Skip to main content
Log in

Are biotic factors significant in influencing the distribution of halophytes in saline habitats?

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The influence of biotic factors on the distribution and establishment of halophytes is being considered in this review. Physicochemical factors, such as salinity and flooding, often are considered to be the determining factors controlling the establishment and zonational patterns of species in salt marsh and salt desert environments. Sharp boundaries commonly are found between halophyte communities even though there is a gradual change in the physicochemical environment, which indicates that biotic interactions may play a significant role in deterining the distribution pattern of species and the composition of zonal communities. Competition is hypothesized to play a key role in determining both the upper and lower limits of species distribution along a salinity gradient. Field and laboratory experiments indicate that the upper limits of distribution of halophytes into less saline or nonsaline habitats is often determined by competition. There appears to be a reciprocal relationship between the level of salt tolerance of species and their ability to compete with glycophytes in less saline habitats. Halophytes are not competitive in nonsaline habitats, but their competitive ability increases sharply in saline habitats. Allelopathic effects have been reported in salt desert habitats, but have not been reported along salinity gradients in salt marshes. Some species of halophytes that are salt accumulators have the ability to change soil chemistry. Chemical inhibition of intolerant species occurs when high concentrations of sodium are concentrated in the surface soils of salt desert plant communities that are dominated by salt-accumulating species. Establishment of less salt-tolerant species is inhibited in the vicinity of these salt-accumulating species. Herbivory is reported to cause both an increase and a decrease in plant diversity in salt marsh habitats. Heavy grazing is reported to eliminate sensitive species and produce a dense cover of graminoids in high marsh coastal habitats. However, in other marshes, grazing produced bare patches that allowed annuals and other low marsh species to invade upper marsh zonal communities. A retrogression in plant succession may occur in salt marshes and salt deserts because of heavy grazing. Intermediate levels of grazing by sheep, cattle, and horses could produce communities with the highest species richness and heterogeneity. Grazing by geese produced bare areas that had soils with higher salinity and lower soil moisture than vegetated areas, allowing only the more salt-tolerant species to persist. Removal of geese from areas by use of inclosures caused an increase in species richness in subarctic salt marshes. Invertebrate herbivores could also inhibit the survival of seeds and the ability of plants to establish in marshes. Parasites could play a significant role in determining the species composition of zonal communities, because uninfected rarer species are able to establish in the gaps produced by the death of parasitized species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adam, P. 1990. Saltmarsh ecology. Cambridge University Press, New York.

    Google Scholar 

  • Adams, D. A. 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44: 445–456.

    Google Scholar 

  • Allison, S. K. 1995. Recovery from small-scale anthropogenic disturbances by northern California salt marsh plant assemblages. Ecol. Appl. 5: 693–702.

    Google Scholar 

  • —. 1996. Recruitment and establishment of salt marsh plants following disturbances by flooding. Amer. Midl. Naturalist 136:232–247.

    Google Scholar 

  • Badger, K. S. &I. A. Ungar. 1990. Seedling competition and the distributionof Hordeum jubatum L. along a soil salinity gradient. Funct. Ecol. 4: 639–644.

    Google Scholar 

  • Bakker, J. P. 1978. Changes in a salt-marsh vegetation as a result of grazing and mowing—A five-year study on permanent plots. Vegetatio 38: 77–87.

    Google Scholar 

  • —. 1985. The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Vegetatio 62: 391–398.

    Google Scholar 

  • — &Y. de Vries. 1992. Germination and early establishment of lower salt-marsh species in grazed and mown salt marsh. J. Veg. Sci. 3: 247–252.

    Google Scholar 

  • — &C. Ruyter. 1981. Effects of five years of grazing on a salt-marsh vegetation. Vegetatio 44: 81–100.

    Google Scholar 

  • —,M. Dijkstra &P. T. Russchen. 1985. Dispersal, germination and early establishment of halophytes and glycophytes on a grazed and abandoned salt-marsh gradient. New Phytol. 101: 291–308.

    Google Scholar 

  • Barbour, M. G. 1970. Is any angiosperm an obligate halophyte? Amer. Midl. Naturalist 84: 105–120.

    Google Scholar 

  • —. 1978. The effect of competition and salinity on the growth ofa salt marsh plant species. Oecologia 37: 93–99.

    Google Scholar 

  • Bazely, D. R. &R. L. Jefferies. 1986. Changes in the composition and standing crop of salt-marsh plant communities in response to the removal of a grazer. J. Ecol. 74: 693–706.

    Google Scholar 

  • Bertness, M. D. 1984. Ribbed mussels andSpartina alterniflora production in a New England salt marsh. Ecology 65: 1794–1807.

    Google Scholar 

  • —. 1985. Fiddler crab regulation ofSpartina alterniflora production on aNew England salt marsh. Ecology 66: 1042–1055.

    Google Scholar 

  • —. 1991a. Zonationof Spartina patens andSpartina alterniflora in a New England salt marsh. Ecology 72: 138–148.

    Google Scholar 

  • —. 1991b. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72:125–137.

    Google Scholar 

  • — &A. M. Ellison. 1987. Determinants of pattern in aNew England salt marsh plant community. Ecol. Monogr. 57: 129–147.

    Google Scholar 

  • — &S. D. Hacker. 1994. Physical stress and positive associations among marsh plants. Amer. Naturalist 144: 363–372.

    Google Scholar 

  • — &S. W. Shumway. 1992. Consumer driven pollen limitation of seed production in marsh grasses. Amer. J. Bot. 79: 288–293.

    Google Scholar 

  • ——. 1993. Competition and facilitation in marsh plants. Amer. Naturalist 142: 718–724.

    Google Scholar 

  • — &S. M. Yeh. 1994. Cooperative and competitive interactions in the recruitment of marsh elders. Ecology 75: 2416–2429.

    Google Scholar 

  • —,C. Wise &A. M. Ellison. 1987. Consumer pressure and seed set in a salt marsh perennial plant community. Oecologia 71: 190–200.

    Google Scholar 

  • —,L. Gough &S. W. Shumway. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–1851.

    Google Scholar 

  • Boorman, L. A. 1968. Some aspects of the reproductive biology ofLimonium vulgare Mill., andLimonium humile Mill. Ann. Bot. 32: 803–824.

    Google Scholar 

  • Brereton, A. J. 1971. The structure of the species populations in the initial stages of salt-marsh succession. J. Ecol. 59: 321–338.

    Google Scholar 

  • Brewer, J. S. &M. D. Bertness. 1996. Disturbance and intraspecific variation in clonal morphology of salt marsh perennials. Oikos 77:107–116.

    Google Scholar 

  • Callaway, R. 1994. Facultative and interfering effectsof Arthrocnemum subterminale on winter annuals. Ecology 75: 681–686.

    Google Scholar 

  • Cargill, S. M. &R. L. Jefferies. 1984. The effects of grazing by lesser snow geese on the vegetation of a sub-arctic salt marsh. J. Appl. Ecol. 21: 669–686.

    Google Scholar 

  • Castellanos, E. M., M. E. Figueroa &A. J. Davy. 1994. Nucleation and facilitation in saltmarsh succession: Interactions betweenSpartina maritima andArthrocnemum perenne. J. Ecol. 82: 239–248.

    Google Scholar 

  • Chambers, J. C. &B. E. Norton 1993. Effects of grazing and drought on population dynamics of salt desert shrub species on the desert experimental range, Utah. J. Arid Environm. 24:261–275.

    Google Scholar 

  • Chaneton, E. J. &R. S. Lavado. 1996. Soil nutrients and salinity after long-term grazing exclusion in a flooding pampa grassland. J. Range Managern. 49:182–187.

    Google Scholar 

  • Chapman, V. J. 1974. Salt marshes and salt deserts of the world. J. Cramer, Lehre.

    Google Scholar 

  • Clarke, L. D. &N. J. Hannon. 1971. The mangrove swamp and salt marsh communities of the Sydney District. IV. The significance of species interaction. J. Ecol. 59: 535–553.

    Google Scholar 

  • Congdon, R. A. 1981. Zonation in the marsh vegetation of the Blackwood River estuary in southwestern Australia. Austral. J. Ecol. 6:267–278.

    Google Scholar 

  • Cooper, A. 1982. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol. 90:263–275.

    CAS  Google Scholar 

  • Cooper, A. W. &E. D. Waits. 1973. Vegetation types in an irregularly flooded salt marsh on the North Carolina outer banks. J. Elisha Mitchell Soc. 89: 78–91.

    Google Scholar 

  • Cords, H. P. 1960. Factors affecting the competitive ability of foxtail barley (Hordeum jubatum). Weeds 8: 636–644.

    Google Scholar 

  • Covin, J. D. &J. B. Zedler. 1988. Nitrogen effects onSpartina foliosa andSalicomia virginica in the salt marsh at Tijuana Estuary, California. Wetlands 8: 51–65.

    Google Scholar 

  • Ellison, A. M. 1987. Effects of competition, disturbance, and herbivory onSalicomia europaea. Ecology 68: 576–586.

    Google Scholar 

  • Esselink, P., G. J. F. Helder, B. A. Aerts &K. Gerdes. 1997. The impact of grubbing by Greylag geese (Anser anser) on the vegetation dynamics of a tidal marsh. Aquat. Bot. 55: 261–279.

    Google Scholar 

  • Feller, I. C. 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol. Monogr. 65: 477–505.

    Google Scholar 

  • Fireman, M. &H. E. Hayward. 1952. Indicator significance of some shrubs in the Escalante Desert, Utah. Bot. Gaz. 114:143–155.

    CAS  Google Scholar 

  • Flowers, T. J., P. F. Troke &A. R. Yeo. 1977. The mechanisms of salt tolerance in halophytes. Ann. Rev. Pl. Physiol. 28:89–121.

    CAS  Google Scholar 

  • —,M. A. Hagibagheri &N. J. W. Clipson. 1986. Halophytes. Quart. Rev. Biol. 61: 313–337.

    Google Scholar 

  • Fourqurean, J. W., G. V. N. Powell, W. J. Kenworthy &J. C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrassesThalassia testudinum andHalodule wrightii in Florida Bay. Oikos 72: 349–358.

    Google Scholar 

  • Furbish, C. E. &M. Albano. 1994. Selective herbivory and plant community structure in a mid-Atlantic salt marsh. Ecology 75:1015–1022.

    Google Scholar 

  • Gallagher, J. L. 1975. Effect of an ammonium nitrate pulse on the growth and chemical composition of natural stands ofSpartina altemiflora andJuncus maritimus. Amer. J. Bot. 62: 644–648.

    CAS  Google Scholar 

  • Gerdol, V. &R. G. Hughes. 1993. Effect of the amphipodCorophium volutator on the colonisation of mud by the halophyteSalicomia europaea. Mar. Ecol. Prog. Ser. 97: 61–69.

    Google Scholar 

  • Gibson, C. W. D. &V. K. Brown. 1991. The effect of grazing on local colonization and extinction during early succession. J. Veg. Sci. 2: 291–300.

    Google Scholar 

  • Goldsmith, F. B. 1973. The vegetation of exposed sea cliffs at South Stack, Anglesey. II. Experimental studies. J.Ecol. 61:819–829.

    Google Scholar 

  • Gray, A. J. &R. Scott. 1977. The ecology of Morecambe Bay. VII. The distribution ofPuccinellia maritima, Festuca rubra andAgrostis stolonifera in the salt marshes. J. Appl. Ecol. 14: 229–241.

    Google Scholar 

  • Hacker, R. B. 1987. Species responses to grazing and environmental factors in an arid halophytic shrubland community. Austral. J. Bot. 35: 135–150.

    Google Scholar 

  • Hacker, S. D. &M. D. Bertness. 1995. Morphological and physiological consequences of a positive plant interaction. Ecology 76: 2165–2175.

    Google Scholar 

  • Hartman, J. M. 1988. Recolonization of small disturbance patches in a New England salt marsh. Amer. J. Bot. 75:1625–1631.

    Google Scholar 

  • Hinde, H. P. 1954. Vertical distribution of salt marsh phanerogams in relation to tide levels. Ecol. Monogr. 24: 209–225.

    Google Scholar 

  • Hopkins, D. R. &V. T. Parker. 1984. A study of the seed bank of a salt marsh in northern San Francisco Bay. Amer. J. Bot. 71: 348–355.

    Google Scholar 

  • Hutchings, M. J. &P. J. Russell. 1989. The seed regeneration dynamics of an emergent salt marsh. J. Ecol. 77: 615–637.

    Google Scholar 

  • Iacobelli, A. &R. L. Jefferies. 1991. Inverse salinity gradients in coastal marshes and the death of stands ofSalix: The effects of grubbing by geese. J. Ecol. 79: 61–73.

    Google Scholar 

  • Jefferies, R. L. 1977. The vegetation of salt marshes at some coastal sites in arctic North America. J. Ecol. 65: 661–672.

    CAS  Google Scholar 

  • —,A. Jensen &K. F. Abraham. 1979. Vegetational development and the effect of geese on vegetation at La Perouse Bay, Manitoba. Canad. J. Bot. 57:1439–1450.

    Google Scholar 

  • Jensen, A. 1985. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio 60: 37–48.

    Google Scholar 

  • Jerling, L. &M. Andersson. 1982. Effects of selective grazing by cattle on the reproduction ofPlantago maritima. Holarctic Ecol. 5: 405–411.

    Google Scholar 

  • —&L.-E. Liljelund. 1984. Dynamics ofPlantago maritima along a distributional gradient: A demographic study. Holarctic Ecol. 7: 280–288.

    Google Scholar 

  • Johnson, D. S. &H. H. York. 1915. The relation of plants to tide-levels. Carnegie Inst. Wash. Publ. 206: 1–162.

    Google Scholar 

  • Karimi, S. H., andI. A. Ungar. 1986. Oxalate and inorganic ion concentrations inAtriplex triangularis Willd. in response to salinity, light level, and aeration. Bot. Gaz. 147: 65–70.

    CAS  Google Scholar 

  • Keiffer, C. H., B. C. McCarthy &I. A. Ungar. 1994. Effect of salinity and waterlogging on growth and survival ofSalicornia europaea, an inland halophyte. Ohio J. Sci. 94: 70–73.

    Google Scholar 

  • Kenkel, N. C., C. A. Mcllraith &G. Jones. 1991. Competition and the response of three plant species to a salinity gradient. Canad. J. Bot. 69: 2497–2502.

    Google Scholar 

  • Khan, M. A. &I. A. Ungar. 1995. Biology of salt tolerant plants. University of Karachi, Karachi.

    Google Scholar 

  • Kiehl, K., L. Eischeid, S. Gettner &J. Walter. 1996. Impact of different sheep grazing intensities on salt marsh vegetation in northern Germany. J. Veg. Sci. 7: 99–106.

    Google Scholar 

  • Langlois, J. &I. A. Ungar. 1976. A comparison of the effect of artificial tidal action on the growth and protein nitrogen contentof Salicornia stricta Dumort andSalicornia ramosissima Woods. Aquat. Bot. 2: 43–50.

    CAS  Google Scholar 

  • Leck, M. A., V. T. Parker &R. L. Simpson. 1989. Ecology of soil seed banks. Academic Press, New York.

    Google Scholar 

  • Lieffers, V. J. &J. M. Shay. 1980. The effect of water level on the growth and reproduction ofScirpus maritimus var.paludosus. Canad. J. Bot. 59: 118–121.

    Google Scholar 

  • Loveland, D. G. &I. A. Ungar. 1983. The effect of nitrogen fertilization on the production of halophytes in an inland salt marsh. Amer. Midl. Naturalist 109:346–354.

    Google Scholar 

  • Mahall, B. E. &R. B. Park. 1976. The ecotone betweenSpartina foliosa Trin. andSalicornia virginica L. in salt marshes of northern San Francisco Bay. III. Soil aeration and tidal immersion. J. Ecol. 64: 811–819.

    Google Scholar 

  • Mahmood, K., K. A. Malik, M. A. K. Lodhi &K. H. Sheikh. 1993. Competitive interference by some invader species against Kallar grass (Leptochloa fitsca) under different salinity and watering regimes. Pakistan J. Bot. 25: 145–155.

    Google Scholar 

  • ——,K. H. Sheikh &M. A. IC Lodhi. 1989. Allelopathy in saline agricultural land: Vegetational successional changes and patch dynamics. J. Chem. Ecol. 15: 565–579.

    Google Scholar 

  • McKee, K. L. 1994. Seedling recruitment patterns in a Belizean mangrove forest: Effects of establishment ability and physico-chemical factors. Oecologia 101: 448–460.

    Google Scholar 

  • McMahon, K. &I. A. Ungar. 1978. Phenology, distribution and survival ofAtriplex triangularis Willd. in an Ohio salt pan. Amer. Midl. Naturalist 100: 1–14.

    Google Scholar 

  • Mendelssohn, I. A. 1979. The influence of nitrogen level, form and application method on the growth response ofSpartina alterniflora. Estuaries 2: 106–112.

    Google Scholar 

  • Mesleard, F., L. Tan Ham, V. Boy, C. van Wijck &P. Grillas. 1993. Competition between an introduced and an indigenous species: the case ofPaspalumpaspalodes (Michx.) Schribnerand Aeluropus littoralis (Gouan) in the Camargue (southern France). Oecologia 94: 204–209.

    Google Scholar 

  • Miller, D. L., F. E. Smeins &J. W. Webb. 1996. Mid-Texas coastal marsh change (1939–1991) as influenced by lesser snow goose herbivory. J. Coastal Res. 12: 462–476.

    Google Scholar 

  • Miller, W. R. &F. E. Egler. 1950. Vegetation of the Wequetequock-Pawcatuck tidal-marshes, Connecticut. Ecol. Monogr. 20:143–172.

    Google Scholar 

  • Milton, W. E. J. 1939. Occurrence of buried viable seeds in soils at different elevations and on a salt marsh. J. Ecol. 27: 149–159.

    Google Scholar 

  • Mulder, P. H., R. W. Ruess &J. S. Sedinger. 1996. Effects of environmental manipulations onTriglochin palustris: Implications for the role of goose herbivory in controlling its distribution. J. Ecol. 84: 267–278.

    Google Scholar 

  • Partridge, T. R. &J. B. Wilson. 1988. The use of field transplants in determining environmental tolerance in salt marshes of Otago, New Zealand. New Zealand J. Bot. 26:183–192.

    Google Scholar 

  • Patrick, W. H. &R. D. Delaune. 1976. Nitrogen and phosphorus utilization bySpartina alterniflora in Barataria Bay, Louisiana. Estuaries Coastal Mar. Sci. 4: 59–64.

    CAS  Google Scholar 

  • Patterson, C. S., I. A. Mendelssohn &E. M. Swenson. 1993. Growth and survivalof Avicennia germinans seedlings in a mangal/salt marsh community in Louisiana, U.S. A. J. Coastal Res. 9:801–810.

    Google Scholar 

  • Pennings, S. C. &R. M. Callaway. 1992. Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology 73: 681–690.

    Google Scholar 

  • ——. 1996. Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology 77: 1410–1419.

    Google Scholar 

  • Pielou, E. C. &R. D. Routledge. 1976. Salt marsh vegetation.latitudinal gradients in zonation patterns. Oecologia 24: 311–321.

    Google Scholar 

  • Purer, E. A. 1942. Plant ecology of the coastal salt marsh lands of San Diego County, California. Ecol. Monogr. 12:81–111.

    Google Scholar 

  • Rabinowitz, D. 1978. Dispersal properties of mangrove propagules. Biotropica 10: 47–57.

    Google Scholar 

  • Rahman, M. &I. A. Ungar. 1994. The effect of competition and salinity on shoot growth and reproductive biomass ofEchinochloa crus-galli. Aquat. Bot. 48: 343–353.

    Google Scholar 

  • Ranwell, D. S. 1972. Ecology of salt marshes and sand dunes. Chapman and Hall, London.

    Google Scholar 

  • Redfield, A. C. 1972. Development of a New England salt marsh. Ecol. Monogr. 42: 201–237.

    Google Scholar 

  • Rejmankova, E., K. O. Pope, R. Post &E. Maltby. 1996. Herbaceous wetlands of the Yucatan peninsula: Communities at extreme ends of environmental gradients. Intl. Rev. Ges. Hydrobiol. 81: 223–252.

    CAS  Google Scholar 

  • Runge, F. 1972. Dauerquadratbeobachtungen bei salzwiesen-Assoziationen. Pages 178–183in R. Tuxen (ed.), Grundfragen und Methoden in der Pflanzensoziologie. W. Junk, The Hague.

    Google Scholar 

  • Russell, P. J., T. J. Flowers &M. J. Hutchings. 1985. Comparison of niche breadths and overlaps of halophytes on salt marshes of differing diversity. Vegetatio 61:171–178.

    Google Scholar 

  • Sanchez, J. M., J. Izco &M. Medrano. 1996. Relationships between vegetation zonation and altitude in a salt-marsh system in northwest Spain. J. Veg. Sci. 7: 695–702.

    Google Scholar 

  • Saxena, S. K. 1994. Banni grassland and halophytes. Chapter 16in V. R. Squires & A. T. Ayoub (eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands. Kluwer, Dordrecht.

    Google Scholar 

  • Scholten, M., A. Blaauw, M. Stroetenga &J. Rozema. 1987. The impact of competitive interactions on the growth and distribution of plant species in salt marshes. Chapter 21in A. H. L. Huiskes et al. (eds.), Vegetation between land and sea. W. Junk, Dordrecht.

    Google Scholar 

  • Silander, J. A. &J. Antonovics. 1982. Analysis of interspecific interactions in a coastal plant community—A perturbation approach. Nature 298: 557–560.

    Google Scholar 

  • Snow, A. A. &S. W. Vince. 1984. Plant zonation in an Alaskan salt marsh II. An experimental study of the role of edaphic conditions. J. Ecol. 72: 699–684.

    Google Scholar 

  • Srivastava, D. S. &R. L. Jefferies. 1995. Mosaics of vegetation and soil salinity: A consequence of goose foraging in an arctic salt marsh. Canad. J. Bot. 73: 75–83.

    Google Scholar 

  • Stalter, R. 1973. Transplantation of salt marsh vegetation. II. Georgetown, South Carolina. Castanea38: 132–139.

    Google Scholar 

  • Suehiro, K. &H. Ogawa. 1980. Competition between two annual herbs,Atriplex gmelini C. A. Mey andChenopodium album L., in mixed cultures irrigated with seawater of various concentrations. Oecologia 45: 167–177.

    Google Scholar 

  • Szwarcbaum, I. &Y. Waisel. 1973. Inter-relationships between halophytes and glycophytes grown on saline and non-saline media. J. Ecol. 61: 775–786.

    Google Scholar 

  • Taylor, K. L., J. B. Grace &B. D. Marx. 1997. The effects of herbivory on neighbor interactions along a coastal salt marsh gradient. Amer. J. Bot. 84: 709–715.

    Google Scholar 

  • Ungar, I. A. 1962. Influence of salinity on seed germination in succulent halophytes. Ecology 43: 763–764.

    Google Scholar 

  • —. 1965. An ecological study of the vegetation of the Big Salt Marsh, Stafford County, Kansas. Univ. Kansas Sci. Bull. 46: 1–98.

    Google Scholar 

  • —. 1966. Salt tolerance of plants growing in saline areas of Kansas and Oklahoma. Ecology 47: 154–155.

    Google Scholar 

  • —. 1974a. Halophyte communities of Park County, Colorado. Bull. Torrey Bot. Club 101:145–152.

    Google Scholar 

  • —. 1974b. Inland halophytes of the United States. Pages 235–305in R. Reimold & W. Queen (eds.), Ecology of halophytes. Academic Press, New York.

    Google Scholar 

  • —. 1978. Halophyte seed germination. Bot. Rev. (Lancaster) 44: 233–264.

    CAS  Google Scholar 

  • —. 1979. The effect of seed reserves on species composition in zonal halophyte communities. Bot. Gaz. 141:447–452.

    Google Scholar 

  • —. 1984. Autecological studies withAtriplex triangularis Willdenow. Pages 40–52in A. R. Tiedemann et al. (eds.), Proceedings—Symposium on the biology ofAtriplex and related chenopods. General Technical Report INT-172. U.S.D.A. Forest Service, Intermountain Range and Forest Experiment Station, Ogden, Utah.

    Google Scholar 

  • —. 1987a. Population characteristics, growth, and survival of the halophyteSalicornia europaea. Ecology 68: 569–575.

    Google Scholar 

  • —. 1987b. Population ecology of halophyte seeds. Bot. Rev. (Lancaster) 53: 301–334.

    Google Scholar 

  • —. 1991. Ecophysiology of vascular halophytes. CRC Press, Boca Raton.

    Google Scholar 

  • —. 1995. Seed germination and seed-bank ecology in halophytes. Pages 529–544in J. Kigel & G. Galili (eds.), Seed development and germination. Marcel Dekker, New York.

    Google Scholar 

  • — &S. R. J. Woodell. 1993. The relationship between the seed bank and species composition of plant communities in two British salt marshes. J. Veg. Sci. 4: 531–536.

    Google Scholar 

  • ——. 1996. Similarity of seed banks to aboveground vegetation in grazed and ungrazed communities on the Gower peninsula, South Wales. Intl. J. Plant Sci. 157: 746–749.

    Google Scholar 

  • —,D. K. Benner &D. C. McGraw. 1979. The distribution and growth ofSalicornia europaea on an inland salt pan. Ecology 60: 329–336.

    Google Scholar 

  • Valiela, I. &C. S. Rietsma. 1995. Disturbance of salt marsh vegetation by wrack mats in Great Sippewissett Marsh. Oecologia 102:106–112.

    Google Scholar 

  • Van Diggelen, J. 1991. Effects of inundation stress on salt marsh halophytes. Pages 62–72in J. Rozema & A. C. Verrkleij (eds.), Ecological responses to environmental stresses. Kluwer, Dordrecht.

    Google Scholar 

  • Vince, S. W. &A. A. Snow. 1984. Plant zonation in an Alaskan salt marsh. I. Distribution, abundance and environmental factors. J. Ecol. 72: 651–667.

    Google Scholar 

  • Vivrette, N. J. &C. H. Muller. 1977. Mechanism of invasion and dominance of coastal grassland byMesembryanthemum crystallinum. Ecol. Monogr. 47: 301–318.

    Google Scholar 

  • Waisel, Y. 1972. Biology of halophytes. Academic Press, New York.

    Google Scholar 

  • Whisenant, S. G. &F. J. Wagstaff. 1991. Successional trajectories of a grazed salt desert shrubland. Vegetatio 94: 133–140.

    Google Scholar 

  • Wiehe, P. O. 1935. A quantitative study of the influence of tides upon populations ofSalicornia europaea. J. Ecology 23: 323–333.

    Google Scholar 

  • Wilson, D. B. 1967. Growth ofHordeum jubatum under various soil conditions and degrees of plant competition. Canad. J. Pl. Sci. 47: 405–412.

    Google Scholar 

  • Wilson, J. B., W. M. King, M. T. Sykes &T. R. Partridge. 1996. Vegetation zonation as related to the salt tolerance of species of brackish riverbanks. Canad. J. Bot. 74: 1079–1085.

    Google Scholar 

  • Woerner, L. S. &C. T. Hackney. 1997. Distribution ofJunctis roemerianus L. in North Carolina tidal marshes: The importance of physical and biotic variables. Wetlands 17:284–291.

    Google Scholar 

  • Woodell, S. R. J. 1985. Salinity and seed germination in coastal plants. Vegetatio 61: 223–230.

    Google Scholar 

  • Zedler, J. 1977. Salt marsh community structure in the Tijuana estuary, California. Estuarine Coastal Mar. Sci. 5: 39–53.

    Google Scholar 

  • —,E. Paling &A. McComb. 1990. Differential responses to salinity help explain the replacement of nativeJuncus krausii byTypha orientalis in western Australian salt marshes. Austral. J. Ecol. 15: 57–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, I.A. Are biotic factors significant in influencing the distribution of halophytes in saline habitats?. Bot. Rev 64, 176–199 (1998). https://doi.org/10.1007/BF02856582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856582

Keywords

Navigation