Skip to main content
Log in

Angiosperm wood evolution and the potential contribution of paleontological data

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Wood anatomy is often viewed as a source of independent data that may be used to assess evolutionary relationships among angiosperms. Comparative anatomical studies document suites of correlated characters that have been interpreted as general evolutionary trends, of which several have been asserted to be irreversible. Paleobotanical data summarized by Wheeler and Baas provide broad chronological corroboration of some wood anatomical trends, such as evolution from scalariform to simple perforation plates and long to short vessel elements. However, the focus on general evolutionary trends rather than on analyzing character distribution patterns in a cladistic phylogenetic context obscures a more detailed understanding of the evolution of wood anatomical features. Patterns of character evolution, including the assertions of irreversibility, need to be tested through cladistic analyses. In this paper selected wood anatomical features from families of Magnoliidae and “lower” Hamamelididae are summarized and mapped onto previously published cladograms as a preliminary means of testing previous hypotheses of wood evolution. The results show that many of the characters are homoplasious and have evolved both in accord with, and counter to, the hypothesized general trends in different groups of flowering plants. In general, changes that confirm generalized trends are more common than changes that are counter to those trends. Future studies should combine wood anatomical characters with other features as part of a cladistic analysis. Fossil woods have not yet contributed significantly to phylogenetic studies, but in the very few cases where they have been linked to fossil reproductive structures, the woods have provided a better understanding of wood anatomy in early members of some families. Data from fossil wood expand the diversity of anatomical structure known in some angiosperm taxa and thus provide additional evidence that might be used in phylogenetic analyses. Fossil woods have the greatest potential to affect phylogenetic analyses where they can be linked to other fossil organs. The best chance for establishing such a linkage is through the study of fossil charcoalified woods that co-occur with other dispersed mesofossils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderberg, A. A. 1992. The circumscription of the Ericales, and their cladistic relationships to other families of “higher” dicotyledons. Syst. Bot. 17: 600–675.

    Article  Google Scholar 

  • Baas, P. 1986. Ecological patterns of xylem anatomy. Pp. 327–352in J Givnish (ed.), On the economy of plant form and function. Cambridge University Press, New York.

    Google Scholar 

  • -. 1993. Reversibility and parallelism in wood evolution. XV International Botanical Congress, Yokohama, Japan. Abstracts p. 86.

  • —. 1996. Parallelism and reversibility on xylem evolution-A review. IAWA J. 17: 351–364.

    Google Scholar 

  • —,P. M. Esser, M. E. T. van der Westen &M. Zandee. 1988. Wood anatomy of the Oleaceae. IAWA Bull., n.s. 9: 103–182.

    Google Scholar 

  • Bailey, I. W. 1944. The development of vessels in angiosperms and its significance in morphological research. Amer. J. Bot. 31: 421–428.

    Article  Google Scholar 

  • — 1957. The potentialities and limitations of wood anatomy in the study of the phylogeny and classification of angiosperms. J. Arnold Arbor. 38: 243–254.

    Google Scholar 

  • — &W. W. Tupper. 1918. Size variation in tracheary cells. I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms and angiosperms. Proc. Amer. Acad. Arts 54: 149–204.

    Google Scholar 

  • Barghoorn, E. S. 1940. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. I. The primitive ray structure. Amer. J. Bot. 27: 918–928.

    Article  Google Scholar 

  • — 1941a. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. II. Modification of the multiseriate and uniseriate rays. Amer. J. Bot. 28: 273–282.

    Article  Google Scholar 

  • — 1941b. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. III. The elimination of rays. Amer. J. Bot. 68: 317–325.

    Google Scholar 

  • Canright, J. E. 1955. The comparative morphology and relationships of the Magnoliaceae. IV. Wood and nodal anatomy. J. Arnold Arbor. 36: 119–140.

    Google Scholar 

  • Carlquist, S. 1981. Wood anatomy ofZygogynum (Winteraceae); field observations. Bull. Mus. Natl. Hist. Nat., B, Adansonia, Paris 4e sér., 3: 281–292.

    Google Scholar 

  • — 1982a.Exospermum stipitatum (Winteraceae): Observations on wood, leaves, flowers, pollen, and fruit. Aliso 10: 277–289.

    Google Scholar 

  • — 1982b. Wood anatomy ofIllicium (Illiciaceae): Phylogenetic, ecological, and functional interpretations. Amer. J. Bot. 69: 1587–1598.

    Article  Google Scholar 

  • — 1983a. Wood anatomy ofBelliloum (Winteraceae) and a note on flowering. J. Arnold Arbor. 64: 161–169.

    Google Scholar 

  • — 1983b. Wood anatomy ofBubbia (Winteraceae), with comments on the origin of vessels in dicotyledons. Amer. J. Bot. 70: 578–590.

    Article  Google Scholar 

  • — 1983c. Wood anatomy of Calycanthaceae: Ecological and systematic implications. Aliso 10: 427–441.

    Google Scholar 

  • — 1984. Wood anatomy of Trimeniaceae. Pl. Syst. Evol. 144: 103–118.

    Article  Google Scholar 

  • — 1987. Presence of vessels in wood ofSarcandra (Chloranthaceae); comments on vessel origins in angiosperms. Amer. J. Bot. 74: 1765–1771.

    Article  Google Scholar 

  • — 1988a. Wood anatomy ofDrimys s.s. (Winteraceae). Aliso 12: 81–95.

    Google Scholar 

  • — 1988b. Comparative wood anatomy. Springer-Verlag, Berlin.

    Google Scholar 

  • — 1989a. Wood anatomy ofTasmannia; summary of wood anatomy of Winteraceae. Aliso 12: 257–275.

    Google Scholar 

  • — 1989b. Wood and bark anatomy ofDegeneria. Aliso 12: 485–495.

    Google Scholar 

  • — 1990a. Wood anatomy and relationships of Lactoridaceae. Amer. J. Bot. 77: 1489–1505.

    Article  Google Scholar 

  • — 1990b. Wood anatomy ofAscarina (Chloranthaceae) and the tracheid-vessel element transition. Aliso 12: 667–684.

    Google Scholar 

  • — 1991. Wood and bark anatomy ofTicodendron: Comments on relationships. Ann. Missouri Bot. Gard. 78: 96–104.

    Article  Google Scholar 

  • — 1992a. Wood anatomy and stem ofChloranthus; summary of wood anatomy of Chloranthaceae, with comments on relationships, vessellessness, and the origin of monocotyledons. IAWA Bull., n.s. 13: 3–36.

    Google Scholar 

  • — 1992b. Vegetative anatomy and relationships of Eupomatiaceae. Bull. Torrey Bot. Club 119: 167–190.

    Article  Google Scholar 

  • — 1993. Wood and bark anatomy of Aristolochiaceae: Systematic and habitai correlations. IAWA Bull., n.s. 14:341–357.

    Google Scholar 

  • — 1996. Wood anatomy of primitive angiosperms: New perspectives and syntheses. Pp. 68–90in D. W. Taylor and L. J. Hickey (eds.), Flowering plant origin, evolution, and phylogeny. Chapman & Hall, New York.

    Chapter  Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn, S. W. Graham, S. C. H. Barrett, S. Dayanandan &V. A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 528–580.

    Article  Google Scholar 

  • Chen, B. L., P. Baas, E. A. Wheeler &S. M. Wu. 1993. Wood anatomy of trees and shrubs from China. VI. Magnoliaceae. IAWA J. 14: 391–412.

    Google Scholar 

  • Crane, P. R. &P. S. Herendeen. 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Rev. Palaeobot. & Palynol. 90: 319–337.

    Article  Google Scholar 

  • —,S. R. Manchester &D. L. Dilcher. 1990. A preliminary survey of fossil leaves and wellpreserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana, Geol. 20: 1–63.

    Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.

    Google Scholar 

  • Dahlgren, R. T. &K. Bremer. 1985. Major clades of angiosperms. Cladistics 1: 349–368.

    Article  Google Scholar 

  • Donoghue, M. &J. A. Doyle. 1989. Phylogenetic relationships of angiosperms and the relationships of the Hamamelidae. Pp. 17–45in P. R. Crane and S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Clarendon Press, Oxford.

    Google Scholar 

  • Doyle, J. A. &M. J. Donoghue. 1993. Phylogenies and angiosperm diversification. Paleobiology 19: 141–167.

    Google Scholar 

  • Drinnan, A. N., P. R. Crane, E. M. Friis &K. R. Pedersen. 1990. Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. Bot. Gaz. 151: 370–384.

    Article  Google Scholar 

  • Frost, F. H. 1930a. Specialization in secondary xylem of dicotyledons. I. Origin of vessel. Bot. Gaz. 89: 67–94.

    Article  Google Scholar 

  • — 1930b. Specialization in secondary xylem of dicotyledons. II. Evolution of end wall of vessel. Bot. Gaz. 90: 198–212.

    Article  Google Scholar 

  • Frost, F. H. 1931. Specialization in secondary xylem of dicotyledons. III. Specialization of lateral wall of vessel segment. Bot. Gaz. 91: 88–96.

    Article  Google Scholar 

  • Gomez-Laurito, J. &L. D. Gomez P. 1989.Ticodendron: A new tree from Central America. Ann. Missouri Bot. Gard. 76: 1148–1151.

    Article  Google Scholar 

  • Herendeen, P. S. 1991a. Lauraceous wood from the mid-Cretaceous Potomac Group of eastern North America:Paraphyllanthoxylon marylandense sp. nov. Rev. Palaeobot. & Palynol. 69: 277–290.

    Article  Google Scholar 

  • — 1991b. Charcoalified angiosperm wood from the Cretaceous of eastern North America and Europe. Rev. Palaeobot. & Palynol. 70: 225–239.

    Article  Google Scholar 

  • —,W. L. Crepet &K. C. Nixon. 1994. Fossil flowers and pollen of Lauraceae from the Upper Cretaceous of New Jersey. Pl. Syst. Evol. 189: 29–40.

    Article  Google Scholar 

  • Hufford, L. 1992. Rosidae and their relationships to other magnoliid dicotyledons: A phylogenetic analysis using morphological and chemical data. Ann. Missouri Bot. Gard. 79: 218–248.

    Article  Google Scholar 

  • — &W. C. Dickison. 1992. A phylogenetic analysis of Cunoniaceae. Syst. Bot. 17: 181–200.IAWA Committee. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull., n.s. 10: 219–332.

    Google Scholar 

  • Keller, J. A., P. S. Herendeen &P. R. Crane. 1996. Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. Amer. J. Bot. 83: 528–541.

    Article  Google Scholar 

  • Klaassen, R. 1999. Wood anatomy of the Sapindaceae. IAWA J. Supplement 2.

  • Kribs, D. A. 1935. Salient lines of structural specialization in the wood rays of dicotyledons. Bot. Gaz. 94: 547–557.

    Article  Google Scholar 

  • — 1937. Salient lines of structural specialization in the wood parenchyma of dicotyledons. Bull. Torrey Bot. Club 64: 177–186.

    Article  Google Scholar 

  • Lammers, T. G., T. F. Stuessy &M. Silva O. 1986. Systematic relationships of the Lactoridaceae, an endemic family of the Juan Fernandez Islands, Chile. Pl. Syst. Evol. 152: 243–266.

    Article  Google Scholar 

  • Loconte, H. &D. W. Stevenson. 1991. Cladistics of the Magnoliidae. Cladistics 7: 267–296.

    Article  Google Scholar 

  • Magallón-Puebla, S., P. S. Herendeen &P. K. Endress. 1996. Floral remains of the tribe Hamamelideae (Hamamelidaceae) from Campanian strata of southeastern U.S.A. Pl. Syst. Evol. 202: 177–198.

    Article  Google Scholar 

  • —— &P. R. Crane. 1997.Quadriplatanus georgianus gen. et sp.nov.: Staminate and pistillate platanaceous flowers from the Late Cretaceous (Coniacian-Santonian) of Georgia, U.S.A. Int. J. Pl. Sci. 158: 373–394.

    Article  Google Scholar 

  • Manchester, S. R. 1986. Vegetative and reproductive morphology of an extinct plane tree (Platanaceae) from the Eocene of western North America. Bot. Gaz. 147: 200–226.

    Article  Google Scholar 

  • — 1994. Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontogr. Amer. 58: 1–205.

    Google Scholar 

  • Meeuse, A. D. J. 1982. Cladistics, wood anatomy and angiosperm phylogeny. Acta Bot. Neerl. 31: 345–354.

    Google Scholar 

  • Metcalfe, C. R. 1987. Anatomy of dicotyledons. Ed. 2. Vol. III. Magnoliales, Illiciales, and Laurales. Clarendon Press, Oxford.

    Google Scholar 

  • — &L. Chalk. 1950. Anatomy of the dicotyledons. Vols. I and II. Clarendon Press, Oxford.

    Google Scholar 

  • Nixon, K. C. &J. I. Davis. 1991. Polymorphic taxa, missing values and cladistic analysis. Cladistics 7: 233–241.

    Article  Google Scholar 

  • Noshiro, S. &P. Baas. 1998. Systematic wood anatomy of Cornaceae and allies. IAWA J. 19: 43–97.

    Google Scholar 

  • Page, V. M. 1967. Angiosperm wood from the Upper Cretaceous of central California. Part I. Amer. J. Bot. 54: 510–514.

    Article  Google Scholar 

  • —. 1968. Angiosperm wood from the Upper Cretaceous of central California. Part II. Amer. J. Bot. 55: 168–172.

    Article  Google Scholar 

  • —. 1970. Angiosperm wood from the Upper Cretaceous of central California. III. Amer. J. Bot. 57: 1139–1144.

    Article  Google Scholar 

  • —. 1979. Dicotyledonous wood from the Upper Cretaceous of central California. J. Arnold Arbor. 60: 323–349.

    Google Scholar 

  • —. 1980. Dicotyledonous wood from the Upper Cretaceous of central California. II. J. Arnold Arbor. 61: 723–748.

    Google Scholar 

  • —. 1981. Dicotyledonous wood from the Upper Cretaceous of central California. III. Conclusions. J. Arnold Arbor. 62: 437–455.

    Google Scholar 

  • Panshin, A. J. &C. DeZeeuw. 1980. Textbook of wood technology. Ed. 4. McGraw-Hill, New York.

    Google Scholar 

  • Qiu, Y.-L., M. W. Chase, D. H. Les &C. R. Park. 1993. Molecular phylogenetics of the Magnoliidae: Cladistic analyses of nucleotide sequences of the plastid gene rbcL. Ann. Missouri Bot. Gard. 80: 587–606.

    Article  Google Scholar 

  • Riggins, R. &J. S. Farris. 1983. Cladistics and the roots of angiosperms. Syst. Bot. 8: 96–101.

    Google Scholar 

  • Shutts, C. F. 1960. Wood anatomy of Hemandiaceae and Gyrocarpaceae. Trop. Woods 113: 85–123.

    Google Scholar 

  • Stern, W. L. &S. Greene. 1958. Some aspects of variation in wood. Trop. Woods 108: 65–71.

    Google Scholar 

  • Takahashi, A. 1985. Wood anatomical studies of the Polycarpicae. I. Magnoliales. Sci. Rep. Coll. Gen. Educ. Osaka Univ. 34: 29–83.

    Google Scholar 

  • Terrazas, T. S. 1994. Wood anatomy of the Anacardiaceae: Ecological and phylogenetic interpretation. Unpub. dissertation, University of North Carolina-Chapel Hill.

  • Wheeler, E. A. &P. Baas. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA Bull., n.s. 12: 271–332.

    Google Scholar 

  • —— 1993. The potentials and limitations of dicotyledonous wood anatomy for climatic reconstructions. Paleobiology 19: 487–498.

    Google Scholar 

  • —,J. McClammer &C. A. LaPasha. 1995. Similarities and differences in dicotyledonous woods of the Cretaceous and Paleocene San Juan Basin, New Mexico. IAWA J. 16: 223–254.

    Google Scholar 

  • Wilson, T. K. 1960. The comparative morphology of the Canellaceae. I. Synopsis of genera and wood anatomy. Trop. Woods 112: 1–27.

    Google Scholar 

  • Young, D. A. 1981. Are the angiosperms primitively vesselless? Syst. Bot. 6: 313–330.

    Article  Google Scholar 

  • Zhang, S. Y. 1992. Systematic wood anatomy of the Rosaceae. Blumea 37: 81–158.

    Google Scholar 

  • — &P. Baas. 1992. Wood anatomy of trees and shrubs from China. III. Rosaceae. IAWA Bull, n.s. 13:21–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herendeen, P.S., Wheeler, E.A. & Baas, P. Angiosperm wood evolution and the potential contribution of paleontological data. Bot. Rev 65, 278–300 (1999). https://doi.org/10.1007/BF02857632

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857632

Keywords

Navigation