Advertisement

The Botanical Review

, Volume 64, Issue 2, pp 121–175 | Cite as

CAM photosynthesis in submerged aquatic plants

  • Jon E. Keeley
Article

Abstract

Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, includingIsoëtes, Sagittaria, Vallisneria, Crassula, andLittorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high difrusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors.

Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic and terrestrial floras have evolved CAM photosynthesis. AquaticIsoëtes (Lycophyta) represent the oldest lineage of CAM plants and cladistic analysis supports an origin for CAM in seasonal wetlands, from which it has radiated into oligotrophic lakes and into terrestrial habitats. Temperate Zone terrestrial species share many characteristics with amphibious ancestors, which in their temporary terrestrial stage, produce functional stomata and switch from CAM to C3. Many lacustrineIsoëtes have retained the phenotypic plasticity of amphibious species and can adapt to an aerial environment by development of stomata and switching to C3. However, in some neotropical alpine species, adaptations to the lacustrine environment are genetically fixed and these constitutive species fail to produce stomata or loose CAM when artificially maintained in an aerial environment. It is hypothesized that neotropical lacustrine species may be more ancient in origin and have given rise to terrestrial species, which have retained most of the characteristics of their aquatic ancestry, including astomatous leaves, CAM and sediment-based carbon nutrition.

Keywords

Photosynthetically Active Radiation Botanical Review Crassulacean Acid Metabolism Vernal Pool Crassulacean Acid Metabolism Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

El metabolismo ácido Crasulacea (cam) es un mecanismo concentrador de CO2 seleccionado en respuesta a la aridez de hábitats terrestres, y, en ambientes acuáticos, a limitaciones de carbono en el medio. Se revisa la evidencia para su presencia en cinco géneros de plantas vasculares acuáticas, incluyendoIsoëtes, Sagitteria, Vallisneria, Crassula yLittorella. Inicialmente, el CAM acuático era considerado absurdo, pero algunas especies han sido estudiadas a detalle suficiente para determinar definitivamente que poseen fotosíntesis CAM. Los mecanismos concentradores de CO2 en órganos fotosintéticos requieren de barreras contra la fuga del mismo; por ejemplo, plantas terrestres C4 tienen células con una capa de cera y las plantas terrestres CAM poseen una alta resistencia en los estomas. En las plantas acuáticas la principal barrera para la fuga de CO2 es la resistencia a la difusión extremadamente alta del agua. Esto, junto con el resumidero proporcionado por el amplio espacio gaseoso intercelular, genera CO2(pi) diurno comparable a plantas terrestres CAM. CAM contribuye al presupuesto de carbono tanto por la ganancia neta de carbono como por su reciclaje, la magnitud de cada componente está influida por el ambiente. Las plantas cam acuáticas habitan en sitios donde la fotosíntesis está potencialmente limitada por carbono. Muchas ocupan piscinas temporales poco profundas y moderadamente fértiles, que experimentan fluctuaciones diálicas extremas en la disponibilidad de carbono. Las plantas CAM son capaces de aprovechar los altos niveles nocturnos de CO2 en estos hábitats, potencialmente adquiriendo una ventaja competitiva sobre las plantas no poseedoras de CAM, las cuales sufren la falta de carbono durante el día, o sobre las especies que utilizan energía en el transporte de bicarbonato a través de membranas. Otras plantas CAM acuáticas se encuentran distribuidas en lagos altamente infértiles, en los que la limitation extrema de carbono y luz son factores de selección importantes.

La compilation de reportes sobre cambios diólicos en ácido titulable y malato muestran que 69 de 180 especies tienen una acumulación nocturna signifícativa, aunque la evidencia es presentada descontando CAM en algunos casos. Se concluye que proporciones similares de las floras terrestres y acuáticas han evolucionado fotosíntesis CAM.Isoëtes acuática (Lycophyta) representa el linaje más antiguo de plantas CAM, y el análisis cladístico apoya la idea del origen de CAM en humedales estacionales, de donde radiaron a lagos oligotróficos y a hábitats terrestres. Las especies terrestres de zonas templadas comparten muchas características con sus ancestros anfibios, las cuales en su estado terrestre temporal producen estomas funcionales y cambian de CAM a C3. MuchasIsoëtes lacustres han retenido la plasticidad fenotipica de especies anfibias y pueden adaptarse a una ambiente aéreo al desarrollar estomas y cambiar a C3. Sin embrago, en algunas especies neotropicales alpinas, las adaptaciones al ambiente lacustre están determinadas géniticamente y estas especies fallan en producir estomas o perder CAM al mantenerlas artificialmente en un ambiente aéreo. Se presenta la hipótesis que éstas son de origen anterior y han dado lugar a las especies terrestres que retienen la mayorma de las características de su estado ancestral acuático, incluyendo hojas sin estomas, CAM y nutrición de carbono basado en sedimentos.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Akagawa, H., T. Ikawa &K. Nisizawa. 1972a. Initial pathway of dark14CO2-fixation in brown algae. Bot. Mar. 15:119–125.Google Scholar
  2. ———. 1972b.14CO2-fixation in marine algae with special reference to the darkfixation in brown algae. Bot. Mar. 15: 126–132.Google Scholar
  3. Allen, E. D. &D. H. N. Spence. 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol. 87: 269–283.Google Scholar
  4. Allsopp, A. 1951. The sugars and non-volatile organic acids of some archegoniates: A survey using paper, chromatography. J. Exp. Bot. 2: 121–124.Google Scholar
  5. Ash, S. R. &K. B. Pigg. 1991. A new JurassicIsoetites (Isoetales) from the Wallowa terrane in Hells Canyon, Oregon and Idaho. Amer. J. Bot. 78: 1636–1642.Google Scholar
  6. Aulio, K. 1985. Differential expression of diel acid metabolism in two life forms ofLittorella uniflora (L.) Aschers. New Phytol. 100: 533–536.Google Scholar
  7. — 1986a. CAM-like carbon pathway in submerged aquatic plants. Biol. Pl. 28: 234–236.Google Scholar
  8. — 1986b. CAM-like photosynthesis inLittorella uniflora (L.) Aschers.: The role of humidity. Ann. Bot. 58: 273–275.Google Scholar
  9. Axelsson, L., S. Carlberg &H. Ryberg. 1989. Adaptations by macroalgae to low carbon availability. I. A buffer system inAscophyllum nodosum, associated with photosynthesis. Pl. Cell Environm. 12: 765–770.Google Scholar
  10. Baskin, J. M. &C. C. Baskin. 1979. The role to temperature in the vegetative life cycle ofIsoetes butleri. Amer. Fern J. 69: 103–110.Google Scholar
  11. Beer, S. &R. G. Wetzel. 1981. Photosynthetic carbon metabolism in the submerged aquatic angiospermScirpus subterminalis. Pl. Sci. Lett. 21: 199–207.Google Scholar
  12. —,K. Sand-Jensen, T. V. Madsen &S. L. Nielsen. 1991. The carboxylase activity of Rubisco and the photosynthetic performance in aquatic plants. Oecologia 87: 429–434.Google Scholar
  13. Black, C. C., J.-Q. Chen, R. L. Doong, M. N. Angelov &S. J. S. Sung. 1995. Alternative carbohydrate reserves used in the daily cycle of crassulacean acid metabolism. Pages 31–45in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  14. Bloom, A. J. &J. H. Troughton. 1979. High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38: 35–43.Google Scholar
  15. Bold, H. C., C. J. Alexopoulos &T. Delevoryas. 1980. Morphology of plants and fungi. Harper & Row, New York.Google Scholar
  16. Borland, A. M. &H. Griffiths. 1995. Variations in the phases of crassulacean acid metabolism and regulation of carboxylation patterns determined by carbon-isotope-discrimination techniques. Pages 230–249in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  17. Boston, H. L. 1986. A discussion of the adaptations for carbon acquisition in relation to the growth strategy of aquatic isoetids. Aquatic Bot. 26: 259–270.Google Scholar
  18. — &M. S. Adams. 1983. Evidence of crassulacean acid metabolism in two North American isoetids. Aquatic Bot. 15: 381–386.Google Scholar
  19. ——. 1985. Seasonal diurnal acid rhythms in two aquatic crassulacean acid metabolism plants. Oecologia 65: 573–579.Google Scholar
  20. ——. 1986. The contribution of crassulacean acid metabolism to the annual productivity of two aquatic vascular plants. Oecologia 68: 615–622.Google Scholar
  21. ——. 1987. Productivity, growth, and photosynthesis of two small “isoetid” plantsLittorella uniflora andIsoetes macrospora. J. Ecol. 75: 333–350.Google Scholar
  22. —— &T. P. Pienkowski. 1987. Utilization of sediment CO2 by selected North American isoetids. Ann. Bot. 60: 485–494.Google Scholar
  23. —— &J. D. Madsen. 1989. Photosynthetic strategies and productivity in aquatic systems. Aquatic Bot. 34: 27–57.Google Scholar
  24. Bowes, G. &M. E. Salvucci. 1989. Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquatic Bot. 34: 233–266.Google Scholar
  25. Broadmeadow, M. S. J. &H. Griffiths. 1993. Carbon isotope discrimination and the coupling of CO2 fluxes with forest canopies. Pages 109–129in J. R. Ehleringer et al. (eds.), Stable isotopes and plant carbon-water relations. Academic Press, San Diego.Google Scholar
  26. Browse, J. A., J. M. A. Brown &F. I. Dromgoole. 1980. Malate synthesis and metabolism during photosynthesis inEgeria densa Planch. Aquatic Bot. 8: 295–305.Google Scholar
  27. Bywater, M. &T. E. Wickens. 1984. New World species of the genusCrassula. Kew Bull. 39: 699–728.Google Scholar
  28. Chellappan, K. P., S. Seeni &A. Gnanam. 1980. Photosynthetic studies with mesophyll protoplasts fromNotonia grandiflora, a crassulacean acid metabolism plant. Physiol. Pl. 48: 403–410.Google Scholar
  29. Christopher, J. T. &J. A. M. Holtum. 1996. Patterns of carbon partitioning in leaves of Crassulacean acid metabolism species during deacidification. Pl. Physiol. 112: 393–399.Google Scholar
  30. Church, M. R., R. R. H. Cohen, C. L. Gallegos &M. G. Kelly. 1983. Evidence for carbon uptake and storage in the dark with subsequent photosynthetic fixation by cultures of mixed Chlorophyceae. Arch. Hydrobiol. 98: 509–522.Google Scholar
  31. Cockburn, W. 1981. The evolutionary relationship between stomatal mechanism, crassulacean acid metabolism, and C4 photosynthesis. New Phytol. 24: 3–24.Google Scholar
  32. Collins, C. D., R. B. Sheldon &C. W. Boylen. 1987. Littoral zone macrophyte community structure: Distribution and association of species along physical gradients in Lake George, New York, U.S.A. Aquatic Bot. 29: 177–194.Google Scholar
  33. Coudret, A., F. Ferron, P. Jolivet, G. Tremblin, E. Bergeron &M. C. Sourie. 1992. Fate of metabolites issued from14C dark fixation into brown seaweeds: Connection with their respective biology. Photosynthetica 26: 235–245.Google Scholar
  34. Cushman, J. C. &H. J. Bohnert. 1997. Molecular genetics of crassulacean acid metabolism. Pl. Physiol. 113:667–676.Google Scholar
  35. Dawson, F. H. &E. A. Warman. 1987.Crassula helmsii (T. Kirk) Cockayne: Is it an aggressive alien aquatic plant in Britain? Biol. Conserv. 42: 247–272.Google Scholar
  36. DiMichele, W. A. &R. M. Bateman. 1996. The rhizomorphic lycopsids: A case-study in paleobotanical classification. Syst. Bot. 21: 535–552.Google Scholar
  37. Dittrich, P., W. H. Campbell &J. C. C. Black. 1973. Phosphoenolpyruvate carboxykinase in plants exhibiting crassulacean acid metabolism. Pl. Physiol. 52: 357–361.Google Scholar
  38. Eggleton, P. &R. I. Vane-Wright (eds.). 1993. Phylogenetics and ecology. Academic Press, San Diego.Google Scholar
  39. Ehleringer, J. R. &R. K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Rev. Ecol. Syst. 24: 411–439.Google Scholar
  40. Farmer, A. M. 1987. Photosynthetic adaptation inLobelia dortmanna and other isoetids. Photosynthetica 21: 51–55.Google Scholar
  41. — &D. H. N. Spence. 1985. Studies of diurnal acid fluctuations in British isoetid-type submergedaqatic macrophytes. Ann. Bot. 56: 347–350.Google Scholar
  42. ——. 1986, The growth strategies and distribution of isoetids in Scottish freshwater lochs. Aquatic Bot. 26: 247–258.Google Scholar
  43. —,S.C. Maberly &G. Bowes. 1986. Activities of carboxylation enzymes in freshwater macrophytes. J. Exp. Bot. 37: 1568–1573.Google Scholar
  44. Fischer, A. &M. Kluge. 1985. Light period of crassulacean acid metabolism: Control of carbon transfer from malic acid to carbohydrates by CO2 concentration. Physiol. Pl. 63: 327–331.Google Scholar
  45. Gacia, E. &E. Ballestros. 1993. Diel acid fluctuations in pyreneanIsoëtes species: The effects of seasonality and emersion. Arch. Hydrobiol. 128:187–196.Google Scholar
  46. ——. 1994. Production ofIsoetes lacustris in a Pyrenean lake: Seasonality and ecological factors involved in the growing period. Aquatic Bot. 48: 77–89.Google Scholar
  47. — &J. Penuelas. 1991. Carbon assimilation ofIsoëtes lacustris L. from Pyrenean lakes. Photosynthetica 35: 97–104.Google Scholar
  48. —,E. Ballestros, L. Camarero, O. Delgado, A. Palau, J. L. Riera &J. Catalan. 1994. Macrophytes from lakes in the eastern Pyrenees: Community composition and ordination in relation to environmental factors. Freshwater Biol. 32: 73–81.Google Scholar
  49. Gibson, A. C. &P. S. Nobel. 1986. The cactus primer. Harvard University Press, Cambridge.Google Scholar
  50. Grauvogel-Stamm, L. 1993.Pleuromeia sternbergii (Munster) Corda from the lower Triassic of Germany—Further observations and comparative morphology of its rooting organ. Rev. Palaeobot. Palyn. 77: 185–212.Google Scholar
  51. Griffiths, H. 1988. Crassulacean acid metabolism: A re-appraisal of physiological plasticity in form and function. Adv. Bot. Res. 15: 43–92.Google Scholar
  52. —. 1989. Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. Pages 42–86in U. Lüttge (ed.), Vascular plants as epiphytes: Evolution and ecophysiology. Springer, Berlin.Google Scholar
  53. Groenhof, A. C., N. Smirnoff &J. Bryant. 1988. Enzymic activities associated with the ability of aerial and submerged forms ofLittorella uniflora (L.) Aschers, to perform CAM. J. Exp. Bot. 39: 353–361.Google Scholar
  54. Heider, R. J. &M. V. Harmelen. 1982. Carbon assimilation pattern in the submerged leaves of the aquatic angiosperm:Vallisneria spiralis L. Acta Bot. Neerl. 31: 281–295.Google Scholar
  55. Hickey, R. J. 1986. The early evolutionary and morphological diversityIsoëtes, with descriptions of two new neotropical species. Syst. Bot. 11: 309–321.Google Scholar
  56. —. 1990. Studies of neotropicalIsoëtes L. I.Euphyllum, a new subgenus. Ann. Missouri Bot. Gard. 77: 239–245.Google Scholar
  57. —,W. C. Taylor &N. T. Luebke. 1989. The species concept in Pteridophyta with special reference toIsoëtes. Amer. Fern J. 79: 78–89.Google Scholar
  58. Holaday, A. S. &G. Bowes. 1980. C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Pl. Physiol. 65: 331–335.Google Scholar
  59. Holbrook, G. P., S. Beer, W. E. Spencer, J. B. Reiskind, J. S. Davis &G. Bowes. 1988. Photosynthesis in marine macroalgae: Evidence for carbon limitation. Canad. J. Bot. 66: 577–582.Google Scholar
  60. Holtum, J. A. M. &K. Winter. 1982. Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabolism inMesembtyanthemum crystallinum. Planta 155: 8–16.Google Scholar
  61. Hostrup, O. &G. Wiegleb. 1991a. The influence of different CO2 concentrations in the light and the dark on diurnal malate rhythm and phosphoenolpyruvate carboxylase activities in leaves ofLittorella uniflora (L.) Aschers. Aquatic Bot. 40: 91–100.Google Scholar
  62. ——. 1991b. Anatomy of leaves of submerged and emergent forms ofLittorella uniflora (L.) Ascherson. Aquatic Bot. 39: 195–209.Google Scholar
  63. Jackson, S. T. &D. F. Charles. 1988. Aquatic macropdhytes in Adirondack (New York) lakes: Patterns of species composition in relation to environment. Canad. J. Bot. 66: 1449–1460Google Scholar
  64. Johnston, A. M. &J. A. Raven. 1986. Dark carbon fixation studies on the intertidal macroalgaAscophyllum nodosum (Phaeophyta). J. Phycol. 22: 78–83.Google Scholar
  65. Joshi, G., T. Dolun, R. Gee &P. Saltman. 1962. Sodium chloride effect on dark fixation of CO2 by marine and terrestrial plants. Pl. Physiol. 37: 446–449.Google Scholar
  66. Kalt, W., C. B. Osmond &J. N. Siedow. 1990. Malate metabolism in the dark after13CO2 fixation in the crassulacean plantKalanchoe tubiflora. Pl. Physiol. 94: 826–832.Google Scholar
  67. Karrfalt, E. 1977. Substrate penetration by the corm ofIsoëtes. Amer. Fern J. 67: 1–4.Google Scholar
  68. —. 1980. A further comparison ofIsoëtes roots and stigmarian appendages. Canad J Bot 58: 2318–2322.Google Scholar
  69. —. 1984. The origin and early development of the root-producing meristem ofIsoëtes andicola L. D. Gomez. Bot. Gaz. 145: 372–377.Google Scholar
  70. Keeley, J. E. 1981.Isoëtes howellii: A submerged aquatic CAM plant? Amer. J. Bot. 68: 420–224.Google Scholar
  71. —. 1982. Distribution of diurnal acid metabolism in the genusIsoëtes. Amer. J. Bot. 69:254–257.Google Scholar
  72. —. 1983a. Crassulacean acid metabolism in the seasonally submerged aquaticIsoëtes howellii. Oecologia 58: 57–62.Google Scholar
  73. —. 1983b. Lack of diurnal acid metabolism in two terrestrialIsoëtes species. Photosvnthetica 17: 93–94.Google Scholar
  74. —. 1987. The adaptive radiation of photosynthetic modes in the genusIsoëtes (Isoetaceae). Pages 113–128in R. M. M. Crawford (ed.), Plant life in aquatic and amphibious habitats. Blackwell Scientific, London.Google Scholar
  75. -. 1988. Photosynthesis in quillworts, or, Why are some aquatic plants similar to cacti? Plants Today (July–August): 127–132.Google Scholar
  76. —. 1989. Stable carbon isotopes in vernal pool aquatics of differing photosynthetic pathways. Pages 76–81in P. W. Rundel et al. (eds.), Stable isotopes in ecological research. Springer, New York.Google Scholar
  77. —. 1990. Photosynthesis in vernal pool macrophytes: Relation of structure and function. Pages 61–85in D. H. Ikeda & R. A. Schlising (eds.), Vernal pool plants: Their habitat and biology. Studies from the Herbarium, no. 8. California State University, Chico.Google Scholar
  78. —. 1991. Interactive: role of stresses on structure and function of aquatic plants. Pages 329–343in H. A. Mooney et al. (eds.), Response of plants to multiple stresses. Academic Press, New York.Google Scholar
  79. —. 1996. Aquatic CAM photosynthesis. Pages 281–295in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  80. -. 1998a. Diel acid fluctuations in aquatic grasses. Photosynthetica (in press).Google Scholar
  81. -. 1998b. Photosynthetic pathway diversity in a seasonal pool community. Funct. Ecol. (in press).Google Scholar
  82. — &G. Bowes. 1982. Gas exchange characteristics of the submerged aquatic crassulacean acid metabolism plantIsoëtes howellii. PL Physiol. 70: 1455–1458.Google Scholar
  83. — &G. Busch. 1984. Carbon assimilation characteristics of the aquatic CAM plantIsoëtes howellii. Pl. Physiol. 76: 525–530.Google Scholar
  84. — &B. A. Morton. 1982. Distribution of diurnal acid metabolism in submerged aquatic plants outside the genusIsoëtes. Photosynthetica 16: 546–553.Google Scholar
  85. — &D. R. Sandquist. 1991. Diurnal photosynthesis cycle in CAM and non-CAM seasonal-pool aquatic macrophytes. Ecology 72: 716–727.Google Scholar
  86. ——. 1992. Carbon: Freshwater plants. Pl. Cell Environm. 15: 1021–1035.Google Scholar
  87. — &P. H. Zedler. 1998. Characterization and global distribution of vernal pools. Pages 1–14in C. W. Witham et al. (eds.), Ecology, conservation and management of vernal pool ecosystems-Proceedings from a 1996 conference. California Native Plant Society, Sacramento.Google Scholar
  88. —,R. P. Matthews, B. Babcock, P. Castillo, B. Fish, E. Jerauld, B. Johnson, L. Landre, H. Lum, C. Miller, A. Parker &G. van Steenwyk. 1981. Dark CO2-fixation and diurnal malic acid fluctuations in the submerged aquaticIsoëtes storkii. Oecologia 48: 332–333.Google Scholar
  89. —,C. M. Walker &R. P. Mathews. 1983a. Crassulacean acid metabolism inIsoëtes bolanderi in high-elevation oligotrophic lakes. Oecologia 58: 63–69.Google Scholar
  90. —,R. P. Mathews &C. M. Walker. 1983b. Diurnal acid metabolism inIsoëtes howellii from a temporary pool and a permanent lake. Amer. J. Bot. 70: 854–857.Google Scholar
  91. —,C. B. Osmond &J. A. Raven. 1984.Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature 310: 694–695.Google Scholar
  92. —,D. A. DeMason, R. Gonzalez &K. R. Markham. 1994. Sediment-based carbon nutrition in tropical alpineIsoetes. Pages 167–194in P. W. Rundel et al. (eds.), Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge.Google Scholar
  93. Kelly, G. J., J. A. M. Holtum &E. Latzko. 1989. Photosynthesis, carbon metabolism: New regulators of CO2 fixation, the new importance of pyrophosphate, and the old problem of oxygen involvement revisited. Prog. Bot. 50: 87–95.Google Scholar
  94. Kerby, N. W. &L. V. Evans. 1983. Phosphoenolpyruvate carboxykinase activity inAscophyllum nodosum (Phaeophyceae). J. Phycol. 19: 1–3.Google Scholar
  95. Kerstiens, G. 1996. Cuticular water permeability and its physiological significance. J. Exp. Bot. 47: 1813–1832.Google Scholar
  96. Kirk, J. T. O.1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge.Google Scholar
  97. Kluge, M. &J. Brulfert. 1995. Crassulacean acid metabolism in the genusKalanchoe: Ecological, physiological, and biochemical aspects. Pages 324–335in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  98. — &I. P. Ting. 1978. Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, New York.Google Scholar
  99. Kovach, W. L. &D. J. Batten. 1993. Diversity changes in lycopsid and aquatic fern megaspores through geologic time. Paleobiology 19: 28–42.Google Scholar
  100. Kremer, B. P. 1979. Light independent carbon fixation by marine macroalgae. J. Phycol. 15:244–247.Google Scholar
  101. Kurimo, H. &U. Kurimo. 1981. Distributional relations and homogeneous areas in aquatic macrophyte vegetation: A case study. Ann. Bot. Fenn. 18: 293–312.Google Scholar
  102. Lee, L. &F. Belknap. 1970. Hard water as a limiting factor in the distributionof Isoëtes echinospora. Amer. Fern J. 60: 134–136.Google Scholar
  103. Leon, B. &K. R. Young. 1996. Aquatic plants of Peru: Diversity, distribution, and conservation. Biodiv. Conserv. 5: 1169–1190.Google Scholar
  104. Loczy, S., R. Carignan &D. Platnas. 1983. The role of roots in carbon uptake by the submersed macrophytesMyriophyllum spicatum, Vallisneria americana, andHeteranthera dubia. Hydrobiologia 98: 3–7.Google Scholar
  105. Lüttge, U. 1987. Carbon dioxide and water demand: Crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol. 106: 593–629.Google Scholar
  106. —. 1988. Day-night changes of citric-acid levels in crassulacean acid metabolism: Phenomenon and ecophysiological significance. Pl. Cell Environm. 11: 445–451.Google Scholar
  107. —. 1995.Clusia: Plasticity and diversity in a genus of C3/CAM intermediate tropical trees. Pages 296–311in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  108. Maberly, S. C. &D. H. N. Spence. 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71:705–724.Google Scholar
  109. ——. 1989. Photosynthesis and photorespiration in freshwater organisms: Amphibious plants. Aquatic Bot. 34: 267–286.Google Scholar
  110. Madsen, T. V. 1985. A community of submerged aquatic CAM plants in Lake Kalgaard, Denmark. Aquatic Bot. 23: 97–108.Google Scholar
  111. —. 1987a. Sources of inorganic carbon acquired through CAM inLittorella uniflora (L.) Aschers. J. Exp. Bot. 38: 367–377.Google Scholar
  112. —. 1987b. Interactions between internal and external CO2 pools in the photosynthesis of the aquatic CAM plantsLittorella uniflora (L.) Aschers andIsoëtes lacustris L. New Phytol. 106: 35–50.Google Scholar
  113. —. 1987c. The effect of different growth conditions on dark and light carbon assimilation in Littorella uniflora. Physiol. Pl. 70: 183–188.Google Scholar
  114. —,K. Sand-Jensen &S. Beer. 1993. Comparison of photosynthetic performance and carboxylation capacity in a range of aquatic macrophytes of different growth forms. Aquatic Bot. 44: 373–384.Google Scholar
  115. Martin, C. E. 1995. Putative causes and consequences of recycling CO2 via crassulacean acid metabolism. Pages 192–203in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  116. Medina, E., M. Popp, E. Olivares, H.-P. Janett &U. Lüttge. 1993. Daily fluctuations of titratable acidity, content of organic acids (malate and citrate) and soluble sugars of varieties and wild relatives ofAnanas comosus L. growing under natural tropical conditions. Pl. Cell Environm. 16: 55–63.Google Scholar
  117. Middelboe, A. L. &S. Markager. 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biol. 37: 553–568.Google Scholar
  118. Monson, R. K. 1989. On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). Adv. Ecol. Res. 19: 57–110.Google Scholar
  119. Moyle, J. B. 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Amer. Midl. Naturalist 34: 402–420.Google Scholar
  120. Musselman, L. J. &D. A. Knepper. 1994. Quillworts of Virginia. Amer. Fern J. 84: 48–68.Google Scholar
  121. Newman, J. R. &J. A. Raven. 1995. Photosynthetic carbon assimilation byCrassula helmsii. Oecologia 101:494–499.Google Scholar
  122. Nielsen, S. L., E. Gacia &K. Sand-Jensen. 1991. Land plants of amphibiousLittorella uniflora (L.) Aschers, maintain utilization of CO2 from the sediment. Oecologia 88: 258–262.Google Scholar
  123. Nobel, P. S. 1995. High productivity of certain agronomic CAM species. Pages 255–265in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  124. —,A. A. Israel &N. Wang. 1996. Growth, CO2 uptake, and responses of the carboxylating enzymes to inorganic carbon in two highly productive CAM species at current and doubled CO2 concentrations. Pl. Cell Environm. 19: 689–699.Google Scholar
  125. Olivares, E., K. Faist, M. Kluge &U. Lüttge. 1993.14C pulse-chase labeling inClusia minor L. J. Exp. Bot. 44: 1527–1533.Google Scholar
  126. Osmond, C. B. 1978. Crassulacean acid metabolism: A curiosity in context. Ann. Rev. Pl. Physiol. 29: 379–414.Google Scholar
  127. —. 1984. CAM: Regulated photosynthetic metabolism for all seasons. Pages 557–563in C. Sybesma (ed.), Advances in photosynthesis research. W. Junk, The Hague.Google Scholar
  128. Parker, D. 1943. Comparison of aquatic and terrestrial plants ofIsoëtes engelmannii in the Mountain Lake, Virginia, area. Amer. Midl. Naturalist 30: 452–455.Google Scholar
  129. Pedersen, O. &K. Sand-Jensen. 1992. Adaptations of submergedLobelia dortmanna to aerial life form: Morphology, carbon sources, and oxygen dynamics. Oikos 65: 89–96.Google Scholar
  130. —— &N. P. Revsbech. 1995. Diel pulses of O2 and CO2 in sandy lake sediments inhabited byLobelia dortmanna. Ecology 76: 1536–1545.Google Scholar
  131. Pfeiffer, N. E. 1922. Monograph of the Isoetaceae. Ann. Missouri Bot. Gard. 9: 79–217.Google Scholar
  132. Pietsch, W. 1991. On the phytosociology and ecology ofIsoëtes asiatica (Makino) Makino in oligotrophic water bodies of South Sakhalin. Vegetatio 97: 99–115.Google Scholar
  133. Pigg, K. B. 1992. Evolution of Isoetalean lycopsids. Ann. Missouri Bot. Gard. 79: 589–612.Google Scholar
  134. Pilon-Smits, E. A. H., H. Hart &J. V. Brederode. 1995. Evolutionary aspects of crassulacean acid metabolism in the Crassulaceae. Pages 349–359in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  135. Rattray, M. R., D. R. Webb &J. M. A. Brown. 1992. Light effects on crassulacean acid metabolism in the submerged aquatic plantIsöetes kirkii A. Braun. New Zealand J. Mar. Freshwater Res. 26: 465–470.Google Scholar
  136. Raven, J. A. 1977. The evolution of vascular land plants in relation to supracellular transport processes. Adv. Bot. Res. 5:153–219.Google Scholar
  137. —. 1984. Energetics and transport in aquatic plants. Alan R. Liss, New York.Google Scholar
  138. —. 1986. Biochemical disposal of excess H+ in growing plants. New Phytol. 104:175–206.Google Scholar
  139. —. 1995. Photosynthesis in aquatic plants. Pages 299–318in E.-D. Schulze & M. M. Caldwell (eds.), Ecophysiology of photosynthesis. Springer, Berlin.Google Scholar
  140. — &A. M. Johnston. 1991. Photosynthetic inorganic carbon assimilation byPrasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: Relationship to the taxonomyof Prasiola. Brit. Phycol. J. 26: 247–257.Google Scholar
  141. — &C. B. Osmond. 1992. Inorganic C acquisition processes and their ecological significance in inter- and subtidal macroalgae of North Carolina. Funct. Ecol. 6: 41–47.Google Scholar
  142. — &G. Samuelsson. 1988. Ecophysiology ofFucus vesiculosus L. close to its northern limit in the Gulf of Bothnia. Bot. Mar. 31: 399–410.Google Scholar
  143. — &R. A. Spicer. 1995. The evolution of crassulacean acid metabolism. Pages 360–385in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  144. —,L. L. Handley, J. J. MacFarlane, S. Mcinroy, L. McKenzie, J. H. Richards &G. Samuelsson. 1988. The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: A review, with new data onEriocaulon decangulare L. New Phytol. 108: 125–148.Google Scholar
  145. —,J. Beardall &S. Roberts. 1989. The ecophysiology of inorganic carbon assimilation byDurvillaea potatorum (Durvillaeales, Phaeophyta). Phycologia 28: 429–437.Google Scholar
  146. —,A. M. Johnston, L. L. Handley &S. G. Mclnroy. 1990. Transport and assimilation of inorganic carbon byLichina pygmaea under emersed and submersed conditions. New Phytol. 114: 407–417.Google Scholar
  147. Raven, P. H. 1963. Amphitropical relationships in the floras of North and South America. Quart. Rev. Biol. 38:151–177.Google Scholar
  148. Retallack, G. J. 1997. Earliest Triassic origin ofIsoëtes and quillwort evolutionary radiation. J. Paleontol. 71:500–521.Google Scholar
  149. Richardson, K., H. Griffiths, M. L. Reed, J. A. Raven &N. M. Griffiths. 1984. Inorganic carbon assimilation in the isoetids,Isoëtes lacustris L.and Lobelia dortmanna L. Oecologia 61: 115–121.Google Scholar
  150. Robe, W. E. &H. Griffiths. 1988. C3 and CAM photosynthetic characteristics of the submerged aquatic macrophyteLittorella uniflora: Regulation of leaf internal CO2 supply in response to variation in rooting substrate inorganic carbon concentration. J. Exp. Bot. 39: 1397–1410.Google Scholar
  151. ——. 1990. Photosynthesis ofLittorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations. Oecologia 85: 128–136.Google Scholar
  152. ——. 1992. Seasonal variation in the ecophysiologyof Littorella uniflora (L.) Ascherson in acidic and eutrophic habitats. New Phytol. 120: 289–304.Google Scholar
  153. ——. 1994. The impact of NO3-loading on the freshwater macrophytesLittorella uniflora. N utilization strategy in a slow-growing species from oligotrophic habitats. Oecologia 100: 368–378.Google Scholar
  154. Rorslett, B. &P. Brettum. 1989. The genusIsoëtes in Scandinavia: An ecological review and perspectives. Aquatic Bot. 35: 223–261.Google Scholar
  155. Ryberg, H., L. Axelsson, S. Carlberg, C. Larsson &J. Uusitalo. 1990. CO2 storage and CO2 concentrating in brown seaweeds. I. Occurrence and ultrastructure. Pages 517–520in M. Baltscheffsky (ed.), Current research in photosynthesis. Kluwer, The Hague.Google Scholar
  156. Sand-Jensen, K. 1978. Metabolic adaptation and vertical zonation ofLittorella uniflora (L.) Aschers, andIsoëtes lacustris L. Aquatic Bot. 4: 1–10.Google Scholar
  157. —. 1987. Environmental control of bicarbonate use among freshwater and marine macrophytes. Pages 99–112in R. M. M. Crawford (ed.), Plant life in aquatic and amphibious habitats. Blackwell Scientific, London.Google Scholar
  158. —. 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquatic Bot. 34: 5–25.Google Scholar
  159. — &T. V. Madsen. 1991. Minimum light requirements of submerged freshwater macrophytes in laboratory growth experiments. J. Ecol. 79: 749–764.Google Scholar
  160. — &M. Sendergaard. 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshwater Biol. 9:1–11.Google Scholar
  161. —,C. Prahl &H. Stokholm. 1982. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38: 349–354.Google Scholar
  162. Sandquist, D. R. &J. E. Keeley. 1990. Carbon uptake characteristics in two high-elevation populations of the aquatic CAM plantIsoëtes bolanderi (Isoetaceae). Amer. J. Bot. 77: 682–688.Google Scholar
  163. Schmitt, J. M., B. Fiblthaler, A. Sheriff, B. Lenz, M. Babler &G. Meyer. 1995. Environmental control of CAM induction inMesembryanthemum crystallinum—A role for cytokinin, abscisic acid and jasmonate? Pages 159–175in K. Winter& J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  164. Sculthorpe, C.D. 1967. The biology of aquatic vascular plants. Edward Arnold, London.Google Scholar
  165. Seddon, B. 1965. Occurrenceof Isoëtes echinospora in eutrophic lakes in Wales. Ecology 46:747–748.Google Scholar
  166. —. 1972. Aquatic macrophytes as limnological indicators. Freshwater Biol. 2: 107–130.Google Scholar
  167. Sharma, B. D. &R. Harsh. 1995. Diurnal acid metabolism in the submerged aquatic plantIsoëtes tuberculata. Amer. Fern J. 85: 58–60.Google Scholar
  168. Skog, J. E. &C. R. Hill. 1992. The Mesozoic herbaceous lycopsids. Ann. Missouri Bot. Gard. 79: 648–675.Google Scholar
  169. Smith, F. A. &N. A. Walker. 1980. Photosynthesis by aquatic plants: Effects of unstirred layers in relation to assimilation of O2 and HCO3 and to carbon isotopic discrimination. New Phytol. 86: 245–259.Google Scholar
  170. Smith, J. A. C. &K. Winter. 1995. Taxonomic distribution of crassulacean acid metabolism. Pages 427–436in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  171. —,J. Ingram, M. S. Tsiantis, B. J. Barkla, D. M. Bartholomew, M. Bettey, O. Pantoja &A. J. Pennington. 1995. Transport across the vacuolar membrane in CAM plants. Pages 53–71in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  172. Smith, S. V. 1985. Physical, chemical, and biological characteristics of CO2 gas flux across the air-water interface. Pl. Cell Environm. 8: 387–398.Google Scholar
  173. Smith, W. G., H. L. Boston &M. S. Adams. 1985. A preliminary study of the source and fate of carbon acquired via CAM inLittorella uniflora var.americana (Fern.) Gl. J. Freshwater Ecol. 3:203–209.Google Scholar
  174. Smits, A. J. M., P. Laan, R. H. Thier &G. van der Velde. 1990. Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid and isoetid macrophytes in relation to the sediment type of their habitat. Aquatic Bot. 38: 3–17.Google Scholar
  175. Sendergaard, M. 1981. Loss of inorganic and organic carbon by14C-labeled aquatic plants. Aquatic Bot. 10: 33–43.Google Scholar
  176. — &K. Sand-Jensen. 1979a. Carbon uptake by leaves and roots ofLittorella uniflora (L.) Aschers. Aquatic Bot. 6: 1–12.Google Scholar
  177. ——. 1979b. Physico-chemical environment, phytoplankton biomass and production in oligotrophic, softwater Lake Kalgaard, Denmark. Hydrobiologia 63: 241–253.Google Scholar
  178. Spicer, R. A. 1993. Palaeoecology, past climate systems, and C3/C4 photosynthesis. Chemosphere 27: 947–978.Google Scholar
  179. Stebbins, G. L. 1974. Flowering plants. Evolution above the species level. Belknap Press, Cambridge.Google Scholar
  180. Steinberg, S. L. 1996. Mass and energy exchange between the atmosphere and leaf influence gas pressurization in aquatic plants. New Phytol. 134: 587–599.Google Scholar
  181. Sternberg, L., M. Deniro &J. E. Keeiey. 1984. Hydrogen, oxygen, and carbon isotope ratios of cellulose from submerged aquatic crassulacean acid metabolism and non-crassulacean acid metabolism plants. Pl. Physiol. 76: 68–70.Google Scholar
  182. ——,D. McJunkin, R. Berger &J. E. Keeley. 1985. Carbon, oxygen, and hydrogen isotope abundances inStylites reflect its unique physiology. Oecologia 67: 598–600.Google Scholar
  183. Stewart, W. N. 1983. Paleobotany and the evolution of plants. Cambridge University Press, Cambridge.Google Scholar
  184. Surif, M. B. &J. A. Raven. 1983. The occurrence of diel changes in titratable acidity of plant cell contents: Indications of CAM-like metabolism in plants native to Scotland and comparisons with plants from elsewhere. Trans. Bot. Soc. Edinburgh 45: 235–244.Google Scholar
  185. Szmeja, J. 1994. Dynamics of the abundance and spatial organisation of isoetid populations in an oligotrophic lake. Aquatic Bot. 49: 19–32.Google Scholar
  186. Taylor, T. N. 1981. Paleobotany. An introduction to fossil plant biology. McGraw-Hill, New York.Google Scholar
  187. Taylor, W. C. &R. J. Hickey. 1992. Habitat, evolution, and speciation inIsoëtes. Ann. Missouri Bot. Gard. 79: 613–622.Google Scholar
  188. Tessenow, U. &Y. Baynes. 1978. Experimental effects ofIsoëtes lacustris L. on the distribution of Eh, pH, Fe, and Mn in lake sediment. Verh. Intl. Verein. Limnol. 20:2358–2362.Google Scholar
  189. Toivonen, H. &T. Lappalainen. 1980. Ecology and production of aquatic macrophytes in the oligotrophic, mesohumic lake Suomunjärvi, eastern Finland. Ann. Bot. Fenn. 17: 69–85.Google Scholar
  190. Tölken, H. R. 1977. A revision of the genusCrassula in southern Africa. Bolus Herbarium, Rondebosch, South Africa.Google Scholar
  191. —. 1981. The species ofCrassula L. in Australia. J. Adelaide Bot. Gard. 3: 57–90.Google Scholar
  192. Tryon, R. M. &A. F. Tryon. 1982. Ferns and allied plants. Springer, New York.Google Scholar
  193. Turpin, D. H., G. C. Vanlerberghe, A. M. Amory &R. D. Guy. 1991. The inorganic carbon requirements for nitrogen assimilation. Canad. J. Bot. 69: 1139–1145.Google Scholar
  194. Vöge, M. 1997. Number of leaves per rosette and fertility characters of the quillwort (Isoëtes lacustris L.) in 50 lakes of Europe: A field study. Arch. Hydrobiol. 139: 415–431.Google Scholar
  195. Wang Zi-Qiang. 1996. Recovery of vegetation from the terminal Permian mass extinction in North China. Rev. Palaeobot. Palyn. 91:121–142.Google Scholar
  196. Webb, D. R., M. R. Tattray &J. M. A. Brown. 1988. A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes in New Zealand. New Zealand J. Mar. Freshwater Res. 22: 231–235.Google Scholar
  197. Wetzel, R. G. 1975. Limnology. W. B. Saunders, Philadelphia.Google Scholar
  198. Willenbrink, J., B. P. Kremer &K. Schmitz. 1979. Photosynthetic and light-independent carbon fixation inMacrocystis, Nereocystis, and some selected Pacific Laminariales. Canad. J. Bot. 57: 890–897.Google Scholar
  199. Winter, K. 1985. Crassulacean acid metabolism. Pages 329–387in J. Barber & N. R. Baker (eds.), Photosynthetic mechanisms and the environment. Elsevier, London.Google Scholar
  200. — &J. A. C. Smith. 1995a. An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. Pages 1–13in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar
  201. ——. 1995b. Crassulacean acid metabolism: Current status and perspectives. Pages 389–426in K. Winter & J. A. C. Smith (eds.), Crassulacean acid metabolism. Biochemistry, ecophysiology, and evolution. Springer, Berlin.Google Scholar

Copyright information

© The New York Botanical Garden 1998

Authors and Affiliations

  • Jon E. Keeley
    • 1
  1. 1.Division of Environmental BiologyNational Science FoundationArlingtonUSA

Personalised recommendations