Skip to main content
Log in

Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Quantification of target site pharmacokinetics (PK) is crucial for drug discovery and development. Clinical micro-dialysis (MD) has increasingly been employed for the description of drug distribution and receptor phase PK of the unbound fraction of various analytes. Costs for MD experiments are comparably low and given suitable analytics, target tissue PK of virtually any drug molecule can be quantified. The major limitation of MD stems from the fact that organs such as brain, lung or liver are not readily accessible without surgery. Recently, non-invasive imaging techniques, i.e. positron emission tomography (PET) or magnetic resonance spectroscopy (MRS), have become available for in vivo drug distribution assessment and allow for drug concentration measurements in practically every human organ. Spatial resolution of MRS imaging, however, is low and although PET enables monitoring of regional drug concentration differences with a spatial resolution of a few millimetres, discrimination between bound and unbound drug or parent compound and metabolite is difficult. Radiotracer development is furthermore time and labour intensive and requires special expertise and radiation exposure and costs originating from running a PET facility cannot be neglected. The recent complementary use of MD and imaging has permitted to exploit individual strengths of these diverse techniques. In conclusion, MD and imaging techniques have provided drug distribution data that have so far not been available. Used alone or in combination, these methods may potentially play an important role in future drug research and development with the potential to serve as translational tools for clinical decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans WE, Relling MV. Moving towards individualized medicine with pharmacogenomics.Nature. 2004;429:464–468.

    Article  PubMed  CAS  Google Scholar 

  2. Rowland M, Tozer TN. Concentration Monitoring. In: Balado D, Klass F, Stead L, Forsyth L, Magee RD, eds.Clinical Pharmacokinetics: Concepts and Applications. 3rd ed. Baltimore, MD: Lippincott, Williams & Wilkins; 1995:290–309.

    Google Scholar 

  3. Müller M, dela Pena A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue.Antimicrob Agents Chemother. 2004;48:1441–1453.

    Article  PubMed  CAS  Google Scholar 

  4. Müller M, Mader RM, Steiner B, et al. 5-Fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients.Cancer Res. 1997;57:2598–2601.

    PubMed  Google Scholar 

  5. Presant CA, Wolf W, Waluch V, et al. Association of intratumoral pharmacokinetics of fluorouracil with clinical respouse.Lancet. 1994;343:1184–1187.

    Article  PubMed  CAS  Google Scholar 

  6. Eichler HG, Müller M. Drug distribution: the forgotten relative in clinical pharmacokinetics.Clin Pharmacokinet. 1998;34:95–109.

    Article  PubMed  CAS  Google Scholar 

  7. Elmquist WF, Sawchuk RJ. Application of microdialysis in pharmacokinetic studies.Pharm Res. 1997;14:267–288.

    Article  PubMed  CAS  Google Scholar 

  8. Müller M. Microdialysis in clinical drug delivery studies.Adv Drug Deliv Rev. 2000;45:255–269.

    Article  PubMed  Google Scholar 

  9. Joukhadar C, Müller M. Microdialysis: current applications in clinical pharmacokinetic studies and its potential role in the future.Clin Pharmacokinet. 2005;44:895–913.

    Article  PubMed  CAS  Google Scholar 

  10. Jynge P, Skjetne T, Gribbestad I, et al. In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans.Clin Pharmacol Ther. 1990;48:481–489.

    Article  PubMed  CAS  Google Scholar 

  11. Port RE, Wolf W. Noninvasive methods to study drug distribution.Invest New Drugs. 2003;21:157–168.

    Article  PubMed  CAS  Google Scholar 

  12. Langer O, Müller M. Methods to assess tissue-specific distribution and metabolism of drugs.Curr Drug Metab. 2004;5:463–481.

    Article  PubMed  CAS  Google Scholar 

  13. Fischman AJ, Livni E, Babich J, et al. Pharmacokinetics of [18F]fleroxacin in healthy human subjects studies by using positron emission tomography.Antimicrob Agents Chemother. 1993;37:2144–2152.

    PubMed  CAS  Google Scholar 

  14. Fischman AJ, Alpert NM, Rubin RH. Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action.Clin Pharmacokinet. 2002;41:581–602.

    Article  PubMed  CAS  Google Scholar 

  15. FDA/Center for Drug Evaluation and Research. Food and Drug Administration Web site. Available at: http://www.fda.gov/cder/present/anti-infective798/073198.pdf. Accessed October 4, 2005.

  16. FDA/Center for Drug Evaluation and Research. Food and Drug Administration Web site. Available at: http://www.fda.gov/cder/guidance/2580dft.pdf. Accessed October 4, 2005.

  17. Stahle L, Arner P, Ungerstedt U. Drug distribution studies with microdialysis. III. Extracellular concentration of caffeine in adipose tissue in man.Life Sci. 1991;49:1853–1858.

    Article  PubMed  CAS  Google Scholar 

  18. Ungerstedt U, Rostami E. Microdialysis in neurointensive care.Curr Pharm Des. 2004;10:2145–2152.

    Article  PubMed  CAS  Google Scholar 

  19. Pickup JC, Hussain F, Evans ND, Sachedina N. In vivo glucose monitoring: the clinical reality and the promise.Biosens Bioelectron. 2005;20:1897–1902.

    Article  PubMed  CAS  Google Scholar 

  20. de la Pena A, Liu P, Derendorf H. Microdialysis in peripheral tissues.Adv Drug Deliv Rev. 2000;45:189–216.

    Article  PubMed  Google Scholar 

  21. Hamrin K, Henriksson J. Local effect of vanadate on interstitial glucose and lactate concentrations in human skeletal muscle.Life Sci. 2005;76:2329–2338.

    Article  PubMed  CAS  Google Scholar 

  22. Ekstrom PO, Andersen A, Saeter G, Giercksky KE, Slordal L. Continuous intratumoral microdialysis during high-dose methotrexate therapy in a patient with malignant fibrous histiocytoma of the femur: a case report.Cancer Chemother Pharmacol. 1997;39:267–272.

    PubMed  CAS  Google Scholar 

  23. Joukhadar C, Derendorf H, Müller M. Microdialysis: a novel tool for clinical studies of anti-infective agents.Eur J Clin Pharmacol. 2001;57:211–219.

    Article  PubMed  CAS  Google Scholar 

  24. Brunner M, Müller M. Microdialysis: an in vivo approach for measuring drug delivery in oncology.Eur J Clin Pharmacol. 2002;58:227–234.

    Article  PubMed  CAS  Google Scholar 

  25. Delacher S, Derendorf H, Hollenstein U, et al. A combined in vivo pharmacokinetic-in vitro pharmacodynamic approach to simulate target site pharmacodynamics of antibiotics in humans.J Antimicrob Chemother. 2000;46:733–739.

    Article  PubMed  CAS  Google Scholar 

  26. Bur A, Joukhadar C, Klein N, et al. Effect of exercise on transdermal nicotine release in healthy habitual smokers.Int J Clin Pharmacol Ther. 2005;43:239–243.

    PubMed  CAS  Google Scholar 

  27. Alfredson H, Lorentzon R. Intratendinous glutamate levels and eccentric training in chronic Achilles tendinosis: a prospective study using microdialysis technique.Knee Surg Sports Traumatol Arthrosc. 2003;11:196–199.

    Article  PubMed  Google Scholar 

  28. Tegeder I, Brautigam L, Seegel M, et al. Cisplatin tumor concentrations after intra-arterial cisplatin infusion or embolization in patients with oral cancer.Clin Pharmacol Ther. 2003;73:417–426.

    Article  PubMed  CAS  Google Scholar 

  29. Mader RM, Schrolnberger C, Rizovski B, et al. Penetration of capecitabine and its metabolites into malignant and healthy tissues of patients with advanced breast cancer.Br J Cancer. 2003;88:782–787.

    Article  PubMed  CAS  Google Scholar 

  30. Bergenheim AT, Capala J, Roslin M, Henriksson R. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study.J Neurooncol. 2005;71:287–293.

    Article  PubMed  CAS  Google Scholar 

  31. Chang YL, Tsai PL, Chou YC, Tien JH, Tsai TH. Simultaneous determinatin of nicotine and its metabolite, cotinine, in rat blood and brain tissue using microdialysis coupled with liquid chromatography: pharmacokinetic application.J Chromatogr A. 2005;1088:152–157.

    Article  PubMed  CAS  Google Scholar 

  32. Engstrom M, Polito A, Reinstrup P, et al. Intracerebral microdialysis in severe brain trauma: the importance of catheter location.J Neurosurg. 2005;102:460–469.

    Article  PubMed  Google Scholar 

  33. Ederoth P, Tunblad K, Bouw R, et al. Blood-brain barrier transport of morphine in patients with severe brain trauma.Br J Clin Pharmacol. 2004;57:427–435.

    Article  PubMed  CAS  Google Scholar 

  34. Herkner H, Muller MR, Kreischitz N, et al. Closed-chest microdialysis to measure antibiotic penetration into human lung tissue.Am J Respir Crit Care Med. 2002;165:273–276.

    PubMed  Google Scholar 

  35. Tomaselli F, Maier A, Matzi V, Smolle-Juttner FM, Dittrich P. Penetration of meropenem into pneumonic human lung tissue as measured by in vivo microdialysis.Antimicrob Agents Chemother. 2004;48:2228–2232.

    Article  PubMed  CAS  Google Scholar 

  36. Thorsen K, Kristoffersson AO, Lerner UH, Lorentzon RP. In situ microdialysis in bone tissue: stimulation of prostaglandin E2 release by weight-bearing mechanical loading.J Clin Invest. 1996;98:2446–2449.

    Article  PubMed  CAS  Google Scholar 

  37. Bahlmann L, Misfeld M, Klaus S, et al. Myocardial redox state during coronary artery bypass grafting assessed with microdialysis.Intensive Care Med. 2004;30:889–894.

    Article  PubMed  Google Scholar 

  38. Nowak G, Ungerstedt J, Wernerman J, Ungerstedt U, Ericzon BG. Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation.Br J Surg. 2002;89:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  39. Jansson K, Jansson M, Andersson M, Magnuson A, Ungerstedt U, Norgren L. Normal values and differences between intraperitoneal and subcutaneous microdialysis in patients after non-complicated gastrointestinal surgery.Scand J Clin Lab Invest. 2005;65:273–281.

    Article  PubMed  CAS  Google Scholar 

  40. Plock N, Kloft C. Microdialysis: theoretical background and recent implementation in applied life-sciences.Eur J Pharm Sci. 2005;25:1–24.

    Article  PubMed  CAS  Google Scholar 

  41. Kreilgaard M. Assessment of cutaneous drug delivery using microdialysis.Adv Drug Deliv Rev. 2002;54:S99-S121.

    Article  PubMed  CAS  Google Scholar 

  42. Müller M. Science, medicine, and the future: microdialysis.BMJ. 2002;324:588–591.

    Article  PubMed  Google Scholar 

  43. Müller M, Haag O, Burgdorff T, et al. Characterization of peripheral-compartment kinetics of antibiotics by in vivo microdialysis in humans.Antimicrob Agents Chemother. 1996;40:2703–2709.

    PubMed  Google Scholar 

  44. Benfeldt E, Serup J, Menne T. Microdialysis vs suction blister technique for in vivo sampling of pharmacokinetics in the human dermis.Acta Derm Venereol. 1999;79:338–342.

    Article  PubMed  CAS  Google Scholar 

  45. Day RM, Harbord M, Forbes A, Segal AW. Cantharidin blisters: a technique for investigating leukocyte trafficking and cytokine production at sites of inflammation in humans.J Immunol Methods. 2001;257:213–220.

    Article  PubMed  CAS  Google Scholar 

  46. Ryan DM. Pharmacokinetics of antibiotics in natural and experimental superficial compartments in animals and humans.J Antimicrob Chemother. 1993;31:1–16.

    Article  PubMed  CAS  Google Scholar 

  47. Brunner M, Stabeta H, Moller JG, et al. Target site concentrations of ciprofloxacin after single intravenous and oral doses.Antimicrob Agents Chemother. 2002;46:3724–3730.

    Article  PubMed  CAS  Google Scholar 

  48. Müller M, Stass H, Brunner M, Moller JG, Lackner E, Eichler HG. Penetration of moxifloxacin into peripheral compartments in humans.Antimicrob Agents Chemother. 1999;43:2345–2349.

    PubMed  Google Scholar 

  49. Brunner M, Schmiedberger A, Schmid R, et al. Direct assessment of peripheral pharmacokinetics in humans: comparison between cantharides blister fluid sampling, in vivo microdialysis and saliva sampling.Br J Clin Pharmacol. 1998;46:425–431.

    Article  PubMed  CAS  Google Scholar 

  50. Müller M, Brunner M, Schmid R, et al. Comparison of three different experimental methods for the assessment of peripheral compartment pharmacokinetics in humans.Life Sci. 1998;62:PL227-PL234.

    Article  PubMed  Google Scholar 

  51. Wolf W, Presant CA, Waluch V. 19F-MRS studies of fluorinated drugs in humans.Adv Drug Deliv Rev. 2000;41:55–74.

    Article  PubMed  CAS  Google Scholar 

  52. Fischman AJ, Alpert NM, Babich JW, RH. The role of positron emission tomography in pharmacokinetic analysis.Drug Metab Rev. 1997;29:923–956.

    Article  PubMed  CAS  Google Scholar 

  53. Pien HH, Fischman AJ, Thrall JH, Sorensen AG. Using imaging biomarkers to accelerate drug development and clinical trials.Drug Discov Today. 2005;10:259–266.

    Article  PubMed  CAS  Google Scholar 

  54. Phelps ME. PET: the merging of biology and imaging into molecular imaging.J Nucl Med. 2000;41:661–681.

    PubMed  CAS  Google Scholar 

  55. Fischman AJ, Babich JW, Bonab AA, et al. Pharmacokinetics of [18F]trovafloxacin in healthy human subjects studied with positron emission tomography.Antimicrob Agents Chemother. 1998;42:2048–2054.

    PubMed  CAS  Google Scholar 

  56. Brunner M, Langer O, Dobrozemsky G, et al. [18F]Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans.Antimicrob Agents Chemother. 2004;48:3850–3857.

    Article  PubMed  CAS  Google Scholar 

  57. Singh M, Waluch V. Physics and instrumentation for imaging in-vivo drug distribution.Adv Drug Deliv Rev. 2000;41:7–20.

    Article  PubMed  CAS  Google Scholar 

  58. Lyoo IK, Renshaw PF. Magnetic resonance spectroscopy: current and future applications in psychiatric research.Biol Psychiatry. 2002;51:195–207.

    Article  PubMed  Google Scholar 

  59. Griffiths JR, Glickson JD. Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy.Adv Drug Deliv Rev. 2000;41:75–89.

    Article  PubMed  CAS  Google Scholar 

  60. Fischman AJ, Livni E, Babich JW, et al. Pharmacokinetics of [18F]fleroxacin in patients with acute exacerbations of chronic bronchitis and complicated urinary tract infection studied by positron emission tomography.Antimicrob Agents Chemother. 1996;40:659–664.

    PubMed  CAS  Google Scholar 

  61. Fischman AJ, Alpert NM, Livni E, et al. Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography.Antimicrob Agents Chemother. 1993;37:1270–1277.

    PubMed  CAS  Google Scholar 

  62. Berridge MS, Lee Z, Heald DL. Regional distribution and kinetics of inhaled pharmaceuticals.Curr Pharm Des. 2000;6:1631–1651.

    Article  PubMed  CAS  Google Scholar 

  63. Langer O, Brunner M, Zeitlinger M, et al. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET.Eur J Nucl Med Mol Imaging. 2005;32:143–150.

    Article  PubMed  CAS  Google Scholar 

  64. Brunner M, Langer O, Sunder-Plassmann R, et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous sytem drug distribution in humans.Clin Pharmacol Ther. 2005;78:182–190.

    Article  PubMed  CAS  Google Scholar 

  65. Gupta N, Price PM, Aboagye EO. PET for in vivo pharmacokinetic and pharmacodynamic measurements.Eur J Cancer. 2002;38:2094–2107.

    Article  PubMed  CAS  Google Scholar 

  66. Moehler M, Dimitrakopoulou-Strauss A, Gutzler F, Raeth U, Strauss LG, Stremmel W. 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil.Cancer. 1998;83:245–253.

    Article  PubMed  CAS  Google Scholar 

  67. Saleem A, Brown GD, Brady F, et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography.Cancer Res. 2003;63:2409–2415.

    PubMed  CAS  Google Scholar 

  68. Noske DP, Peerdeman SM, Comans EF, et al. Cerebral microdialysis and positron emission tomography after surgery for aneurysmal subarachnoid hemorrhage in grade I patients.Surg Neurol. 2005;64:109–115.

    Article  PubMed  CAS  Google Scholar 

  69. Hutchinson PJ, Gupta AK, Fryer TF, et al. Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study.J Cereb Blood Flow Metab. 2002;22:735–745.

    Article  PubMed  Google Scholar 

  70. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis.J Neurotrauma. 2005;22:3–41.

    Article  PubMed  Google Scholar 

  71. Clausen T, Alves OL, Reinert M, Doppenberg E, Zauner A, Bullock R. Association between elevated brain tissue glycerol levels and poor outcome following severe traumatic brain injury.J Neurosurg. 2005;103:233–238.

    Article  PubMed  CAS  Google Scholar 

  72. Cavus I, Kasoff WS, Cassaday MP, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients.Ann Neurol. 2005;57:226–235.

    Article  PubMed  CAS  Google Scholar 

  73. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study.J Cereb Blood Flow Metab. 2005;25:763–774.

    Article  PubMed  CAS  Google Scholar 

  74. Bosche B, Dohmen C, Graf R, et al. Extracellular concentrations of non-transmitter amino acids in peri-infarct tissue of patients predict malignant middle cerebral artery infarction.Stroke. 2003;34:2908–2913.

    Article  PubMed  CAS  Google Scholar 

  75. Enblad P, Valtysson J, Andersson J, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage.J Cereb Blood Flow Metab. 1996;16:637–644.

    Article  PubMed  CAS  Google Scholar 

  76. Hutchinson PJ, Gupta AK, Fryer TF, et al. Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study.J Cereb Blood Flow Metab. 2002;22:735–745.

    Article  PubMed  Google Scholar 

  77. Dohmen C, Bosche B, Graf R, et al. Prediction of malignant course in MCA infarction by PET and microdialysis.Stroke. 2003;34:2152–2158.

    Article  PubMed  Google Scholar 

  78. Virtanen KA, Peltoniemi P, Marjamaki P, et al. Human adipose tissue glucose uptake determined using [(18)F]-fluoro-deoxy-glucose ([(18)F]FDG) and PET in combination with microdialysis.Diabetologia. 2001;44:2171–2179.

    Article  PubMed  CAS  Google Scholar 

  79. Peltoniemi P, Lonnroth P, Laine H, et al. Lumped constant for [(18)F] fluorodeoxyglucose in skeletal muscles of obese and nonobese humans.Am J Physiol Endocrinol Metab. 2000;279:E1122-E1130.

    PubMed  CAS  Google Scholar 

  80. Langer O, Karch R, Müller U, et al. Combined PET and microdialysis for in vivo assessment of intracellular drug pharmacokinetics in humans.J Nucl Med. 2005;46:1835–1841.

    PubMed  CAS  Google Scholar 

  81. Langer O, Mitterhauser M, Brunner M, et al. Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans.Nucl Med Biol. 2003;30:285–291.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Brunner.

Additional information

Published: April 14, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, M., Langer, O. Microdialysis versus other techniques for the clinical assessment of in vivo tissue drug distribution. AAPS J 8, 30 (2006). https://doi.org/10.1007/BF02854896

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854896

Keywords

Navigation