Skip to main content
Log in

The effect of climate change on global potato production

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The effect of climate change on global potato production was assessed. Potential yields were calculated with a simulation model and a grid with monthly climate data for current (1961–1990) and projected (2010–2039 and 2040–2069) conditions. The results were mapped and summarized for countries. Between 1961–1990 and 2040–2069 the global (terrestrial excluding Antarctica) average temperature is predicted to increase between 2.1 and 3.2 C, depending on the climate scenario. The temperature increase is smaller when changes are weighted by the potato area and particularly when adaptation of planting time and cultivars is considered (a predicted temperature increase between 1 and 1.4 C). For this period, global potential potato yield decreases by 18% to 32% (without adaptation) and by 9% to 18% (with adaptation). At high latitudes, global warming will likely lead to changes in the time of planting, the use of later-maturing cultivars, and a shift of the location of potato production. In many of these regions, changes in potato yield are likely to be relatively small, and sometimes positive. Shifting planting time or location is less feasible at lower latitudes, and in these regions global warming could have a strong negative effect on potato production. It is shown that heat-tolerant potato cultivars could be used to mitigate effects of global warming in (sub)tropical regions.

Resumen

Se estudió el efecto del cambio climático en la producción global de la patata. Los rendimientos potenciales fueron calculados con un modelo de simulación y una rejilla con datos mensuales de clima para las condiciones actuates (1961–1990) y proyectadas (2010–2039 y 2040–2069). Los resultados fueron presentados en mapas y resumidos por paises. Se predice que entre 1961–1990 y 2040–2069 la temperatura media global (en áreas terrestres excepto la Antártica) aumentará entre 2.1 y 3.2 C, dependiendo del escenario climático. El aumento de la temperatura es más pequeño cuando los cambios son ponderados con el área del cultivo de la patata y particularmente cuando se considera la adaptación de la época de siembra y de los cultivares (se predice un aumento de la temperatura entre 1 y 1.4 C). En este período, la producción potencial global de la patata disminuye de 18% al 32% (sin adaptación) y de 9% al 18% (con adaptación). En latitudes mayores, el calentamiento global podría conducir a cambios en la época de siembra, el uso de cultivares más tardíos, y cambio de los lugares donde se produce patata. En muchas de estas regiones, los cambios en la producción de la patata serían relativamente pequeños, y a veces positivo Los cambios en la época de siembra o de los lugares de producción son menos factibles en latitudes más bajas, en estas regiones el calentamiento global podría tener un fuerte efecto negativo en la producción de la patata. Se muestra que se podrian utilizar cultivares con tolerancia al calor para atenuar el efecto del calentamiento global en regiones (sub)tropicales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Carter TR, RA Saarikko, and KJ Niemi. 1996. Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agr Food Sci Finland 5:329–350.

    Google Scholar 

  • Davies A, T Jenkins, A Pike, J Shaq, I Carson, CJ Pollock, and MI Parry. 1996. Modelling the predicted geographic and economic response of UK cropping systems to climate change scenarios: the case of potatoes. Aspects Appl Biol 45:63–69.

    Google Scholar 

  • De Temmerman L, M Bindi, J Craigon, A Fangmeier, A Hacour, H Pleijel, K Vandermeiren, V Vorne, and J Wolf. 2000. Changing Climate and Potential Impacts on Potato Yield and Quality. Veterinary and Agrochemical Research Centre, Tervuren, Belgium.

    Google Scholar 

  • Ewing EE, and PC Struik. 1992. Tuber formation in potato: induction, initiation and growth. Hort Rev 14:89–198.

    Google Scholar 

  • Haverkort AJ. 1990. Ecology of potato cropping systems in relation to latitude and altitude. Agr Syst 32:251–272.

    Article  Google Scholar 

  • Hijmans RJ. 2001. Global distribution of the potato crop. Am J Potato Res 78:403–412.

    Article  Google Scholar 

  • Hijmans RJ, B Condori, R Carillo, and MJ Kropff. 2003. A quantitative and constraint-specific method to assess the potential impact of new agricultural technology: the case of frost resistant potato for the Altiplano (Peru and Bolivia). Agr Syst. 76: 8g5-g11.

    Article  Google Scholar 

  • Houghton JT, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, D Xiaosu, K Maskell, and CA Johnson (eds). 2001. Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Intergovernmental Panel on Climate Change Data Distribution Center. 1999. Providing climate change and related scenarios for impact assessment. CD-ROM. Version 1.0. Climate Research Unit, University of East Anglia, Norwich, UK.

    Google Scholar 

  • Jeffree CE, and EP Jeffree. 1996. Redistribution of the potential geographical ranges of mistletoe and Colorado beetle in Europe in response to the temperature component of climate change. Funct Ecol 10(5): 562–577.

    Article  Google Scholar 

  • Khanna ML. 1966. Breeding potato cultivars tolerant to higher thermoperiods. Current Sci 35(6): 143–144.

    Google Scholar 

  • Kaukoranta T. 1996. Impact of global warming on potato late blight: Risk, yield loss and control. Agr Food Sci Finland 5:311–327.

    Google Scholar 

  • Kooman PL. 1995. Yielding ability of potato crops as influenced by temperature and daylenght. PhD thesis, Wageningen Agricultural University. Wageningen, Netherlands.

    Google Scholar 

  • Kooman PL, and AJ Haverkort. 1995. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO.In: AJ Haverkort and DKL MacKerron (eds), Potato Ecology and Modeling of Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, Netherlands. pp. 41–60.

    Google Scholar 

  • Leemans R, and AM Solomon. 1993. Modeling the potential change in yield and distribution of the Earth’s crops under a warmed climate. Climate Res 3:79–96.

    Article  Google Scholar 

  • Levy D. 1984. CultivatedSolanum tuberosum L. as a source for the selection of cultivars adapted to hot climates. Trop Agr 61(3): 167–170.

    Google Scholar 

  • McCarthy JJ, OF Canziani, NA Leary, DJ Dokken, and KS White, 2001. Climate Change 2001. Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Miglietta F, V Magliulo, M Bindi, L Cerio, FP Vaccari, V Loduca, and A Peressotti. 1998. Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biol 4:163–172.

    Article  Google Scholar 

  • New M, M Huhne, and P Jones. 1999. Representing twentieth-century space-time climate variability. Part I: development of a 1961–1990 mean monthly terrestrial climatology. J Climate 12:829–856

    Article  Google Scholar 

  • Nonhebel S. 1993. The importance of weather data in crop growth simulation models and assessment of climatic change effects. Ph.D. thesis, Wageningen Agricultural University, Wageningen, Netherlands.

    Google Scholar 

  • Peiris DR, JW Crawford, C Grashoff, RA Jefferies, JR Porter, and B Marshall. 1996. A simulation study of crop growth and development under climate change. Agr For Meteorol 79:271–287.

    Article  Google Scholar 

  • Reynolds MP, and EE Ewing. 1989a. Effects of high air and soil temperature stress on growth and tuberization inSolanum tuberosum. Ann Bot 64(3): 241–247.

    Google Scholar 

  • Reynolds MP, and EE Ewing. 1989b. Heat tolerance in tuber bearingSolanum species: A protocol for screening. Am Potato J 66(2): 63–74.

    Google Scholar 

  • Rosenzweig C, and D Hillel. 1998. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture. Oxford University Press, New York.

    Google Scholar 

  • Rosenzweig C, and D Liverman. 1992. Predicted effects of climate change on agriculture: A comparison of temperate and tropical regions.In: SK Majumdar (ed), Global Climate Change: Implications, Challenges, and Mitigation Measures. The Pennsylvania Academy of Sciences, Philadelphia. pp. 342–61.

    Google Scholar 

  • Rosenzweig C, and ML Parry. 1994. Potential impact of climate change on world food supply. Nature 367:133–138.

    Article  Google Scholar 

  • Rosenzweig C, J Phillips, R Goldberg, J Carroll, and T Hodges. 1996. Potential impacts of climate change on citrus and potato production in the US. Agr Syst 52(4): 455–479.

    Article  Google Scholar 

  • Scott GJ, MW Rosegrant, and C Ringler. 2000. Global projections for root and tuber crops to the year 2020. Food Policy 25(5): 561–597.

    Article  Google Scholar 

  • Stol W, GHJ de Koning, AJ Haverkort, PL Kooman, H van Keulen, and FWT Penning de Vries. 1991. Agro-ecological characterization for potato production. A simulation study at the request of the International Potato Center (CIP), Lima, Peru. CABO-DLO, Report 155.

    Google Scholar 

  • Tai GCC, D Levy, and WK Coleman. 1994. Path analysis of genotypeenvironment interactons of potatoes exposed to increasing warm-climate constraints. Euphytica 75(1–2): 49–61.

    Article  Google Scholar 

  • Van der Zaag P, and AL Demagante. 1988. Potato (Solanum spp.) in an isohyperthermic environment. 3: Evaluation of clones. Field Crops Res 19:167–181.

    Article  Google Scholar 

  • Van Keulen H, and W Stol, W. 1995. Agro-ecological zonation for potato production.In: AJ Haverkort and DJL MacKerron (eds), Potato Ecology and Modeling of Crops under Conditions Limiting Growth. Kluwer Academic Publishers, Dordrecht, Netherlands. pp. 357–372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Hijmans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hijmans, R.J. The effect of climate change on global potato production. Am. J. Pot Res 80, 271–279 (2003). https://doi.org/10.1007/BF02855363

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02855363

Additional Key Words

Navigation