The AAPS Journal

, Volume 8, Issue 2, pp E239–E253 | Cite as

Drug discovery from natural sources

  • Young-Won Chin
  • Marcy J. Balunas
  • Hee Byung Chai
  • A. Douglas KinghornEmail author


Organic compounds from terrestrial and marine organisms have extensive past and present use in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modification. Over 20 new drugs launched on the market between 2000 and 2005, originating from terrestrial plants, terrestrial microorganisms, marine organisms, and terrestrial vertebrates and invertebrates, are described. These approved substances, representative of very wide chemical diversity, together with several other natural products or their analogs undergoing clinical trials, continue to demonstrate the importance of compounds from natural sources in modern drug discovery efforts.


natural products drug discovery terrestrial plants terrestrial microorganisms marine organisms terrestrial vertebrates terrestrial invertebrates chemical diversity 


  1. 1.
    Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery.Nat Prod Rep. 2000;17:215–234.PubMedCrossRefGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002.J Nat Prod. 2003;66:1022–1037.PubMedCrossRefGoogle Scholar
  3. 3.
    Koehn FE, Carter GT. The evolving role of natural products in drug discovery.Nat Rev Drug Discov. 2005;4:206–220.PubMedCrossRefGoogle Scholar
  4. 4.
    Paterson I, Anderson EA. The renaissance of natural products as drug candidates.Science. 2005;310:451–453.PubMedCrossRefGoogle Scholar
  5. 5.
    Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants.Life Sci. 2005;78:431–441.PubMedCrossRefGoogle Scholar
  6. 6.
    Jones WP, Chin Y-W, Kinghorn AD. The role of pharmacognosy in modern medicine and pharmacy.Curr Drug Targets. 2006;7:247–264.PubMedCrossRefGoogle Scholar
  7. 7.
    Drahl C, Cravatt BF, Sorensen EJ. Protein-reactive natural products.Angew Chem Int Ed Engl. 2005;44:5788–5809.PubMedCrossRefGoogle Scholar
  8. 8.
    Grifo F, Newman D, Fairfield A, Bhattacharya B, Grupenhoff J. The origins of prescription drugs. In: Grifo F, Rosenthal J, eds.Biodiversity and Human Health. Washington, DC: Island Press; 1997;131–163.Google Scholar
  9. 9.
    Butler MS. The role of natural product chemistry in drug discovery.J Nat Prod. 2004;67:2141–2153.PubMedCrossRefGoogle Scholar
  10. 10.
    Thayer A. Bristol-Myers to settle suits.Chem Eng News. 2003;81:6.Google Scholar
  11. 11.
    Oberlies NH, Kroll DJ. Camptothecin and taxol: historic achievements in natural products research.J Nat Prod. 2004;67:129–135.PubMedCrossRefGoogle Scholar
  12. 12.
    Butler MS. Natural products to drugs: natural products derived compounds in clinical trials.Nat Prod Rep. 2005;22:162–195.PubMedCrossRefGoogle Scholar
  13. 13.
    Dewick PM.Medicinal Natural Products: A Biosynthetic Approach. 2nd ed. Chichester, UK. John Wiley & Sons; 2002.Google Scholar
  14. 14.
    Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery.Environ Health Perspect. 2001;109:69–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Kinghorn AD. The discovery of drugs from higher plants. In: Gullo VP, ed.The Discovery of Natural Products with Therapeutic Potential. Boston, MA: Butterworth-Heinemann; 1994;81–108.Google Scholar
  16. 16.
    Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: an evidence-based review of its use in Parkinson's disease.Drugs Aging. 2004;21:687–709.PubMedCrossRefGoogle Scholar
  17. 17.
    Koumis T, Samuel S. Tiotropium bromide: a new long-acting bronchodilator for the treatment of chronic obstructive pulmonary disease.Clin Ther. 2005;27:377–392.PubMedCrossRefGoogle Scholar
  18. 18.
    Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B. Pharmacokinetics and pharmacodynamics of NTBC [2-(2-nitro-4-fluoromethyl-benzoyl)-1,3-cyclohexanedione] and mesotrion, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers.Br J Clin Pharmacol. 2001;52:169–177.PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell G, Bartlett DW, Fraser TEM, et al. Mesotrione: a new selective herbicide for use in maize.Pest Manag Sci. 2001;57:120–128.PubMedCrossRefGoogle Scholar
  20. 20.
    Howes M-JR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders.Phytother Res. 2003;17:1–18.PubMedCrossRefGoogle Scholar
  21. 21.
    Heinrich M, Teoh HL. Galanthamine from snowdrop—the development of a modern drug against Alzheimer's disease from local Caucasian knowledge.J Ethnopharmacol. 2004;92:147–162.PubMedCrossRefGoogle Scholar
  22. 22.
    van Agtmael MA, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication.Trends Pharmacol Sci. 1999;20:199–205.PubMedCrossRefGoogle Scholar
  23. 23.
    Cirla A, Mann J. Combrestatins: from natural products to drug discovery.Nat Prod Rep. 2003;20:558–564.PubMedCrossRefGoogle Scholar
  24. 24.
    Pinney KG, Jelinek C, Edvardsen K, Chaplin DJ, Pettit GR. The discovery and development of the combrestatins. In: Cragg GM, Kingston DGI, Newman DJ, eds.Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005;23–46.Google Scholar
  25. 25.
    West CML, Price P. Combrestatin A4 phosphate.Anticancer Drugs. 2004;15:179–187.PubMedCrossRefGoogle Scholar
  26. 26.
    Young SL, Chaplin DJ. Combrestatin A4 phosphate: background and current clinical status.Expert Opin Investig Drugs. 2004;13:1171–1182.PubMedCrossRefGoogle Scholar
  27. 27.
    Powell RG, Weisleder D, Smith CR, Rohwedder WK. Structures of harringtonine, isoharringtomine, and homoharringtonine.Tetrahedron Lett. 1970;11:815–818.PubMedCrossRefGoogle Scholar
  28. 28.
    Kantarjian Hm, Talpaz M, Santini V, Murgo A, Cheson B, O'Brian SM. Homoharringtonine: history, current research, and future direction.Cancer. 2001;92:1591–1603.PubMedCrossRefGoogle Scholar
  29. 29.
    Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase.C. Cancer Res. 2004;64:3243–3255.Google Scholar
  30. 30.
    Ogbourne SM, Suhrbier A, Jones B, et al. Antitumor activity of ingenol 3-angelate: plasma membrane and mitochondrial disruption and necrotic cell death.Cancer Res. 2004;64:2833–2839.PubMedCrossRefGoogle Scholar
  31. 31.
    Kamsteeg M, Rutherford T, Sapi E, et al. Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresitant ovarian cancer cells.Oncogene. 2003;22:2611–2620.PubMedCrossRefGoogle Scholar
  32. 32.
    Constantinou AI, Mehta R, Husband A. Phenoxodiol, a novel isoflavone derivative, inhibits dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats.Eur J Cancer. 2003;39:1012–1018.PubMedCrossRefGoogle Scholar
  33. 33.
    Shibata S, Tanaka O, Sado M, Tsushima S. The genuine sapogenin of ginseng.Tetrahedron Lett. 1963;4:795–800.CrossRefGoogle Scholar
  34. 34.
    Jia W, Yan H, Bu X, Liu G, Zhao Y. Aglycone protopanaxadiol, a ginseng saponin, inhibits P-glycoprotein and sensitizes chemotherapy drugs on multidrug resistant cancer cells.J Clin Oncol. 2004;22:9663.Google Scholar
  35. 35.
    Kiviharju TM, Lecane PS, Sellers RG, Peehl DM. Antiproliferative and proapoptotic of triptolide (PG490), and natural product entering clinical trials, on primary cultures of human prostatic epithelial cells.Clin Cancer Res. 2002;8:2666–2674.PubMedGoogle Scholar
  36. 36.
    Fidler JM, Li K, Chung C, et al. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy.Mol Cancer Ther. 2003;2:855–862.PubMedGoogle Scholar
  37. 37.
    Sneader W.Drug Discovery: A History. Hoboken, NJ: John Wiley & Sons; 2005.Google Scholar
  38. 38.
    Jarvis B, Figgitt DP, Scott LJ. Micafungin.Drugs. 2004;64:969–982.PubMedCrossRefGoogle Scholar
  39. 39.
    Frattarelli DAC, Reed MD, Giacoia GP, Aranda JV. Antifungals in systemic neonatal candidiasis.Drugs. 2004;64:949–968.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhanel GG, Homenuik K, Nichol K, et al. The glycylcyclines: a comparative review with the tetracyclines.Drugs. 2004;64:63–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Chapman TM, Perry CM. Everolimus.Drugs. 2004;64:861–872.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhanel GG, Walters M, Noreddin A, et al. The ketolides: a critical review.Drugs. 2002;62:1771–1804.PubMedCrossRefGoogle Scholar
  43. 43.
    Pastores GM, Barnett NL, Kolodny EH. An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment.Clin Ther. 2005;27: 1215–1227.PubMedCrossRefGoogle Scholar
  44. 44.
    Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease.Am J Hematol. 2005;80:223–229.PubMedCrossRefGoogle Scholar
  45. 45.
    Bardsley-Elliot A, Noble S, Foster RH. Mycophenolate mofetil: a review of its use in the management of solid organ transplantation.Bio Drugs. 1999;12:363–410.Google Scholar
  46. 46.
    Curran MP, Keating GM. Mycophenolate sodium delayed release: prevention of renal transplant rejection.Drugs. 2005;65:799–805.PubMedCrossRefGoogle Scholar
  47. 47.
    Carswell CI, Plosker GL, Jarvis B. Rosuvastatin.Drugs. 2002;62:2075–2085.PubMedCrossRefGoogle Scholar
  48. 48.
    Scott LJ, Curran MP, Figgitt DP. Rosuvastatin: a review of its use in the management of dyslipidemia.Am J Cardiovasc Drugs. 2004;4:117–138.PubMedCrossRefGoogle Scholar
  49. 49.
    Mukhtar RYA, Reid J, Reckless JPD. Pitavastatin.Int J Clin Pract. 2005;59:239–252.PubMedCrossRefGoogle Scholar
  50. 50.
    Fenton C, Keating GM, Curran MP. Daptomycin.Drugs. 2004;64:445–455.PubMedCrossRefGoogle Scholar
  51. 51.
    Ogawa M. Novel anticancer drugs in Japan.J Cancer Res Clin Oncol. 1999;125:134–140.PubMedCrossRefGoogle Scholar
  52. 52.
    Sugiura T, Ariyoshi Y, Negoro S, et al. Phase I/II study of amrubicin, a novel 9-aminoanthracycline, in patients with advanced non-small-cell lung cancer.Invest New Drugs. 2005;23:331–337.PubMedCrossRefGoogle Scholar
  53. 53.
    Perry CM, Ibbotson T. Biapenem.Drugs. 2002;62:2221–2234.PubMedCrossRefGoogle Scholar
  54. 54.
    Darkes MJM, Plosker GL. Cefditoren pivoxil.Drugs. 2002;62:319–336.PubMedCrossRefGoogle Scholar
  55. 55.
    Keating G, Figgitt D. Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis.Drugs. 2003;63:2235–2263.PubMedCrossRefGoogle Scholar
  56. 56.
    Letscher-Bru V, Herbrecht R. Caspofungin: the first representative of a new antifungal class.J Antimicrob Chemother. 2003;51:513–521.PubMedCrossRefGoogle Scholar
  57. 57.
    McCormack PL, Perry CM. Caspofungin A: review of its use in the treatment of fungal infections.Drugs. 2005;65:2049–2068.PubMedCrossRefGoogle Scholar
  58. 58.
    Sader HS, Gales AC. Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents.Drugs. 2001;61:553–564.PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta AK, Chow M. Pimecrolimus: a review.J Eur Acad Dermatol Venereol. 2003;17:493–503.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicinγ 1.J Am Chem Soc. 1987;109:3464–3466.CrossRefGoogle Scholar
  61. 61.
    Giles F, Estey E, O'Brien S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia.Cancer. 2003;98:2095–2104.PubMedCrossRefGoogle Scholar
  62. 62.
    Portugal J. Chartreusin, elsamicin A and related anti-cancer antibiotics.Curr Med Chem Anticancer Agents. 2003;3:411–420.PubMedCrossRefGoogle Scholar
  63. 63.
    Lam KS, Veitch JA, Forenza S, Combs CM, Colson KL. Biosynthesis of elsamicin A, a novel antitumor antibiotic.J Nat Prod. 1989;52:1015–1021.PubMedCrossRefGoogle Scholar
  64. 64.
    DiMarco A, Gaetani M, Orezzi P, Scotti T, Arcamone FF. Experimental studies on distamycin A—a new antibiotic with cytotoxic activity.Cancer Chemother Rep. 1962;18:15–19.PubMedGoogle Scholar
  65. 65.
    Broggini M, Marchini S, Fontana E, Moneta D, Fowst C, Geroni C. Brostacillin: a new concept in mimor groove DNA binder development.Anticancer Drugs. 2004;15:1–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Geroni C, Marchini S, Cozzi P, et al. Brostalicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione.Cancer Res. 2002;62:2332–2336.PubMedGoogle Scholar
  67. 67.
    DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic.J Antibiot (Tokyo). 1970;23:442–447.Google Scholar
  68. 68.
    Sasaki K, Rinehart KL Jr, Slomp G, Grostic MF, Olson BC. Geldanamycin. I. Structure assignment.J Am Chem Soc. 1970;92:7591–7593.PubMedCrossRefGoogle Scholar
  69. 69.
    Bisht KS, Bradbury M, Mattson D, et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate thein vitro andin vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity.Cancer Res. 2003;63:8984–8995.PubMedGoogle Scholar
  70. 70.
    Kaur G, Belotti D, Burger AM, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator.Clin Cancer Res. 2004;10:4813–4821.PubMedCrossRefGoogle Scholar
  71. 71.
    Supko JG, Eder JP, Ryan DP, et al. Phase I clinical trial and pharmacokinetic study of the spicamycin analog KRN500 administered as a 1-hour intravenous infusion for five consecutive days to patients with refractory solid tumors.Clin Cancer Res. 2003;9:5178–5186.PubMedGoogle Scholar
  72. 72.
    Yoshinari T, Ohkubo M, Fukasawa K, et al. Mode of action of a new indolocarbazole anticancer agent, J-107088, targeting topoisomerase I.Cancer Res. 1999;59:4271–4275.PubMedGoogle Scholar
  73. 73.
    Zaugg K, Rocha S, Resch H, et al. Differential p53-dependent mechanism of radiosensitizationin vitro andin vivo by the protein kinase C-specific inhibitor PKC412.Cancer Res. 2001;61:732–738.PubMedGoogle Scholar
  74. 74.
    Long BH, Rose WC, Vyas DM, Matson JA, Forenza S. Discovery of antitumor indolocarbazoles: rebeccamycin, NSC 655649, and fluoroindolocarbazoles.Curr Med Chem Anticancer Agents. 2002;2:255–266.PubMedCrossRefGoogle Scholar
  75. 75.
    Chen J, De Angelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorders.Proc Natl Acad Sci USA. 2004;101:14479–14484.PubMedCrossRefGoogle Scholar
  76. 76.
    Kondapaka SB, Zarnowski M, Yver DR, Sausville EA, Cushman SW. 7-Hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation: a basis for decreased insulin-stimulated glucose transport.Clin Cancer Res. 2004;10:7192–7198.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biological and clinical activity in patients with relapsed or refractory acute myeloid leukemia.Blood. 2004;103:3669–3676.PubMedCrossRefGoogle Scholar
  78. 78.
    Marshall JL, Kindler H, Deeken J, et al. Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor.Invest New Drugs. 2005;23:31–37.PubMedCrossRefGoogle Scholar
  79. 79.
    Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. A new antifungal antibiotic, trichostatin.J Antibiot (Tokyo). 1976;29:1–6.Google Scholar
  80. 80.
    Plumb JA, Finn PW, Williams RJ, etal. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101.Mol Cancer Ther. 2003;2:721–728.PubMedGoogle Scholar
  81. 81.
    Arts J, Schepper S, Emelen K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics.Curr Med Chem. 2003;10:2343–2350.PubMedCrossRefGoogle Scholar
  82. 82.
    Atadja P, Gao L, Kwon P, et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824.Cancer Res. 2004;64:689–695.PubMedCrossRefGoogle Scholar
  83. 83.
    Monneret C. Histone deacetylase inhibitors.Eur J Med Chem. 2005;40:1–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipetide (FR901228, NSC 630176), in patients with refractory neoplasms.Clin Cancer Res. 2002;8:718–728.PubMedGoogle Scholar
  85. 85.
    Shiraga T, Tozuka Z, Ishimura R, Kawamura A, Kagawama A. Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes.Biol Pharm Bull. 2005;28:124–129.PubMedCrossRefGoogle Scholar
  86. 86.
    Kosmidis PA, Manegold C. Advanced NSCLC: new cytostatic agents.Lung Cancer. 2003;41:S123-S132.PubMedCrossRefGoogle Scholar
  87. 87.
    Starks CM, Zhou Y, Liu F, Licari PJ. Isolation and characterization of new epothilone analogues from recombinantMyxococcus xanthus fermentation.J Nat Prod. 2003;66:1313–1317.PubMedCrossRefGoogle Scholar
  88. 88.
    Goodin S, Kane MP, Rubin EH. Epothilones: mechanism of action and biologic activity.J Clin Oncol. 2004;22:2015–2025.PubMedCrossRefGoogle Scholar
  89. 89.
    Rizvi N, Villalona-Calere M, Lynch T, et al. Phase II study of KOS-862 (epothilone D) as second-line therapy in non-small cell lung cancer.Lung Cancer. 2005;49:S266-S267.CrossRefGoogle Scholar
  90. 90.
    Chun E, Han CK, Yoon JH, Sim TB, Kim Y-K, Lee K-Y. Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model.Int J Cancer. 2005;114:124–130.PubMedCrossRefGoogle Scholar
  91. 91.
    Bernier SG, Lazarus DD, Clark E, et al. A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis.Proc Natl Acad Sci USA. 2004;101:10768–10773.PubMedCrossRefGoogle Scholar
  92. 92.
    McMorris TC, Anchel M. Fungal metabolites. The structures of the novel sesquiterpenoids illudin-S and-M.J Am Chem Soc. 1965;87:1594–1600.PubMedCrossRefGoogle Scholar
  93. 93.
    McMorris TC, Kelner MJ, Wang W, Yu J, Estes LA, Taetle R. (Hydroxymethyl)acylfulvene: an illudin derivative with superior antitumor properties.J Nat Prod. 1996;59:896–899.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang J, Wiltshire T, Wang Y, et al. ATM-dependent CHK2 activation induced by anticancer agent, irfulven.J Biol Chem. 2004;279:39584–39592.PubMedCrossRefGoogle Scholar
  95. 95.
    Newman DJ, Cragg GM. Advanced preclinical and clinical trials of natural products and related compounds from marine sources.Curr Med Chem. 2004;11:1693–1713.PubMedGoogle Scholar
  96. 96.
    Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials.J Nat Prod. 2004;67:1216–1238.PubMedCrossRefGoogle Scholar
  97. 97.
    Capon RJ. Marine bioprospecting-trawling for treasure and pleasure.Eur J Org Chem. 2001;2001:633–645.CrossRefGoogle Scholar
  98. 98.
    Haefner B. Drugs from the deep: marine natural products as drug candidates.Drug Discov Today. 2003;8:536–544.PubMedCrossRefGoogle Scholar
  99. 99.
    Jensen PR, Fenical W. Marine microorganisms and drug discovery: current status and future potential. In: Fusetani N, ed.Drugs from the Sea. New York: Karger, 2000:6–29.CrossRefGoogle Scholar
  100. 100.
    Schroeder CI, Smythe ML, Lewis RJ. Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel.Mol Divers. 2004;8:127–134.PubMedCrossRefGoogle Scholar
  101. 101.
    Taraboletti G, Poli M, Dossi R, et al. Antiangiogenic activity of aplidine, a new agent of marine origin.Br J Cancer. 2004;90:2418–2424.PubMedGoogle Scholar
  102. 102.
    Natori T, Morita M, Akimoto K, Koezuka Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine spongeAgelas mauritianus.Tetrahedron. 1994;50:2771–2784.CrossRefGoogle Scholar
  103. 103.
    Hayakawa Y, Rovero S, Forni G, Smyth MJ. α-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis.Proc Natl Acad Sci USA. 2003;100:9464–9469.PubMedCrossRefGoogle Scholar
  104. 104.
    Newman DJ. The bryostatins. In: Cragg GM, Kingston DGI, Newman DJ, eds.Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005:137–150.Google Scholar
  105. 105.
    Honore S, Kamath K, Braguer D, Wilson L, Briand C, Jordan MA. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation.Mol Cancer Ther. 2003;2:1303–1311.PubMedGoogle Scholar
  106. 106.
    Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10.J Am Chem Soc. 1987;109:6883–6885.CrossRefGoogle Scholar
  107. 107.
    Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM. Isolation and structure of the cytostatic linear depsipeptide dolastatin 15.J Am Chem Soc. 1989;54:6005–6006.Google Scholar
  108. 108.
    Kerbrat P, Dieras V, Pavlidis N, Ravaud A, Wanders J, Fumoleau P. Phase II study LU103793 (dolastatin analogue) in patients with metastatic breast cancer.Eur J Cancer. 2003;39:317–320.PubMedCrossRefGoogle Scholar
  109. 109.
    Marks RS, Graham DL, Sloan JA, et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer.Am J Clin Oncol. 2003;26:336–337.PubMedCrossRefGoogle Scholar
  110. 110.
    Kindler HL, Tothy PK, Wolff R, et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers.Invest New Drugs. 2005;23:489–493.PubMedCrossRefGoogle Scholar
  111. 111.
    Perez EA, Hillman DW, Fishkin PA, et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer.Invest New Drugs. 2005;23:257–261.PubMedCrossRefGoogle Scholar
  112. 112.
    Jordan MA, Kamath K, Manna T, et al. The primary antimiotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth.Mol Cancer Ther. 2005;4:1086–1095.PubMedCrossRefGoogle Scholar
  113. 113.
    Loganzo F, Hari M, Annable T, et al. Cells resistant to HT-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin.Mol Cancer Ther. 2004;3:1319–1327.PubMedGoogle Scholar
  114. 114.
    Suárez Y, González L, Cuadrado A, Berciano M, Lafarga M, Muñoz A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells.Mol Cancer Ther. 2003;2:863–872.PubMedGoogle Scholar
  115. 115.
    Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FAE, Giaccone G. Kahalalide F induces necrosis-like cell death that involves depletion of ErB3 and inhibition of Akt signaling.Mol Pharmacol. 2005;68:502–510.PubMedGoogle Scholar
  116. 116.
    Jimeno JM, Garcia-Gravalos D, Avila J, Smith B, Grant W, Faircloth GT. ES-285, a marine natural product with activity against solid tumors.Clin Cancer Res. 1999;5:3792s.Google Scholar
  117. 117.
    Cuadros R, Garcini EM, Wandosell F, Faircloth G, Fernández-Sousa JM, Avila J. The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers.Cancer Lett. 2000;152:23–29.PubMedCrossRefGoogle Scholar
  118. 118.
    Moore KS, Wehrli S, Roger, H, et al. Squalamine: an aminosterol antibiotic from the shark.Proc Natl Acad Sci USA. 1993;90:1354–1358.PubMedCrossRefGoogle Scholar
  119. 119.
    Hao D, Hammond LA, Eckhardt SG, et al. A phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor.Clin Cancer Res. 2003;9:2465–2471.PubMedGoogle Scholar
  120. 120.
    Soares DG, Poletto NP, Bonatto D, Salvador M, Schwartsmann G, Henriques JAP. Low cytotoxicity of ecteinascidin 743 in yeast lacking the major endonucleolytic enzymes of base and nucleotide excision repair pathways.Biochem Pharmacol. 2005;70:59–69.PubMedCrossRefGoogle Scholar
  121. 121.
    Rinehart KL. Antitumor compounds from tunicates.Med Res Rev. 2000;20:1–27.PubMedCrossRefGoogle Scholar
  122. 122.
    Chen X, Chen J, De Paolis M, Zhu J. Synthetic studies toward ecteinascidin 743.J Org Chem. 2005;70:4397–4408.PubMedCrossRefGoogle Scholar
  123. 123.
    Malhotra R, Singh L, Eng J, Raufman J-P. Exendin-4, a new peptide fromHeloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini.Regul Pept. 1992;41:149–156.PubMedCrossRefGoogle Scholar
  124. 124.
    Keating GM. Exenatide.Drugs. 2005;65:1681–1692.PubMedCrossRefGoogle Scholar
  125. 125.
    Gladwell TD. Bivalirudin: A direct thrombin inhibitor.Clin Ther. 2002;24:38–58.PubMedCrossRefGoogle Scholar
  126. 126.
    Ledizet M, Harrison LM, Koskia RA, Cappello M. Discovery and preclinical development of antithrombotics from hematophagous invertebrates.Curr Med Chem Cardiovasc Hematol Agents. 2005;3:1–10.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  • Young-Won Chin
    • 1
  • Marcy J. Balunas
    • 1
    • 2
  • Hee Byung Chai
    • 1
  • A. Douglas Kinghorn
    • 1
    Email author
  1. 1.Division of Medicinal Chemistry and Pharmacognosy, College of PharmacyThe Ohio State UniversityColumbus
  2. 2.Program for Collaborative Research in the Pharmaceutical Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyUniversity of Illinois at ChicagoChicago

Personalised recommendations