Skip to main content
Log in

Cell-permeable, mitochondrial-targeted, peptide antioxidants

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Cellular oxidative injury has been implicated in aging and a wide array of clinical disorders including ischemia-reperfusion injury; neurodegenerative diseases; diabetes; inflammatory diseases such as atherosclerosis, arthritis, and hepatitis; and drug-induced toxicity. However, available antioxidants have not proven to be particularly effective against many of these disorders. A possibility is that some of the antioxidants do not reach the relevant sites of free radical generation, especially if mitochondria are the primary source of reactive oxygen species (ROS). The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation. Their antioxidant action can be attributed to the tyrosine or dimethyltyrosine residue. By reducing mitochondrial ROS, these peptides inhibit mitochondrial permeability transition and cytochromec release, thus preventing oxidant-induced cell death. Because these peptides concentrate >1000-fold in the inner mitochondrial membrane, they prevent oxidative cell death with EC50 in the nM range. Preclinical studies support their potential use for ischemia-reperfusion injury and neurodegenerative disorders. Although peptides have often been considered to be poor drug candidates, these small peptides have excellent “druggable” properties, making promising agents for many diseases with unment needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turrens JF. Superoxide production by the mitochondrial respiratory chain.Biosci Rep. 1997;17:3–8.

    Article  CAS  PubMed  Google Scholar 

  2. Petrosillo G, Ruggiero FM, Pistolese M Paradies G. Reactive oxygen species generated from the mitochondrial electron transport chain induce, cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation: possible role in the apoptosis.FEBS Lett. 2001;509:435–438.

    Article  CAS  PubMed  Google Scholar 

  3. Petrosillo G, Ruggiero FM, Paradies G. Role of reactive oxygen species and cardiolipin, in the release, of cytochrome c from mitochondria.FASEB J. 2003;17:2202–2208.

    Article  CAS  PubMed  Google Scholar 

  4. Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation.Biochem Biophys Res Commun. 1999;264:343–347.

    Article  CAS  PubMed  Google Scholar 

  5. Vieira HL, Belzacq AS, Haouzi D, et al. The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal.Oncogene. 2001;20:4305–4316.

    Article  CAS  PubMed  Google Scholar 

  6. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process.Proc Natl Acad Sci USA. 2002;99:1259–1263.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c.Cell. 1996;86:147–157.

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates and apoptotic protease cascade.Cell 1997;91:479–489.

    Article  CAS  PubMed  Google Scholar 

  9. Halliwell B. The antioxidant paradox.Lancet. 2000;355:1179–1180.

    Article  CAS  PubMed  Google Scholar 

  10. Patterson C, Madamanchi NR, Runge MS. The oxidative paradox: another piece in the puzzle.Circ Res. 2000;87:1074–1076.

    CAS  PubMed  Google Scholar 

  11. Flaherty JT, Pitt B, Gruber JW, et al. Recombinant human superoxide dismutase (h-SOD) fails to improve receovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction.Circulation. 1994;89:1982–1991.

    CAS  PubMed  Google Scholar 

  12. Maiorino M, Zamburlini A, Roveri A, Ursini F. Prooxidant role of vitamin E in copper induced lipid peroxidation.FEBS Lett. 1993;330:174–176.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine.Adv Drug Deliv Rev. 2000;41:235–250.

    Article  CAS  PubMed  Google Scholar 

  14. Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria.Eur J Biochem. 1999;263:709–716.

    Article  CAS  PubMed  Google Scholar 

  15. Kelso GF, Porteous CM, Coulter CV, et al. Selective, targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic propertiesJ Biol Chem. 2001;276:4588–4596.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling., oxidative cell death, and reperfusion injury.J Biol Chem. 2004;279:34682–34690.

    Article  CAS  PubMed  Google Scholar 

  17. Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.Biochem. J. 2004;381:241–248.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3_ net charge opioid tetrapeptide.J Pharmacol Exp Ther. 2003;304:425–432.

    Article  CAS  PubMed  Google Scholar 

  19. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides.J Biol Chem. 2003;278:31192–31201.

    Article  CAS  PubMed  Google Scholar 

  20. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent.J Biol Chem. 1996;271:18188–18193.

    Article  CAS  PubMed  Google Scholar 

  21. Haidara K, Morel I, Abalea V, Gascon BM, Denizeau F. Mechanism of tert-butylhydroperoxide-induced apoptosis in rat hepatocytes: involvement of mitochondria and endoplasmic reticulum.Biochim Biophys Acta 2002;1542:173–185.

    Article  CAS  PubMed  Google Scholar 

  22. Piret JP, Arnould T, Fuks B, Chatelain P, Remacle J, Michiels C. Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells.Biochem Pharmacol. 2004;67:611–620.

    Article  CAS  PubMed  Google Scholar 

  23. Byrne AM, Lemasters JJ, Nieminen AL. Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes.Hepatology. 1999;29:1523–1531.

    Article  CAS  PubMed  Google Scholar 

  24. Nieminen AL, Byrne AM, Herman B, Lemasters JJ. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species.Am J Physiol. 1997;272:C1286-C1294.

    CAS  PubMed  Google Scholar 

  25. Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants.FASEB J. 2003;17:1972–1974.

    CAS  PubMed  Google Scholar 

  26. Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY. Differential effects of superoxide dismutase isoform expression on hydroperoxide-induced apoptosis in PC-12 cells.J Biol Chem. 2003;278:13294–13301.

    Article  CAS  PubMed  Google Scholar 

  27. Batandier C, Leverve X, Fontaine E. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I.J Biol Chem. 2004;279:17197–17204.

    Article  CAS  PubMed  Google Scholar 

  28. Przyklenk K. Pharmacologic treatment of the stunned myocardium: the concepts and the challenges.Coron Artery Dis. 2001;12:263–369.

    Article  Google Scholar 

  29. Wu D, Soong Y, Zhao GM, Szeto HH. A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning.Am J Physiol Heart Circ Physiol. 2002;283:H783-H791.

    CAS  PubMed  Google Scholar 

  30. Song W, Shin J, Lee J, et al. A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats.Coron Artery Dis. 2005;16:407–410.

    Article  PubMed  Google Scholar 

  31. Zhao GM, Wu D, Soong Y, et al. Profound spinal tolerance after repeated exposure to a highly selective mu-opioid peptide agonist: role of delta-opioid receptors.J Pharmacol Exp Ther. 2002;302:188–196.

    Article  CAS  PubMed  Google Scholar 

  32. Szeto HH, Lovelace JL, Fridland G, et al. In vivo pharmacokinetics of selective mu-opioid peptide agonists.J Pharmacol Exp Ther. 2001;298:57–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel H. Szeto.

Additional information

Published: April 21, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeto, H.H. Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8, 32 (2006). https://doi.org/10.1007/BF02854898

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854898

Keywords

Navigation