Skip to main content
Log in

Spectral techniques and soft computing

  • Published:
Approximation Theory and its Applications

Abstract

Soft Computing denotes a set of paradigma related to cognitive modelling, which in the last years have been intensively studied, since important synergy effects among members of this set have been disclosed. Because of this, Soft Computing has emerged as an environment to effectively work with real world complex problems. Fuzzy Logic, Genetic Algorithms and Neural Networks are possibly the best known representatives of Soft Computing. In this paper we show how Spectral Techniques may help to further study these subjects or to improve their performance. The name Spectral Techniques comprises Methods and Applications based on Abstract Harmonic Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethke, A. D.: Genetic Algorithms as Functions Optimizers. Dissertation, University of Michigan, (1980).

  2. Blahut R. E.: “Theory and Practice of Error Control Codes”. Addison Wesley, Reading MA, (1983)

    MATH  Google Scholar 

  3. Castro M. J., Casacuberta F.: The use of Multilayer Perceptrons in isolated Word Recognition. Lecture Notes in Computer Science 540, 348–354, Springer Verlag, (1991)

  4. Chrestenson H.: A class of generalized Walsh functions Pacific Jr. of Mathematics 5. 17–31, (1955)

    MATH  MathSciNet  Google Scholar 

  5. Creutzburg R., Tasche M.: F—Transformation und Faltung in kommutativen Ringen. Jr. of Information Processing and Cybernetics (EIK), 21, 129–149, (1985)

    MathSciNet  Google Scholar 

  6. Cubero R. G.: Neural Networks for Water Demand Time Series Forecasting. Lecture Notes in Computer Science 540, 453–460, Springer Verlag, (1991)

  7. Daugman J. G.: Complete discrete 2-D Gabor transform by neural networks for image analysis and compression. IEEE Trans. on Acoustics, Speech, and Signal Processing 36(7), 1169–1179, (1988).

    Article  MATH  Google Scholar 

  8. Davis L.: “Handbook of Genetic Algorithms” Van Nostrand Reinhold, NY, (1991)

    Google Scholar 

  9. Forrest S., Mitchell M.: What makes a Problem Hard for a Genetic Algorithm? Some anomalous Results and their Explanation. Machine Learning 13, 285–319, (1993)

    Article  Google Scholar 

  10. Fourier J. B. J.: “Théorie analytique de la Chaleur”. F. Didot, Paris, France, (1822).

    Google Scholar 

  11. Godo L., López de Mántaras R., Sierra C., Verdaguer A.: Managing Linguistically expressed Uncertainty in Milord—Application to Medical Diagnosis. Proceedings 7th. International Workshop on Expert Systems and their Applications, 571–596. Avignon, France, (1987)

  12. Goldberg D. E.: “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison Wesley, Reading MA., (1989)

    MATH  Google Scholar 

  13. He P., Cai Y., Feng J.: A neural net circuit for linear transformations. Proceedings 1st Internat. Conf. on Signal Processing, 873–876, Beijing, (1990)

  14. Harris C. J., Moore C. G., Brown M.: “Intelligent Control”. World Scientific, London, (1993)

    MATH  Google Scholar 

  15. Hurst S. L., Miller D. M., Muzio J. C.: “Spectral Techniques in Digital Logic”. Academic Press, Toronto, (1985)

    Google Scholar 

  16. Han Jun, Noraga C., Sinne S.: Optimization of feedforward neural networks. Engineering Applications of Artificial Intelligence. (1996)

  17. Holland J. H.: Artificial genetic adaptation in computer control systems. Dissertation, University of Michigang, (1971)

  18. Holland J. H.: “Adaptation in Natural and Artificial Systems”. University of Michigan Press, (1975)

  19. Karpovsky M. G.: “Finite orthogonal Series in the Design of Digital Devices”. John Wiley & Sons, New York (1976)

    MATH  Google Scholar 

  20. Karpovsky M. G.: “Spectral Techniques and Fault Detection”. Academic Press, NY (1985)

    MATH  Google Scholar 

  21. Kohonen T.: “Self—Organisation and Associative Memories”. Springer Verlag, Heidelberg, (1984)

    Google Scholar 

  22. Kulhane A. D., Peckerar M. C., Merrian C. R. K.: A neural net approach to discrete hartley and Fourier transforms. IEEE Trans. on Circuits and Systems 36, (5), 695–703, (1989)

    Article  Google Scholar 

  23. Katayama H., Shimomura T., Harada H., Konishi R.: The learning of the Neural Network using Hadamard Transform. Proceedings 2nd. International Conference on Fuzzy Logic Neural Networks. 1049–1052. Iizuka, Japan, (1992)

  24. de Luca, A.: Entropy and Dispersion for a fuzzy set. Proceedings of the Fall International Seminar on Applied Logic. 91–104. Porto Colom, Mallorca, Spain, (1984)

  25. Luis M., Moraga C.: Self—Similarity of Patterns in the context of Spectral Transforms. Proceedings of the 1st. International Conference on Signal Processing, 1223–1226, Beijing, P. R. China. International Academic Publishers, Beijing, (1990)

    Google Scholar 

  26. Mamdani E. H.: Application of Fuzzy Algorithms for the Control of a Dynamic Plant. Proceedings IEE 121, 1585–1588, (1974)

    Google Scholar 

  27. McCulloch W. S., Pitts W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematics and Biophysics 5, 115–133, (1943)

    Article  MATH  MathSciNet  Google Scholar 

  28. Miller D. M. (Ed): “Developments in Integrated Circuit Testing”. Academic Press, (1987)

  29. Moraga C., Poswig J.: Properties of the 2D Zhang—Hartley Transform. Proceedings of the 1st. International Conference on Signal Processing, 1203–1206, Beijing, P. R. China. International Academic Publishers, Beijing, (1990)

    Google Scholar 

  30. Moraga C.: On the Hilbert and Zhang—Hartley Transform on a Finite Abelian Group. Journal of China Institute of Communications 8, (3), 10–20, (1987)

    Google Scholar 

  31. Moraga C. (Ed.): “Theory and Applications of Spectral Techniques”. Forschungsbericht 268, Fachbereich Informatik, Universität Dortmund, ISSN 0933-6192, (1988)

  32. Moraga C.: Analysis of Mosaics by means of the Chrestenson and Zhang—Hartley Transforms. Proceedings 19th. International Symposium on Multiple-valued Logic, 421–427, Guangzhou, P. R. China, IEEE-CS-Press, (1989)

    Google Scholar 

  33. Moraga C., Seseke K.: The Chrestenson Transform in Pattern Analysis. In [Kar85] 143–178. Academic Press, (1985)

  34. Narendra, K. S., Parathasathy K.: Identification and Control of Dynamical Systems using Neural Networks. IEEE Transactions on Neural Networks 1 (1), 4–27, (1990)

    Article  Google Scholar 

  35. Rumelhart D. E., Hinton G. E., Williams R. J.: Learning Representations by Back—Propagating Errors. Nature, 323, 533–536, (1986)

    Article  Google Scholar 

  36. Rademacher H.: Einige Sätze über Reihen von allgemeinen Orthogonalfunkltionen. Math. Ann. 87, 112–138, (1922)

    Article  MathSciNet  Google Scholar 

  37. Reuter M.: Frequenzdifferenzspektren als “Preprocessing-verfahren” fürneuronale Netze und klassische, akustische Identifikatoren/Klassifikatoren. In: “Fuzzy Logik. Theory and Praxis” (B. Reusch, Hrsg.), Springer Verlag, Heidelberg, (1994)

    Google Scholar 

  38. Rosenblatt F.: The Perceptron: a probabilistc Model for information storage and organization in the brain. Psycology Review 65, 386–408, (1958)

    Article  MathSciNet  Google Scholar 

  39. Sanchez E., Bartolin R.: Fuzzy Inference and Medical Diagnosis, a Case Study. Biomedical Fuzzy Systems Bulletin, 1 (1) 4–21, (1990)

    Google Scholar 

  40. Tanese R.: Distributed genetic algorithms for function optimization. Dissertation, University of Michigan, (1989)

  41. Vergara V., Sinne S., Moraga C.: Optimal Identification using Feed—Forward neural networks. In “From Natural to Artificial neural Computation” (J. Mira. Ed.) LNCS 930, 1052–1059, (1995)

  42. Walsh J. L.: A closed set of orthogonal functions. American Jr. of Mathematics 45, 5–24, (1923)

    Article  Google Scholar 

  43. Wang Zhong-De: Fast Algorithms for the diecrete W—Transform and the DFT. IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-32, (4), 175–177, (1984)

    Google Scholar 

  44. Wang Zhong-De: Fast W—Transform. Science in China (A) 32, (3), 328–346, (1989)

    Google Scholar 

  45. Weigend A. S.: Predicting Sunspots and Exchange Rates with Connectionist Networks. In “SFI Studies in the Sciences of Complexity”, (M. Casdagli, S. Eubank Eds.), Addison Wesley, (1992)

  46. Whitehead B. A.: Scalar Wavelet networks for the time series prediction. Neural, Parallel & Scientific Computations 3, (2), 273–280, (1995)

    MATH  MathSciNet  Google Scholar 

  47. Wong F. S.: A 3D Neural Network for Business Forecasting. Proceedings 24th. Annual Hawaii International Conference on System Sciences. 113–123. IEEE-CS-Press, (1991)

  48. Xiao Guozhen: A Chrestenson—Transform approach to Error—Correcting Codes. Research Report. Dept. Applied Math., Institute for Information Security. Xidian University, Xi'an, P. R. China, (1990)

    Google Scholar 

  49. Xiao Guozhen, Moraga C.: Spectral Analysis of Correlation Immune Combining Functions. In [Mor88], 86–95, (1988)

  50. Yasunobu S., Miyamoto S.: Automatic Train Operation System by Predictive Fuzzy Control. In: “Industrial Applications of Fuzzy Control”, (M. Sugeno Ed.), Elsevier Science Publishers (North Holland), Amsterdam, (1985)

    Google Scholar 

  51. Zong-Kai Yang, Li-He Zou: A neural network approach to discrete orthogonal transforms. Proceedings st. Internat. Conf. on Signal Processing, 889–892, Beijing, (1990).

  52. Yuan Baozong (Ed.): Proceedings of the 1st. International Conference on Signal Processing, Beijing, P. R. China. International Academic Publishers, Beijing, (1990)

    Google Scholar 

  53. Zadeh L. A.: Fuzzy Sets. Information and Control 8, 338–353, (1965)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zadeh L. A.: Foreword of the Proceedings 2nd. International Conference on Fuzzy Logic and Neural Networks. XIII–XIV, Iizuka, Japan, (1992)

  55. Zhang Gongli: Two complete orthogonal sets of real multiple—valued functions. Proceedings 14th International Symposium on Multiple—valued Logic, 12–18. Winnipeg, Canada. IEEE-CS-Press, (1984)

    Google Scholar 

  56. Zhang Gongli: A generalization of the Ahmed and Rao generalized transform. Proceedings IEEE—Academia Sinica Workshop on ASSP, 33–36, (1986)

Download references

Author information

Authors and Affiliations

Authors

Additional information

A preliminary version of this work was presented at the 5th. International Workshop on Spectral techniques, Beijing, 1994. The author gladly acknowledges support received then from the Volkswagen Foundation, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraga, C. Spectral techniques and soft computing. Approx. Theory & its Appl. 14, 1–11 (1998). https://doi.org/10.1007/BF02856144

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02856144

Keywords

Navigation