Skip to main content
Log in

Ecophysiological responses and carbon distribution ofPinus koraiensis seedlings to elevated carbon dioxide

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazzaz, F.A. 1990. Response of natural ecosystems to the rising global CO2 levels [J]. Annu. Rev. Ecol. Syst.,21: 167–196.

    Article  Google Scholar 

  • Chomba B.M., Guy, R.D. & Weger, H.G. 1993. Carbohydrate reserve accumulation and depletion in Engelmann spruce (Picea engelmannii Parry): effects of cold storage and pre-storage CO2 enrichment [J]. Tree Physiol.,13: 351–364.

    PubMed  CAS  Google Scholar 

  • Conroy, J.P. 1992. Influence of elevated atmospheric CO2 concentration on plant nutrition [J]. Aust. J. Bot.40: 445–456.

    CAS  Google Scholar 

  • Dyson, F. 1992. From Eros to Gaia [M]. Pantheon Books, New York.

    Google Scholar 

  • Eamus, D. & Jarvis, P.G. 1989. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests [J]. Adv. Ecol. Res.,19: 1–55.

    Google Scholar 

  • Eamus, D., C.A. Berryman & G.A. Duff. 1993. Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO2 ofMaranthes corymbosa, a tropical monsoon rain forest species [J]. Aust. J. Plant Physiol.,20: 741–755.

    Article  CAS  Google Scholar 

  • Evan, H. Delucia, Thomas, W. Sasek & Boyd, R. Strain. 1985. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide [J]. Photosynthesis Research,7: 175–184.

    Article  Google Scholar 

  • Houghton, J.T., Callender, B.A., & Varney, S.K. 1992. Intergovernmental panel for climate change [R]. The supplementary report to the IPCC scientific assessment, Cambridge University Press, U.K., pp 1–200.

    Google Scholar 

  • Hugo, H. Rogers, G. Brett, Runion & Sagar, V. Krupa. 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere [J]. Environmental Pollution,83: 155–189.

    Article  Google Scholar 

  • Idso, S.B., Kimball, B.A. & Mauney, J.R. 1988. Effects of atmospheric CO2 enrichment on root:shoot ratios of carrot, radish, cotton and soybean [J]. Agric. Ecosyst. Environ.,21: 293–299.

    Article  Google Scholar 

  • Imai, K. Coleman, D.F. & Yanagisawa, T. 1985. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.) [J]. Jap. J. Crop Sci.,54: 413–418.

    CAS  Google Scholar 

  • Jarvis, P.G. 1993. Global change and plant water relations [C]. In: (eds Borghetti. M.J.Grace, & A. Raschi) Water transport in plant under climatic stress. pp. 1–13. Cambridge University Press.

  • Kimball, B.A., J.R. Mauney, F.S. Nakayama & S.B. Idso. 1993. Effects of increasing atmospheric CO2 on vegetation [J]. Vegetation,104/105: 65–75.

    Article  Google Scholar 

  • Lemon, E.R. 1983. CO2 and Plants. AAAS Selected Symposium [M]. Westview Press, Boulder, CO, USA.

    Google Scholar 

  • Mauney, J.R., Guinn, G., Fry K.E. & Hesketh, J.D. 1979. Correlation of photosynthetic carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower and sorghum [J]. Photosynthetica,13: 260–266.

    Google Scholar 

  • Norby, R.J., Gunderson, C.A., Wullschleger, S.D., O'neill, E.G. & Mccracken, M.K. 1992. Productivity and compensatory responses of yellow-poplar trees in elevated CO2. Nature,357: 322–334.

    Article  Google Scholar 

  • Park, S. Nobel, Hehui Zhang, Rasoul Sharifi, Miguel Castaneda & Barry Greenhouse. 1998. Leaf expansion, net CO2 uptake, Rubisco activity, and efficiency of long-term biomass gain for the common desert subshrub [J] Encelia farinosa.,56: 67–73.

    Google Scholar 

  • Richard J. Norby. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide [J]. Plant and Soil,165: 9–20.

    Article  CAS  Google Scholar 

  • Rogers, H.H., Bingham, G.E., Cure, J.D., Smith, J.M. & Surano, K.A. 1983. Responses of selected plant species to elevated carbon dioxide in the field [J]. J. Environ. Qua.,12: 569–574.

    Article  CAS  Google Scholar 

  • Sage, R.F. 1994. Acclimation of photosynthesis to increasing CO2: the gas exchange perspective [J]. Photosynth. Res.,39: 351–368.

    Article  CAS  Google Scholar 

  • Sage, R.F., T.D. Sharkey & J.R. Seeman. 1989. Acclimation of photosynthesis to elevated CO2 in five C3 species [J]. Plant Physiol.,89: 590–596.

    Article  PubMed  CAS  Google Scholar 

  • Shanghai Institute of Plant Physiology 1985. Experimental handbook on plant physiology [M]. Shanghai Science and Technology Press, pp340.

  • Stitt, M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells [J]. Plant Cell Environ.,14: 741–762.

    Article  CAS  Google Scholar 

  • Tnsa, P.P., I.Y. Ting & T. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget.[J] Science,247: 1431–1438.

    Article  Google Scholar 

  • Wittwer, S.H. 1978. Carbon dioxide fertilization of crop plants [C]. In: Problems in Crop Physiology, (ed. U.S. Gupta. Haryana Agric. Univ.), Hissar, India, pp. 310–333.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Foundation Item: This paper was supported by Chinese Academy of Sciences.

Biography: HAN Shi-jie (1956-), male, Ph. Doctor, Professor in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences.

Responsible editor: Chai Ruihai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi-jie, H., Yu-mei, Z., Chen-rui, W. et al. Ecophysiological responses and carbon distribution ofPinus koraiensis seedlings to elevated carbon dioxide. Journal of Forestry Research 11, 149–155 (2000). https://doi.org/10.1007/BF02855515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02855515

Key words

CLC number

Document code

Article ID

Navigation