35–39.Google Scholar
  21. —,J. A. Plummer &S. K. Taylor. 1993. Seed germination ecology in southwestern Western Australia. Bot. Rev. (Lancaster) 59: 24–73.CrossRefGoogle Scholar
  22. —,D. P. Rokich, C. J. McChesney &J. A. Plummer. 1995. Effects of temperature, light and gibberellic acid on the germination of seeds of 43 species native to the southwest of Western Australia. J. Veg. Sci. 6: 797–806.CrossRefGoogle Scholar
  23. —,L. A. King &J. A. Plummer. 1999. Ecophysiological effects of light quality and nitrate on seed germination in species from Western Australia. Austral. J. Ecol. 24: 2–10.CrossRefGoogle Scholar
  24. Bell, T. L. 1995. Biology of Australian Epacridaceae, with special reference to growth, fire response and mycorrhizal nutrition. Ph.D. diss., Univ. of Western Australia.Google Scholar
  25. — &J. S. Pate. 1996. Growth and fire response of selected Epacridaceae of south-western Australia. Austral. J. Bot. 44: 509–526.CrossRefGoogle Scholar
  26. Bellairs, S. M. 1992. Seed biology, establishment ecology and vegetation development of Northern Sandplain kwongan vegetation after mineral sand mining near Eneabba, Western Australia. Ph.D. diss., Univ. of Western Australia.Google Scholar
  27. — &D. T. Bell. 1990a. Temperature effects on the seed germination of ten kwongan species from Eneabba, Western Australia. Austral. J. Bot. 38: 451–458.CrossRefGoogle Scholar
  28. ——. 1990b. Canopy-borne seed store in three Western Australian plant communities. Austral. J. Ecol. 15:299–305.CrossRefGoogle Scholar
  29. ——. 1993. Seed stores for restoration of species rich shrubland vegetation following mining in Western Australia. Restoration Ecol. 1: 231–240.CrossRefGoogle Scholar
  30. Benwell, A. S. 1998. Post-fire seedling recruitment in coastal heathland in relation to regeneration strategy and habitat. Austral. J. Bot. 46: 75–101.CrossRefGoogle Scholar
  31. Biswell, H. H. 1974. Effects of fire on chaparral. Pp. 321–364in T. T. Kozlowski & C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.Google Scholar
  32. Bond, W. J., J. Vlok &M. Viviers. 1984. Variation in seedling recruitment of Cape Proteaceae after fire. J. Ecol. 72: 209–221.CrossRefGoogle Scholar
  33. Bowen, B. J. 1991. Fire response within the family Proteaceae: A comparison of plants displaying the seeder and resprouter mode of recovery. Ph.D. diss., Univ. of Western Australia.Google Scholar
  34. — &J. S. Pate. 1993. The significance of root starch in post-fire shoot recovery of the resprouterStirlingia latifolia R. Br. (Proteaceae). Ann. Bot. 72: 7–16.CrossRefGoogle Scholar
  35. Bradstock, R. A. &M. Bedward. 1992. Simulation of the effects of season of fire on post-fire seedling emergence of twoBanksia species based on long-term rainfall records. Austral. J. Bot. 40:75–88.CrossRefGoogle Scholar
  36. — &P. J. Myerscough. 1981. Fire effects on seed release and the emergence and establishment of seedlings inBanksia ericifolia L.f. Austral. J. Bot. 29: 521–531.Google Scholar
  37. —,A. M. Gill, S. M. Hastings &P. H. R. Moore. 1994. Survival of serotinous seedbanks during bushfires: Comparative studies ofHakea species from southeastern Australia. Austral. J. Ecol. 19:276–282.CrossRefGoogle Scholar
  38. Brooks, D. R. &L. C. Bell. 1984. Technology of rehabilitation following mineral sands mining on North Stradbroke Island. Pp. 184–194in R. J. Coleman, J. Covacevich& P. Davie (eds.), Focus on Stradbroke: New information on North Stradbroke Island and surrounding areas, 1974–1984. Boolarong Publ., Brisbane.Google Scholar
  39. Brown, J. H. &B. A. Maurer. 1987. Evolution of species assemblages: Effects of energetic constraints and species dynamics on the diversification of the North American avifauna. Amer. Naturalist 130: 1–17.CrossRefGoogle Scholar
  40. Burgman, M. A. &B. B. Lamont. 1992. A stochastic model for the viability ofBanksia cuneata populations: Environmental, demographic and genetic effects. J. Appl. Ecol. 29:719–727.CrossRefGoogle Scholar
  41. Burrows, N. D., B. Ward &A. D. Robinson. 1995. Regeneration and flowering responses of plant species in jarrah forest plant communities. Pp. 30–33in J. Harris (ed.), Burning our bushland: Proceedings of a conference about fire and urban bushland. Urban Bushland Council, Perth.Google Scholar
  42. Carpenter, R. L. &H. F. Recher. 1979. Pollination, reproduction, and fire. Amer. Naturalist 113: 871–879.CrossRefGoogle Scholar
  43. Christensen, P. E. &P. C. Kimber. 1975. Effects of prescribed burning on the flora and fauna of southwest Australian forests. Pp. 85–106in J. Kikkawa & H. A. Nix (eds.), Managing terrestrial ecosystems: Symposium, Brisbane, 15–16 May 1975. Proc. Ecol. Soc. Australia, 9. Watson Ferguson, Brisbane.Google Scholar
  44. Churchill, D. M. 1968. The distribution and prehistory ofEucalyptus diversicolor F. Muell.,E. marginata Donn ex Sm. andE. calophylla R. Br. in relation to rainfall. Austral. J. Bot. 16:125–151.CrossRefGoogle Scholar
  45. Cochrane, A., A. Kelly, K. Brown &S. Cunneen. 2002. The relationship between germination requirements and ecophysiological characteristics in germination studies of seeds from threatened native species of southwest Western Australia: Information valuable to the recovery process. Ecol. Managern. & Restoration 3: 44–58.Google Scholar
  46. Cowling, R. M. &B. B. Lamont. 1986. Population ecology of Western AustralianBanksia species: Implications for the wildflower industry. Acta Hort. 185: 217–227.Google Scholar
  47. ——. 1987. Post-fire recruitment of four co-occurringBanksia species. J. Appl. Ecol. 24: 645–658.CrossRefGoogle Scholar
  48. ——. 1998. On the nature of Gondwanan species flocks: Diversity of Proteaceae in Mediterranean south-western Australia and South Africa. Austral. J. Bot. 46: 335–355.CrossRefGoogle Scholar
  49. ——S. M. Pierce. 1987. Seed bank dynamics of four co-occurringBanksia species. J. Ecol. 75: 289–302.CrossRefGoogle Scholar
  50. Delfs, J. C., J. S. Pate &D. T. Bell. 1987. Northern Sandplain kwongan: Community biomass and selected species response to fire. J. Roy. Soc. W. Australia 69: 133–138.Google Scholar
  51. Dixon, K. W. 1991. Seeder/clonal concepts in Western Australian orchids. Pp. 111–123in T. C. E. Wells & J. H. Willems (eds.), Population ecology of terrestrial orchids. Academic Press, Dordrecht, Netherlands.Google Scholar
  52. —,S. Roche &J. S. Pate. 1995. The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101: 185–192.CrossRefGoogle Scholar
  53. Dodd, J., E. M. Heddle, J. S. Pate &K. W. Dixon. 1984. Rooting patterns of sandplain plants and their functional significance. Pp. 146–177in J. S. Pate & J. S. Beard (eds.), Kwongan: Plant life of the sandplain. Univ. of Western Australia Press, Nedlands.Google Scholar
  54. Enright, N. J. &B. B. Lamont. 1989. Seed banks, fire season, safe sites and seedling recruitment in five co-occurringBanksia species. J. Ecol. 77: 1111–1122.CrossRefGoogle Scholar
  55. ——. 1992. Survival, growth and water relations of Banksia seedlings on a sand mine rehabilitation site and adjacent scrub-heath sites. J. Appl. Ecol. 29: 663–671.CrossRefGoogle Scholar
  56. Fox B. J. &M. D. Fox. 1986. Resilience of animal and plant communities to human disturbance. Pp. 39–64in B. Dell, A. J. M. Hopkins & B. B. Lamont (eds.), Resilience in Mediterranean-type Ecosystems. Dr. W. Junk, Dordrecht, Netherlands.Google Scholar
  57. Frazer, J. M. &S. D. Davis. 1988. Differential survival of chaparral seedlings during the first summer drought after wildfire. Oecologia 76: 215–221.CrossRefGoogle Scholar
  58. Frost, P. G. H. 1984. The responses and survival of organisms in fire-prone environments. Pp. 274–309in P. de V. Booysen & N. M. Tainton (eds.), Ecological effects of fire in South African ecosystems. Springer-Verlag, Berlin.Google Scholar
  59. Fulton, R. E. &F. L. Carpenter. 1979. Pollination, reproduction and fire in CaliforniaArctostaphylos. Oecologia 38: 147–157.CrossRefGoogle Scholar
  60. George, A. S. 1981. The genusBanksia. Nuytsia 3: 239–473.Google Scholar
  61. Gill, A. M. 1975. Fire and the Australian flora: A review. Austral. Forest. 38: 4–25.Google Scholar
  62. —. 1977. Management of fire-prone vegetation for plant species conservation in Australia. Search 8(1-2): 20–26.Google Scholar
  63. —. 1984. Coping with fire. Pp. 65–87in J. S. Pate & A. J. McComb (eds.), The biology of Australian plants. Univ. of Western Australia Press, Nedlands.Google Scholar
  64. — &R. A. Bradstock. 1992. A national register for the fire responses of plant species. Cunninghamia 2: 653–660.Google Scholar
  65. — &M. A. McCarthy. 1998. Intervals between prescribed fires in Western Australia: What intrinsic variation should apply. Biol. Conservation 85: 161–169.CrossRefGoogle Scholar
  66. Goble-Garratt, E. M. 1987. Phytosociology of the Telfer area of the Great Sandy Desert, Western Australia. M.Sc. thesis, Univ. of Western Australia.Google Scholar
  67. Grant, C. D., D. T. Bell, J. M. Koch &W. A. Loneragan. 1996. Implications of seedling emergence to site restoration following bauxite mining in Western Australia. Restor. Ecol. 4: 146–154.CrossRefGoogle Scholar
  68. Grisebach, A. 1872. Die Vegetation der Erde nach ihrer klimatischen Anordnung. Englemann, Leipzig.Google Scholar
  69. Groom, P. K. &B. B. Lamont. 1995. Leaf morphology and life form influence water relationships ofHakea species on different soil substrates within southwestern Australia. Acta Oecol., Oecol. Pl. 16: 609–620.Google Scholar
  70. Groves, R. H., P. J. Hocking &A. McMahon. 1986. Distribution of biomass, nitrogen, phosphorus and other nutrients inBanksia marginata andB. ornata shoots of different ages after fire. Austral. J. Bot. 34: 709–725.CrossRefGoogle Scholar
  71. Hanes, T. L. 1971. Succession after fire in the chaparral of southern California. Ecol. Monogr. 41: 27–52.CrossRefGoogle Scholar
  72. Hansen, A. 1990. Growth, reproductive performance and resource allocation of selected seeder and resprouter understorey legumes of the jarrah forest of Western Australia. Ph.D. diss., Univ. of Western Australia.Google Scholar
  73. —,J. S. Pate &A. P. Hansen. 1991. Growth and reproductive performance of a seeder and a resprouter speciesof Bossiaea as a function of plant age after fire. Ann. Bot. 67: 497–509.Google Scholar
  74. ———. 1992. Growth, reproductive performance and resource allocation of the herbaceous obligatory seeder,Gompholobium marginatum R. Br. (Fabaceae). Oecologia 90:158–166.Google Scholar
  75. Hassell, C. W. 2001. Fire ecology studies in Fitzgerald River National Park, Western Australia. Ph.D. diss., Univ. of Western Australia.Google Scholar
  76. Hnatiuk, R. J. &A. J. M. Hopkins. 1980. Western Australian species-rich kwongan (sclerophyllous shrubland) affected by drought. Austral. J. Bot. 28: 573–585.CrossRefGoogle Scholar
  77. Hobbs, R. J. &L. Atkins. 1990. Fire-related dynamics of aBanksia woodland in southwestern Western Australia. Austral. J. Bot. 38:97–110.CrossRefGoogle Scholar
  78. Hopkins, Alison J. M., J. M. Koch &S. C. Ward. 2000. Multiple treatments to improve the germination of selected recalcitrant plant species from northern jarrah forest of Western Australia. Pp. 123–134in C. J. Asker & L. C. Bell (eds.), Proceedings of the third Australian workshop on native seed biology for revegetation, 17–18 May 1999, Perth. Australian Centre for Mining Environmental Research, Brisbane.Google Scholar
  79. Hopkins, Angus J. M. &E. A. Griffin. 1989. Fire in the banksia woodlands of the Swan Coastal Plain. J. Roy. Soc. W. Australia 71: 93–94.Google Scholar
  80. — &R. J. Hnatiuk. 1981. An ecological survey of the kwongan south of Eneabba, Western Australia. W. Austral. Wildlife. Bull. 9:1–33.Google Scholar
  81. Hopper, S. D. 1979. Biogeographical aspects of speciation in the south-western Australian flora. Ann. Rev. Ecol. Syst. 10: 399–422.CrossRefGoogle Scholar
  82. James, S. 1984. Lignotubers and burls—Their structure, function and ecological significance in Mediterranean ecosystems. Bot. Rev. (Lancaster) 50: 225–266.CrossRefGoogle Scholar
  83. Keeley, J. E. 1977. Seed production, seed populations in soil, and seedling production after fire for two congeneric pairs of sprouting and nonsprouting chaparral shrubs. Ecology 58: 820–829.CrossRefGoogle Scholar
  84. —. 1986. Resilience of Mediterranean shrub communities to fires. Pp. 95–128in B. Dell, A. J. M. Hopkins & B. B. Lamont (eds.), Resilience in Mediterranean-type Ecosystems. Dr. W. Junk, Dordrecht, Netherlands.Google Scholar
  85. — &P. H. Zedler. 1978. Reproduction of chaparral shrubs after fire: A comparison of sprouting and seedling strategies. Amer. Midl. Naturalist 99: 142–161.CrossRefGoogle Scholar
  86. Keeley, S. E. &A. W. Johnson. 1977. A comparison of the pattern of herb and shrub growth in comparable sites in Chile and California. Amer. Midl. Naturalist 97: 120–132.CrossRefGoogle Scholar
  87. Keighery, G. J. 1982. Pollination syndromes and breeding systems of Western Australian arid zone plants. Pp. 167–172in J. A. Armstrong, J. M. Powell & A. J. Richards (eds.), Pollination and evolution. Royal Botanic Gardens, Sydney.Google Scholar
  88. Keith, D. A. &R. A. Bradstock. 1994. Fire and competition in Australian heath: A conceptual model and field investigations. J. Veg. Sci. 5: 347–354.CrossRefGoogle Scholar
  89. Kidson, R. &M. Westoby. 2000. Seed mass and seedling dimensions in relation to seedling establishment. Oecologia 125: 11–17.CrossRefGoogle Scholar
  90. Koch, J. M. &D. T. Bell. 1980. Leaf scorch inXanthorrhoeagracilis. Austral. Forest Res. 10:113–119.Google Scholar
  91. — &S. C. Ward. 2000. The technology of bauxite mine rehabilitation in the jarrah forest of Western Australia. Pp. 38–39in A. Brion & R. W. Bell (eds.), Proceedings of Remade Lands 2000, International Conference on the Remediation and Management of Degraded Lands, 30 November-2 December 2000, Fremantle, Western Australia. International Union of Soil Science, Canberra.Google Scholar
  92. Kruger, F. J. 1979. South African heathlands. Pp. 19–80in R. L. Specht (ed.), Ecosystems of the world. Vol. 9A, Heathlands and related shrublands: Descriptive studies. Elsevier, Amsterdam.Google Scholar
  93. —. 1983. Plant community diversity and dynamics in relation to fire. Pp. 446–472in F. J. Kruger, D. T. Mitchell & J. U. M. Jarvis (eds.), Mediterranean-type ecosystems: The role of nutrients. Ecological Studies, 43. Springer-Verlag, Berlin.Google Scholar
  94. -& A. J. Lamb. 1978. Conservation of the Kogelberg State Forest: Preliminary assessment of the effects of management from 1967 to 1978. Unpublished report, Jonkershoek Forestry Research Centre. (Original not seen; cited from van Wilgen et al., 1992)Google Scholar
  95. Lamont, B. B. 1985a. Gradient and zonal analysis of understorey suppression byEucalyptus wandoo. Vegetatio 63: 49–66.Google Scholar
  96. —. 1985b. Fire responses of sclerophyll shrublands: A population ecology approach with particular reference to the genusBanksia. Pp. 41–46in J. F. Ford (ed.), Fire ecology and management in Western Australian ecosystems. Curtin Univ. of Technology, Bentley, Australia.Google Scholar
  97. —. 1985c. The comparative reproductive biology of threeLeucospermum species (Proteaceae) in relation to fire response and breeding system. Austral. J. Bot. 33 139–145.CrossRefGoogle Scholar
  98. —. 1988. Sexual versus vegetative reproduction inBanksia elegans. Bot. Gaz. 149: 370–375.CrossRefGoogle Scholar
  99. — &M. J. Barker. 1988. Seed bank dynamics of a serotinous, fire-sensitiveBanksia species. Austral. J. Bot. 36: 193–203.CrossRefGoogle Scholar
  100. — &P. K. Groom. 1998. Seed and seedling biology of the woody-fruited Proteaceae. Austral. J. Bot. 46: 387–406.CrossRefGoogle Scholar
  101. — &A. Markey. 1995. Biogeography of fire-killed and resproutingBanksia species in southwestern Australia. Austral. J. Bot. 43: 283–303.CrossRefGoogle Scholar
  102. — &S. J. van Leeuwen. 1988. Seed production and mortality in a rareBanksia species. J. Appl. Ecol. 25: 551–559.CrossRefGoogle Scholar
  103. —,B. G. Collins &R. M. Cowling. 1985a. Reproductive biology of the Proteaceae in Australia and South Africa. Proc. Ecol. Soc. Australia 14: 213–224.Google Scholar
  104. -S. Holman & B. Turner. 1985b. The root systems, biomass and nitrogen and phosphorus contents of field and potted plants ofBanksia hookerana, B. menziesii andB. attenuata from Eneabba. Pp. 20–24in B. Lamont & B. Low (eds.), Proceedings of a seminar on the plant ecology of the Eneabba heathlands. Western Australian Institute of Technology, School of Biology, Bull. No. 10.Google Scholar
  105. —,S. J. Connell &S. M. Bergl. 1991a. Seed bank and population dynamics ofBanksia cuneata: The role of time, fire and moisture. Bot. Gaz. 152:114–122.CrossRefGoogle Scholar
  106. —,D. C. LeMaitre, R. M. Cowling &N. J. Enright. 1991b. Canopy-seed-storage in woody plants. Bot. Rev. (Lancaster) 57: 277–317.CrossRefGoogle Scholar
  107. —,J. M. Olesen &P. J. Briffa. 1998. Seed production, pollinator attractants and breeding systems in relation to fire response: Are there reproductive syndromes among co-occurring proteaceous shrubs? Austral. J. Bot. 46: 377–385.CrossRefGoogle Scholar
  108. Lewis, J. &D. T. Bell. 1981. Reproductive isolation of co-occurringBanksia species at the Yule Brook Botany Reserve, Western Australia. Austral. J. Bot. 29: 665–674.CrossRefGoogle Scholar
  109. Low, A. B. &B. B. Lamont. 1990. Aerial and below-ground phytomass ofBanksia scrub-heath at Eneabba, south-western Australia. Austral. J. Bot. 38: 351–359.CrossRefGoogle Scholar
  110. MacArthur, R. H. &E. O. Wilson. 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, NJ.Google Scholar
  111. McComb, J. A. 1966. The sex forms of species in the flora of the south-west of Western Australia. Austral. J. Bot. 14:303–316.CrossRefGoogle Scholar
  112. McPherson, J. K. &C. H. Müller. 1969. Allelopathic effects ofAdenostoma fasciculatum, “chamise,” in the California chaparral. Ecol. Monogr. 39: 177–198.CrossRefGoogle Scholar
  113. Meney, K. A. 1993. Functional aspects of the growth, development and reproduction of Southern Hemisphere rushes (Restionaceae). Ph.D. diss., Univ. of Western Australia.Google Scholar
  114. —,G. M. Nielssen &K. W. Dixon. 1994. Seed bank patterns in Restionaceae and Epacridaceae after wildfire in kwongan in southwestern Australia. J. Veg. Sci. 5: 5–12.CrossRefGoogle Scholar
  115. —,K. D. Dixon &J. S. Pate. 1997. Reproductive potential of obligate seeder and resprouter herbaceous perennial monocots (Restionaceae, Anarthriaceae, Ecdeiocolaeaceae) from southwestern Western Australia. Austral. J. Bot. 45: 771–782.CrossRefGoogle Scholar
  116. Milewski, A. V. 1983. A comparison of ecosystems in Mediterranean Australia and southern Africa: Nutrient-poor sites at the Barrens and the Caledon Coast. Ann. Rev. Ecol. Syst. 14: 57–76.CrossRefGoogle Scholar
  117. Mooney, H. A. (ed.). 1977. Convergent evolution in Chile and California: Mediterranean climate ecosystems. Dowden, Hutchinson & Ross, Stroudsburg, PA.Google Scholar
  118. — &E. L. Dunn. 1970. Convergent evolution of Mediterranean climate evergreen sclerophyll shrubs. Evolution 24: 292–303.CrossRefGoogle Scholar
  119. Morrison, D. A. &G. J. Cary. 1994. Robustness of demographic estimates in studies of plant responses to fire. Austral. J. Ecol. 19: 110–114.CrossRefGoogle Scholar
  120. Morrow, P. A. 1977. Host specificity of insects in a community of three co-dominantEucalyptus species. Austral. J. Ecol. 2: 89–106.CrossRefGoogle Scholar
  121. Naveh, Z. 1974. Effects of fire in the Mediterranean region. Pp. 401–434in T. T. Kozlowski & C. E. Ahlgren (eds.), Fire and ecosystems. Academic Press, New York.Google Scholar
  122. —. 1984. Resilience and homeorhesis of Mediterranean shrublands. Pp. 122–123in B. Dell (ed.), MEDECOS IV: Proceedings of the 4th International Conference on Mediterranean Ecosystems. Botany Dept., Univ. of Western Australia, Nedlands.Google Scholar
  123. Noble, I. R. &R. O. Slatyer. 1981. Concepts and models of succession in vascular plant communities subject to recurrent fires. Pp. 311–335in A. M. Gill, R. H. Groves & I. R. Nobel (eds.), Fire and the Australian biota. Australian Academy of Science, Canberra.Google Scholar
  124. Pate, J. S., N. E. Casson, J. Rullo &J. Kuo. 1985. Biology of fire ephemerals of the sandplains of the kwongan of south-western Western Australia. Austral. J. P1. Physiol. 12: 641–655.Google Scholar
  125. —,R. H. Froend, B. J. Bowen, A. Hansen &J. Kuo. 1990. Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of S. W. Australia. Ann. Bot. 65:585–601.Google Scholar
  126. —,K. A. Meney &K. W. Dixon. 1991. Contrasting growth and morphological characteristics of fire-sensitive (obligate seeder) and fire-resistant (resprouter) species of Restionaceae (S. Hemisphere Restiads) from south-western Western Australia. Austral. J. Bot. 39: 505–525.CrossRefGoogle Scholar
  127. Pittock, A. B. 1988. Actual and anticipated changes in Australia’s climate. Pp. 35–5in G. I. Pearman (ed.), Greenhouse: Planning for climate change. CSIRO, Division of Atmospheric Research, Canberra.Google Scholar
  128. Plummer, J. A., A. D. Rogers &D. T. Bell. 2001. Light, nitrogenous compounds, smoke and GA3 break dormancy and enhance germination in the Australian everlasting daisy,Shoenia filifolia subsp.subulifolia. Seed Sci. & Tech. 29: 321–330.Google Scholar
  129. Pryor, L. 1976. Biology of eucalypts. E. Arnold, London.Google Scholar
  130. Quinn, R. 1986. Mammalian herbivory and resilience in Mediterranean-climate ecosystems. Pp. 113–128in B. Dell, A. J. M. Hopkins & B. B. Lamont (eds.), Resilience in Mediterranean-type Ecosystems. Dr. W. Junk Dordrecht, Netherlands.Google Scholar
  131. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography; being the collected papers of C. Raunkiaer. Clarendon Press, Oxford.Google Scholar
  132. Regal, P. J. 1982. Pollination by wind and animals: Ecology of geographic patterns. Ann. Rev. Ecol. Syst. 13:497–524.CrossRefGoogle Scholar
  133. Richards, M. B. &B. B. Lamont. 1996. Post-fire mortality and water relations of three congeneric shrub species under extreme water stress: A trade off with fecundity. Oecologia 107: 53–60.CrossRefGoogle Scholar
  134. Roche, S., K. W. Dixon &J. S. Pate. 1997. Seed aging and smoke: Partner cues in the amelioration of seed dormancy in selected Australian native species. Austral. J. Bot. 45: 783–815.CrossRefGoogle Scholar
  135. Rokich, D. P. 1999.Banksia woodland restoration. Ph.D. diss., Univ. of Western Australia.Google Scholar
  136. Russell, R. P. &R. F. Parsons. 1978. The effect of time since fire on heath floristics at Wilson’s Promontory, southern Australia. Austral. J. Bot. 26: 53–61.CrossRefGoogle Scholar
  137. Schneider, B. H. &D. T. Bell. 1985. A simple, effective technique for rapid measurement of fuels in low shrub communities. Austral. Forest Res. 15: 79–84.Google Scholar
  138. Scott, J. K. 1982. The impact of destructive insects on reproduction of six species ofBanksia L.f. (Proteaceae). Austral. J. Zool. 30: 901–921.CrossRefGoogle Scholar
  139. Siddiqi, M. Y., R. C. Carolin &P. J. M. Yerscough. 1976. Studies in the ecology of coastal heath in New South Wales, III: Regrowth of vegetation after fire. Proc. Linn. Soc. N.S.W. 101: 53–64.Google Scholar
  140. Smith, F. G. 1969. Honey plants in Western Australia. West. Austral. Dept. Agric. Bull. 3618.Google Scholar
  141. Smith, M. A., D. T. Bell &W. A. Loneragan. 1999. Comparative seed germination ecology betweenAustrostipa compressa andEhrharta calycina (Poaceae) in a Western AustralianBanksia woodland. Austral. J. Ecol. 24: 35–42.CrossRefGoogle Scholar
  142. —,W. A. Loneragan, C. D. Grant &J. M. Koch. 2000. Effect of fire on the topsoil seed banks of rehabilitated bauxite mine sites in the jarrah forest of Western Australia. Ecol. Managern. Rester. 1: 50–60.CrossRefGoogle Scholar
  143. Specht, R. L. 1979. Heathlands and related shrublands of the world. Pp. 1–18in R. L. Specht (ed.), Eco-systems of the world. Vol. 9A, Heathlands and related shrublands: Descriptive studies. Elsevier, Amsterdam.Google Scholar
  144. —,P. Rayson &M. E. Jackman. 1958. Dark Island Heath (Ninety-Mile Plain, South Australia), VI: Pyric succession, changes in composition, coverage, dry weight and mineral nutrient status. Austral. J. Bot. 6: 59–88.CrossRefGoogle Scholar
  145. Sporne, K. R. 1965. The morphology of gymnosperms: The structure and evolution of primitive seedplants. Hutchinson Univ. Library, London.Google Scholar
  146. —. 1974. The morphology of angiosperms: The structure and evolution of flowering plants. Hutchinson, London.Google Scholar
  147. Stebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: Pollination mechanisms. Ann. Rev. Ecol. Syst. 1: 307–326.CrossRefGoogle Scholar
  148. Stevens, L. J. 1985. Phenological responses of selected species from the Yule Brook Reserve, Kenwick. M.Sc. thesis, Univ. of Western Australia.Google Scholar
  149. Stock, W. D., J. S. Pate &J. Delfs. 1990. Influence of seed size and quality on seedling development under low nutrient conditions in five Australian and South African members of the Proteaceae. J. Ecol. 78: 1005–1020.CrossRefGoogle Scholar
  150. Thomas, C. M. &S. D. Davis. 1989. Recovery patterns of three chaparral shrub species after wildfire. Oecologia 80: 309–320.CrossRefGoogle Scholar
  151. Van der Moezel, P. G. &D. T. Bell. 1984. Fire in the Western Australian mallee. Pp. 151–152in B. Dell (ed.), MEDECOS IV: Proceedings of the 4th International Conference on Mediterranean Ecosystems. Botany Dept., Univ. of Western Australia, Nedlands.Google Scholar
  152. —,J. C. Delfs, J. S. Pate, W. A. Loneragan &D. T. Bell. 1987a. Pollen selection by honeybees in shrublands of the Northern Sandplain of Western Australia. J. Apiculture Res. 26: 224–232.Google Scholar
  153. —,W. A. Loneragan &D. T. Bell. 1987b. Northern Sandplain kwongan: Regeneration following fire, juvenile period and flowering phenology. J. Roy. Soc. W. Australia 69: 123–132.Google Scholar
  154. Van Wilgen, B. W. 1982. Some effects of post-fire age on the above-ground plant biomass of fynbos (macchia) vegetation in South Africa. J. Ecol. 70: 217–225.CrossRefGoogle Scholar
  155. —,W. J. Bond &D. M. Richardson. 1992. Ecosystem management. Pp. 345–371in R. M. Cowl-ing (ed.), The ecology of fynbos: Nutrients, fire, and diversity. Oxford Univ. Press, Cape Town.Google Scholar
  156. Vlahos, S. &D. T. Bell. 1986. Soil seed bank components of the northern jarrah forest of Western Australia. Austral. J. Ecol. 11: 171–179.CrossRefGoogle Scholar
  157. Vogl, R. J. &P. K. Schorr. 1972. Fire and manzanita chaparral in the San Jacinto Mountains, California. Ecology 53: 1179–1188.CrossRefGoogle Scholar
  158. Ward, S. C., G. C. Slessar &D. J. Glenister. 1993. Environmental resource management practices at Alcoa of Australia Limited. Pp. 104–108in J. T. Woodcock & J. K. Hamilton (eds.), Australian mining and metallurgy. Austral. Inst. Mining and Metallurgy, Parkville, Australia.Google Scholar
  159. Westoby, M. 1992. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7: 368–372.CrossRefGoogle Scholar
  160. —,M. Leishman &J. M. Lord. 1995. On misinterpreting the ‘phylogenetic correction.’ J. Ecol. 83: 531–534.CrossRefGoogle Scholar
  161. Whelan, R. J. &A. H. Burbidge. 1980. Flowering phenology, seed set, and bird pollination of five Western AustralianBanksia species. Austral. J. Ecol. 5: 1–7.CrossRefGoogle Scholar
  162. Whitehead, D. 1969. Wind pollination in the angiosperms. Evolution 23: 28–35.CrossRefGoogle Scholar
  163. Wiens, D., J. P. Rourke, B. B. Casper, E. A. Rickart, T. R. La Pine &A. Channing. 1983. Non-flying mammal pollination of southern African proteas: A non-coevolved system. Ann. Missouri Bot. Gard. 70: 1–31.CrossRefGoogle Scholar
  164. —,C. L. Calvin, C. A. Wilson, C. T. Davern, D. Frank &S. R. Seavey. 1987. Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71:501–509.CrossRefGoogle Scholar
  165. Wills, R. T. 1989. Management of the kwongan flora utilised by the European honey bee on the Northern Sandplain of Western Australia. Ph.D. diss., Univ. of Western Australia.Google Scholar
  166. Wright, M. G., D. Visser &E. K. van der Merwe. 1990. Poor regeneration ofProtea magnifica (Proteaceae) after a mid-summer fire in the Cederberg. S. African J. Wildlife Res. 20: 121–122.Google Scholar
  167. Yates, C. J., R. Taplin, R. J. Hobbs &R. W. Bell. 1995. Factors limiting the recruitment ofEucalyptus salmonophloia in remnant woodlands, II: Post-dispersal seed predation and soil seed reserves. Austral. J. Bot. 43: 145–155.CrossRefGoogle Scholar
  168. —,R. J. Hobbs &R. W. Bell. 1996. Factors limiting the recruitment ofEucalyptus salmonophloia in remnant woodlands, III: Conditions necessary for seed germination. Austral. J. Bot. 44: 283–296.CrossRefGoogle Scholar
  169. Zammit, C. &M. Westoby. 1987a. Seedling recruitment strategies in obligate-seeding and resproutingBanksia shrubs. Ecology 68: 1984–1992.CrossRefGoogle Scholar
  170. ——. 1987b. Population structure and reproductive status of twoBanksia shrubs at various times after fire. Vegetatio 70: 11–70.Google Scholar
  171. Zedler, P. H. &C. A. Zammit. 1989. A population-based critique of concepts of change in the chaparral. Pp. 73–83in S. C. Keeley (ed.), The California chaparral: Paradigms reexamined. Science series, 34. Natural History Museum of Los Angeles County, Los Angeles.Google Scholar

Copyright information

© The New York Botanical Garden 2002

Authors and Affiliations

  • David T. Bell
    • 1
  1. 1.Department of BotanyUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations