Skip to main content
Log in

Irradiation and storage effects on some properties of potato starch and use of thermoluminescence for identification of irradiated tubers

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The effect on properties of starch isolated from Ajax and Diamant potatoes freshly harvested and irradiated immediately after harvest and after two weeks with 0.05, 0.10, 0.15, and 0.20 kGy were reported. Changes due to postirradiation storage up to six months at two different conditions (5 C, 90±2% RH and 20 C, 79±5% RH) were also studied. Swelling power (SP) slightly decreased or remained unchanged with different irradiation dose, but the effect of timing of irradiation after harvest was significant. Doses of 0.2 and 0.15 kGy significantly (p≤0.05) increased solubility, particularly at 90 C solubility temperature compared to lower doses. Decrease in viscosity with increasing dose immediately after irradiation was observed in both varieties but was more pronounced in Diamant. However, changes were dependent on variety, irradiation dose, timing of irradiation, and postirradiation storage conditions. Viscoamylograph test showed that 0.2 kGy significantly (p≤0.05) increased transmission temperature (TT) and temperature at maximum viscosity (TMV), but decreased the maximum viscosity immidiately after irradiation. The same trend was established during the post-irradiation storage time, particularly in Ajax starch, regardless of timing of irradiation or storage conditions. Thermoluminescence (TL) glow curves exhibited qualitative differences between irradiated and unirradiated tubers during the entire storage period, but dose estimation could not be determined.

Resumen

El efecto en propiedades de almidón aisladas de papas Ajax y Diamant recién cosechadas y irradiadas inmediatamente después de la cosecha y después de dos semanas con 0.05, 0.10, 0.15 y 0.20 de kGt fue reportado. Cambios debidos al almacenamiento posirradiación haste los seis meses en dos condiciones diferentes (5°C, 90±2% RH y 20°C, 79±5% RH) fueron estudiados también. El poder de abultamiento (SP) se desminuyó ligeramente, o no cambió, con diferentes dosis de irradiación, pero el efecto del momento de la irradiación después de la cosecha fue significante. Dosis de 0.2 y 0.15 de kGt aumentaron considerablemente (p<−0.05) la solubilidad, particularmente a 90°C temperatura de solubilidad en comparación con dosis menores. La diminución en viscosidad con dosis creciente inmediatamente después de la irradiación fue observada en ambas variedades, pero fue más manifiesta en Diamant. Sin embargo, los cambios dependían de la variedad, dosis de irradiación, el tiempo de la irradiación y las condiciones de almacenamiento posirradiaciónes. La prueba de viscoamilógrafo mostró que 0.2 de kGt aumentó considerablemente (p<−0.05) la transmisión de temperatura (TT) y la temperatura a viscosidad máxima (TMV), pero se disminuyó la viscosidad máxima inmediatamente después de la irradiación. La misma tendencia fue establecida durante el tiempo de almacenamiento posirradiación, particularmente en el almidón de Ajax sin que importare el tiempo de irradiación o las condiciones de almacenamiento. Las curvas de encendimiento de Termoluminiscencia (TL) mostraron diferencias cualitativas entre tubérculos irradiadas y no irradiadas durante todo el tiempo de almacenamiento, pero el cálculo de dosis no podía determinarse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • American Association of Cereal Chemists (AACC). 1983. Approved methods of AACC, 8th ed. St. Paul, MN.

  • Abd-Allah, M.A., Y.H. Foda, and R. El-Saadany. 1974. Effect of gamma rays on starch extracted from irradiated wheat flour. Stärke 26(3):89–93.

    Article  CAS  Google Scholar 

  • Bachman, S., S. Witkowski, and M. Pietka. 1987. Effect of60Co radiation on some chemical changes in potato starch pastes and gels. J Radioanal Nucl Chem Letters 118(3):185–191.

    Article  CAS  Google Scholar 

  • Badenhuizen, N.P. 1958. Structure, properties and growth of starch granules.In: Ruhland, W. (ed.), Encyl. plant physiology, 6:137–153.

  • Deschreider, A.R. 1960. Changes in starch and its degradation products after treatment of wheat with gamma rays. Staerke 12:187.

    Google Scholar 

  • Deshpande, S.S., S.K. Sathe, P.D. Rangnekar, and D.K. Salunkhe. 1982. Functional properties of modified black gram (Phaseolus mungo L.) starch. J Food Sci 47:1528–1533,1602.

    Article  CAS  Google Scholar 

  • Duarte, P.R. and J.H. Rupnow. 1994. Gamma irradiated dry bean (Phaseolus vulgaris) starch: physicochemical properties. J Food Sci 59(4):839–843.

    Article  CAS  Google Scholar 

  • El-Saadany, R.M.A., A. El-Fatah, A. El-Safti, and F.M. El-Saadany. 1974. Effect of gamma irradiation on Egyptian sweet Potato starch. Staerke 26(6): 190–192.

    Article  CAS  Google Scholar 

  • Farkas J., A. Koncz, and M. Krisztlanova. 1987. Preliminary studies on the feasibility of an identification of some irradiated dry ingredients by viscosimetric measurement. 18th Annual Meeting European Society of Nuclear Methods in Agriculture, Stara Zagora, Bulgaria, 30 August–4 September. Book of abstracts, p. 67.

  • Farkas J., M.M. Sharif, and A. Koncz. 1988. Further experiments on the detection of irradiation of dry food ingredients based on starch degradation. 19th Annual Meeting European Society of Nuclear Methods in Agriculture, Vienna Austria, 29 August–2 September. Book of abstracts, p. 78.

  • Farkas, J., A. Koncz, and M.M. Sharif. 1990a. Identification of irradiated dry ingredients on the basis of starch damage. Radiat Phys Chem 35:324–328.

    Google Scholar 

  • Farkas, J., M.M. Sharif, and A. Koncz. 1990b. Detection of some irradiated spices on the basis of radiation induced damage of starch. Radiat Phys Chem 36:621–627.

    CAS  Google Scholar 

  • Goksu-Ogelman, H.Y., D.F. Regulla, D.C.W. Sanderson, C. Slater, and K.J. Cairns. 1989. Detection of irradiated food. Nature 340:23–24.

    Article  Google Scholar 

  • Gonzalez, F.J. and C.M.A. Garcia. 1976. Identification of irradiated food 1. A test established on the “invitro” culture of potato buds to identify the irradiated tubers, JEN-332, 32.

  • Greenwood, C.T. and S. MacKenzie. 1963. The irradiation of starch. I. The properties of potato starch and its components after irradiation with high-energy electrons. Stärke. 15:444–448.

    Article  CAS  Google Scholar 

  • Hayashi, T. and D. Ehlermann. 1980. Identification of irradiated potatoes by means of electrical conductivity. Rept Natl Food Res Inst (Japan) 36:91–97.

    Google Scholar 

  • Hayashi, T. and K. Kawashima. 1981. Identification of irradiated potatoes by impedance measurements. Paper No. IAEA/SR-60/10, Seminar on Food Irradiation for Developing Countries in Asia and the Pacific, Tokyo.

  • Hayashi, T., M. Iwamoto, and K. Kawashima. 1982. Identification of Irradiated potatoes by impedance measurements. Agric Biol Chem 46:905–912.

    Google Scholar 

  • Hayashi, T., S. Todoriki, and K. Kohyama. 1993. Applicability of viscosity measuring method to the detection of irradiated spices. J Japan Soc Food Sci Technol 40(6):456–460.

    Google Scholar 

  • Hayashi, T., S. Todoriki, and K Kohyama. 1994. Effect of irradiation on pepper starch viscosity. J Food Sci 59:118–120.

    Article  CAS  Google Scholar 

  • Hayashi, T., S. Todoriki, H. Okadome, and K. Kohyama 1995. Conditions of viscosity measurement for detecting irradiated peppers. Radiat Phys Chem 45(4):665–669.

    Article  CAS  Google Scholar 

  • Heide, L. and KW. Böegl. 1990. Detection methods for irradiated foods: Luminescence and viscosity measurements. Int J Radiat Biol 57:201–219.

    Article  PubMed  CAS  Google Scholar 

  • Heide, I., E. Mohr, G. Wichmann, K.W. Böegl. 1988. Are viscosity measurements a suitable method for the identification of irradiated spices?In: Health impact, identification, and dosimetry of irradiated foods, Böegl, K.W., D.F. Regulla, and M.J. Suess (ed). Report of a WHO working Group on Health Impact and Control Methods of Irradiated Foods. Neuherberg/Munich, 17–21 November 1986, ISH-Heft 125, Report of the Federal Health Office, Institute for Radiation Hygiene Neuherberg, F.R.G.

    Google Scholar 

  • Heide, L., E. Nüernberger, and K.W. Böegl. 1990. Investigation on the detection of irradiated food by measuring the viscosity of suspended spices and dried vegetables. Radiat Phys Chem 36:613–619.

    CAS  Google Scholar 

  • Hoover, R., Y. Sailaja, and F.W. Sasulski. 1996. Characterization of starches from milk and long grain brown rice. Food Res Intr 29(2):99–107.

    Article  CAS  Google Scholar 

  • Jencie, S. and M. Samec. 1960. Hoppe-Seyler’s Z Physiol Chem 322,1.

  • Khan, H.M. and H. Delincée. 1995. Detection of irradiation treatment of dates using thermoluminescence of mineral contaminants. Radiat Phys Chem 46:717–720.

    Article  CAS  Google Scholar 

  • Korotchenko, K.A. and A.I. Semionov. 1966. Distribution and polymerization in corn starch under the action of60Co by gamma radiation. Izv Vyssh Ucheb Zaved Pishch Tekhnol 5:25.

    Google Scholar 

  • Leach, H.W., L.D. McCowen, and T.J. Schock, 1959. Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem 36:534–544.

    CAS  Google Scholar 

  • Lorenze, K., F. Collins, and K. Kulp, 1981. Sprouting of cereal grainseffects on starch characteristics. Stärke 336:183–187.

    Article  Google Scholar 

  • Luh, B.S., R.L. Roberts, and C.F. Li. 1980. In: Rice production and utilization, Huh, B.S. (ed.), pp. 566–589. AVI Pub. Co., Inc. Westport, CT.

    Google Scholar 

  • MacArthur, L.A. and B.L. D’Appolonia. 1984. Gamma radiation of wheat. n. Effects of low-dosage radiations on starch properties. Cereal Chem 6(4): 321–326.

    Google Scholar 

  • Mamoon, A. 1995. Thermoluminescence of irradiated milk powders. Appl Radiat Isot 46(6/7):733–734.

    Article  CAS  Google Scholar 

  • Mamoon, A., A.A Abdul-Fattah, and W.H. Abulfaraj. 1994. Thermoluminescence of irradiated herbs and spices. Radiat Phys Chem 44(l/2):203–206.

    Article  CAS  Google Scholar 

  • Ministry of Agriculture and Water. 1996. Agriculture statistical year book. volume 9. Department of Economics Studies and Statistics.

  • Mohr, E. and G. Wichmann. 1985. Viskositaets-erniedrigungen als Indiz fuer eine cobaltbestrahlung an Gewuerzen? Gordian 85:96.

    Google Scholar 

  • Pisanskü, A.P. and N.V. Romenskü. 1964. Vysshikh. Uchebn. Zavedeü, Pishchevaya Teknol. 6(49)-C.F.C.A. 62 (1965), 9338b.

  • Pruzinec, J. and O. Hola. 1987. Starch degradation by irradiation. J Radioanal Nuel Chem Letters 118:427–431.

    Article  CAS  Google Scholar 

  • Reuschl, H. and A. Guilbot. 1966. Der Einflu B von gammastrahlen auf kartoffelstarke in A bhangigkeit von irhrem Wassergehalt. Stärke 18:73.

    Article  CAS  Google Scholar 

  • Sanderson, D.C.W., C. Slater, and K.J. Cairns. 1989. Thermoluminescence of foods: Origins and implications for detecting irradiation. Radiat Phys Chem 34(6):915–924.

    Google Scholar 

  • Sandret, F., L. Michiels, and C. Berser. 1973. Irradiated potato tubers: Identification by layering and tissue culture.In: Identification of irradiated foods, Proc. Int. Colloquium, Karlsruhe, 217.

  • SAS Institute, Inc. 1985. SAS/STAT guide for personal computers, version 6 ed. SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Scherz, H. 1970. Conductivity measurements as a method for the differentiation between irradiated and non-irradiated potatoes.In: Colloquium on the Identification of Irradiated Potatoes. Luxemberg. 13.

  • Scherz, H. 1973. The identification of irradiated potatoes by electrical conductivity.In: The Identification of Irradiated Food Stuffs. International Colloquium, Karlsruhe, 193.

  • Schreiber, G.A., B. Ziegelwann, G. Guitzsch, N. Helle, and K.W. Böegl. 1993. Luminescence techniques to identify the treatment of food by ionizing radiation. Food Structure 12:385–396.

    CAS  Google Scholar 

  • Shirsat, S.G. and H. Penner. 1973. Studies on the identification of irradiated potatoes. Part 4. Effect of X-rays on the synthesis of phenylalanine ammonia lyase in potatoes. Z Lebensm Untersuch Forsch 151:167.

    Article  CAS  Google Scholar 

  • Steel, R.G.D. and J.H. Torrie. 1980. Principles and procedures of statistics, 2nd ed. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Thomas, P. 1984. Radiation preservation of foods of plant origion. Part I. Potatoes and other tuber crops. Critical Reviews in Food Science and Nutrition 19:327–379.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, P., A.N. Srirangrajan, S.R. Padwal-Desai, A.S. Ghanekar, S.G. Shirsat, M.B. Pendharaka, P.M. Nair, and G.B. Nadkarni. 1978. Feasibility of radiation processing for post-harvest storage of potatoes under tropical conditions.In: Food preservation by irradiation 1. International Atomic Energy Agency. Vienna

    Google Scholar 

  • Traubenberg, S.E., K Korotchenko, and I.N. Putilova. 1965. Effect of high doses of60Co and rays on potato starch. Izv Vyssh Uchebn Zaved Pishch Tekhnol 6:24.

    Google Scholar 

  • Van Dongen, R., D. Onderdelinden, and L. Strackee. 1973. Additional measurements of conductivity char in potatoes induced by ionizing radiation.In: Identification of irradiated foods, Proc. Int. Colloquium, Karlsruhe. 217.

  • Wiesenborn, D.P., P.H. Orr, H.H. Casper, and B.K. Tacke, 1994. Potato starch part behavior as related to some physical/chemical properties. J Food Sci 59(3):644–648.

    Article  CAS  Google Scholar 

  • Winchester, R.V. and H.C.L. Roux. 1976. A possible chemical method for the detection of irradiated potatoes. Chem Mikrobiol Technol Lebensm 4(6):170–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Al-Kahtani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Kahtani, H.A., Abu-Tarboush, H.M., Abou-Arab, A.A. et al. Irradiation and storage effects on some properties of potato starch and use of thermoluminescence for identification of irradiated tubers. Am. J. Pot Res 77, 245–259 (2000). https://doi.org/10.1007/BF02855793

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02855793

Additional Key Words

Navigation