Skip to main content
Log in

Microdialysis as a tool in local pharmacodynamics

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In many cases the clinical outcome of therapy needs to be determined by the drug concentration in the tissue compartment in which the pharmacological effect occurs rather than in the plasma. Microdialysis is an in vivo technique that allows direct measurement of unbound tissue concentrations and permits monitoring of the biochemical and physiological effects of drugs throughout the body. Microdialysis was first used in pharmacodynamic research to study neurotransmission, and this remains its most common application in the field. In this review, we give an overview of the principles, techniques, and applications of microdialysis in pharmacodynamic studies of local physiological events, including measurement of endogenous substances such as acetylcholine, catecholamines, serotonin, amino acids, peptides, glucose, lactate, glycerol, and hormones. Microdialysis coupled with systemic drug administration also permits the more intensive examination of the pharmacotherapeutic effect of drugs on extracellular levels of endogenous substances in peripheral compartments and blood. Selected examples of the physiological effects and mechanisms of action of drugs are also discussed, as are the advantages and limitations of this method. It is concluded that microdialysis is a reliable technique for the measurement of local events, which makes it an attractive tool for local pharmacodynamic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller M. Science, medicine, and the future: microdialysis.BMJ. 2002;324:588–591.

    PubMed  Google Scholar 

  2. de la Pena A, Liu P, Derendorf H. Microdialysis in peripheral tissues.Adv Drug Deliv Rev. 2000;45:189–216.

    PubMed  Google Scholar 

  3. Yokoyama M, Suzuki E, Sato T, et al. Amygdalic levels of dopamine and serotonin rise upon exposure to conditioned fear stress without elevation of glutamate.Neurosci Lett. 2005;379:37–41.

    PubMed  CAS  Google Scholar 

  4. Humpel C, Ebendal T, Olson L. Microdialysis: a way to study in vivo release of neurotrophic bioactivity: a critical summary.J Mol Med. 1996;74:523–526.

    PubMed  CAS  Google Scholar 

  5. Tsai TH. Assaying protein unbound drugs using microdialysis techniques.J Chromatogr B Analyt Technol Biomed Life Sci. 2003;797:161–173.

    PubMed  CAS  Google Scholar 

  6. Flechtner-Mors M, Jenkinson CP, Alt A, et al. Sympathetic regulation of glucose uptake by the alphal-adrenoceptor in human obesity.Obes Res. 2004;12:612–620.

    PubMed  CAS  Google Scholar 

  7. Johansen MJ, Newman RA, Madden T. The use of microdialysis in pharmacokinetics and pharmacodynamics.Pharmacotherapy. 1997;17:464–481.

    PubMed  CAS  Google Scholar 

  8. Banker MJ, Clark TH, Williams JA. Development and validation of a 96-well equilibrium dialysis apparatus for measuring plasma protein binding.J Pharm Sci. 2003;92:967–974.

    PubMed  CAS  Google Scholar 

  9. Linhares MC, Kissinger PT. Pharmacokinetic monitoring in subcutaneous tissue using in vivo capillary ultrafiltration probes.Pharm Res. 1993;10:598–602.

    PubMed  CAS  Google Scholar 

  10. Janle EM, Kissinger PT. Microdialysis and ultrafiltration.Adv Food Nutr Res. 1996;40:183–196.

    PubMed  CAS  Google Scholar 

  11. Garrison KE, Pasas SA, Cooper JD, et al. A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics.Eur J Pharm Sci. 2002;17:1–12.

    PubMed  CAS  Google Scholar 

  12. Leegsma-Vogt G, Janle E, Ash SR, et al. Utilization of in vivo ultrafiltration in biomedical research and clinical applications.Life Sci. 2003;73:2005–2018.

    PubMed  CAS  Google Scholar 

  13. Major CJ, Read SE, Coates RA, et al. Comparison of saliva and blood for human immunodeficiency virus prevalence testing.J Infect Dis. 1991;163:699–702.

    PubMed  CAS  Google Scholar 

  14. Muller M, Brunner M, Schmid R, et al. Comparison of three different experimental methods for the assessment of peripheral compartment pharmacokinetics in humans.Life Sci. 1998;62:PL227-PL234.

    PubMed  CAS  Google Scholar 

  15. Hofman LF. Human saliva as a diagnostic specimen.J Nutr. 2001;131:1621S-1625S.

    PubMed  CAS  Google Scholar 

  16. Borg N, Gotharson E, Benfeldt E, Groth L, Stahle L. Distribution to the skin of penciclovir after oral fam ciclovir administration in healthy volunteers: comparison of the suction blister technique and cutaneous microdialysis.Acta Derm Venereol. 1999;79:274–277.

    PubMed  CAS  Google Scholar 

  17. Keck FS, Kerner W, Meyerhoff C, et al. Combination of microdialysis and glucosensor permits continuous (on line) SC glucose monitoring in a patient operated device, I: in vitro evaluation.Horm Metab. Res. 1991;23:617–618.

    PubMed  CAS  Google Scholar 

  18. Keck FS, Meyerhoff C, Kerner W, et al. Combination of microdialysis and glucosensor permits continuous (on line) SC glucose monitoring in a patient operated device, II: evaluation in animals.Horm Metab Res. 1992;24:492–493.

    PubMed  CAS  Google Scholar 

  19. Bolinder J, Ungerstedt U, Arner P. Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients.Lancet. 1993;342:1080–1085.

    PubMed  CAS  Google Scholar 

  20. Freckmann G, Kalatz B, Pfeiffer B, et al. Recent advances in continuous glucose monitoring.Exp Clin Endocrinol Diabetes. 2001;109:S347-S357.

    PubMed  CAS  Google Scholar 

  21. Liu P, Muller M, Derendorf H. Rational dosing of antibiotics: the use of plasma concentrations versus tissue concentrations.Int J Antimicrob Agents. 2002;19:285–290.

    PubMed  CAS  Google Scholar 

  22. Flechtner-Mors M, Jenkinson CP, Alt A, et al. Sympathetic regulation of glucose uptake by the alphal-adrenoceptor in human obesity.Obes Res. 2004;12:612–620.

    PubMed  CAS  Google Scholar 

  23. Muller M. Microdialysis in clinical drug delivery studies.Adv Drug Deliv Rev. 2000;45:255–269.

    PubMed  CAS  Google Scholar 

  24. Hansen DK, Davies MI, Lunte SM, et al. Pharmacokinetic and metabolism studies using microdialysis sampling.J Pharm Sci. 1999;88:14–27.

    PubMed  CAS  Google Scholar 

  25. de Lange EC, de Boer AG, Breimer DD. Methodological issues in microdialysis sampling for pharmacokinetic studies.Adv Drug Deliv Rev. 2000;45:125–148.

    PubMed  Google Scholar 

  26. Parent M, Bush D, Rauw G, et al. Analysis of amino acids and catecholamines, 5-hydroxytryptamine and their metabolites in brain areas in the rat using in vivo microdialysis.Methods. 2001;23:11–20.

    PubMed  CAS  Google Scholar 

  27. Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems.Methods. 2001;23:21–39.

    PubMed  CAS  Google Scholar 

  28. Hows ME, Lacroix L, Heidbreder C, et al. High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples.J Neurosci Methods. 2004;138:123–132.

    PubMed  CAS  Google Scholar 

  29. Baseski HM, Watson CJ, Cellar NA, et al. Capillary liquid chromatography with MS3 for the determination of enkephalins in microdialysis samples from the striatum of anesthetized and freely-moving rats.J Mass Spectrom. 2005;40:146–153.

    PubMed  CAS  Google Scholar 

  30. Bowser MT, Kennedy RT. In vivo monitoring of amine neurotransmitters using microdialysis with on-line capillary electrophoresis.Electrophoresis. 2001;22:3668–3676.

    PubMed  CAS  Google Scholar 

  31. Huynh BH, Fogarty BA, Martin RS, et al. On-line coupling of microdialysis sampling with microchip-based capillary electrophoresis.Anal Chem. 2004;76:6440–6447.

    PubMed  CAS  Google Scholar 

  32. Kanamori K, Ross BD. Suppression of glial glutamine release to the extracellular fluid studied in vivo by NMR and microdialysis in hyperammonemic rat brain.J Neurochem. 2005;94:74–85.

    PubMed  CAS  Google Scholar 

  33. Lucas LH, Wilson SF, Lunte CE, et al. Concentration profiling in rat tissue by high-resolution magic-angle spinning NMR spectroscopy: investigation of a model drug.Anal Chem. 2005;77:2978–2984.

    PubMed  CAS  Google Scholar 

  34. Mayer BX, Namiranian K, Dehghanyar P, et al. Comparison of UV and tandem mass spectrometric detection for the high-performance liquid chromatographic determination of diclofenac in microdialysis samples.J Pharm Biomed Anal. 2003;33:745–754.

    PubMed  CAS  Google Scholar 

  35. Kanamori K, Kondrat RW, Ross BD. 13C enrichment of extracellular neurotransmitter glutamate in rat brain: combined mass spectrometry and NMR studies of neurotransmitter turnover and uptake into glia in vivo.Cell Mol Biol (Noisy-le-grand). 2003;49:819–836.

    CAS  Google Scholar 

  36. Lindon JC. HPLC-NMR-MS: past, present and future.Drug Discov Today. 2003;8:1021–1022.

    PubMed  Google Scholar 

  37. Lindon JC, Nicholson JK, Wilson ID. Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development.J Chromatogr B Biomed Sci Appl. 2000;748:233–258.

    PubMed  CAS  Google Scholar 

  38. Lommen A, Godejohann M, Venema DP, et al. Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel.Anal Chem. 2000;72:1793–1797.

    PubMed  CAS  Google Scholar 

  39. Pepeu G, Giovannini MG. Changes in acetylcholine extracellular levels during cognitive processes.Learn Mem. 2004;11:21–27.

    PubMed  Google Scholar 

  40. Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission.Bull Schweiz Akad Med Wiss. 1974;30:44–55.

    PubMed  CAS  Google Scholar 

  41. Bourne JA. Intracerebral microdialysis: 30 years as a tool for the neuroscientist.Clin Exp Pharmacol Physiol. 2003;30:16–24.

    PubMed  CAS  Google Scholar 

  42. Khan SH, Shuaib A. The technique of intracerebral microdialysis.Methods. 2001;23:3–9.

    PubMed  CAS  Google Scholar 

  43. Giovannini MG, Bartolini L, Kopf SR, et al. Acetylcholine release from the frontal cortex during exploratory activity.Brain Res. 1998;784:218–227.

    PubMed  CAS  Google Scholar 

  44. Maysinger D, Herrera-Marschitz M, Carlsson A, et al. Striatal and cortical acetylcholine release in vivo in rats with unilateral decortication: effects of treatment with monosialoganglioside GM1.Brain Res. 1988;461:355–360.

    PubMed  CAS  Google Scholar 

  45. Redmond JM, Gillinov AM, Blue ME, et al. The monosialoganglioside, GM1, reduces neurologic injury associated with hypothermic circulatory arrest.Surgery. 1993;114:324–332.

    PubMed  CAS  Google Scholar 

  46. Watanabe H, Shimizu H. Effect of anticholinergic drugs on striatal acetylcholine release and motor activity in freely moving rats studied by brain microdialysis.Jpn J Pharmacol. 1989;51:75–82.

    PubMed  CAS  Google Scholar 

  47. Gatto GJ, Bohme GA, Caldwell WS, et al. TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects.CNS Drug Rev. 2004;10:147–166.

    Article  PubMed  CAS  Google Scholar 

  48. Kurokawa M, Koga K, Kase H, et al. Adenosine A2a receptor-mediated modulation of striatal acetylcholine release in vivo.J Neurochem. 1996;66:1882–1888.

    PubMed  CAS  Google Scholar 

  49. Buchholzer ML, Klein J. NMDA-induced acetylcholine release in mouse striatum: role of NO synthase isoforms.J Neurochem. 2002;82:1558–1560.

    PubMed  CAS  Google Scholar 

  50. Kart E, Jocham G, Muller CP, et al. Neurokinin-1 receptor antagonism by SR140333: enhanced in vivo ACh in the hippocampus and promnestic post-trial effects.Peptides. 2004;25:1959–1969.

    PubMed  CAS  Google Scholar 

  51. De Souza Silva MA, Hasenohrl RU, Tomaz C, et al. Differential modulation of frontal cortex acetylcholine by injection of substance P into the nucleus basalis magnocellularis region in the freely-moving vs. the anesthetized preparation.Synapse. 2000;38:243–253.

    PubMed  Google Scholar 

  52. Gibbs RB, Gabor R, Cox T, et al. Effects of raloxifene and estradiol on hippocampal acetylcholine release and spatial learning in the rat.Psychoneuroendocrinology. 2004;29:741–748.

    PubMed  CAS  Google Scholar 

  53. Bernard R, Lydic R, Baghdoyan HA. Hypocretin-1 causes G protein activation and increases ACh release in rat pons.Eur J Neurosci. 2003;18:1775–1785.

    PubMed  Google Scholar 

  54. Rakovska A, Kiss JP, Raichev P, et al. Somatostatin stimulates striatal acetylcholine release by glutamatergic receptors: an in vivo microdialysis study.Neurochem Int. 2002;40:269–275.

    PubMed  CAS  Google Scholar 

  55. Vazquez J, Baghdoyan HA. GABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation.J Neurophysiol. 2004;92:2198–2206.

    PubMed  CAS  Google Scholar 

  56. Tanase D, Baghdoyan HA, Lydic R. Dialysis delivery of an adenosine A1 receptor agonist to the pontine reticular formation decreases acetylcholine release and increases anesthesia recovery time.Anesthesiology. 2003;98:912–920.

    PubMed  CAS  Google Scholar 

  57. Elvander E, Schott PA, Sandin J, et al. Intraseptal muscarinic ligands and galanin: influence on hippocampal acetylcholine and cognition.Neuroscience. 2004;126:541–557.

    PubMed  CAS  Google Scholar 

  58. Jansson A, Olin K, Yoshitake T, et al. Effects of isoflurane on prefrontal acetylcholine release and hypothalamic Fos response in young adult and aged rats.Exp Neurol. 2004;190:535–543.

    PubMed  CAS  Google Scholar 

  59. Giovannini MG, Giovannelli L, Bianchi L, et al. Glutamatergic modulation of cortical acetylcholine release in the rat: a combined in vivo microdialysis, retrograde tracing and immunohistochemical study.Eur J Neurosci. 1997;9:1678–1689.

    PubMed  CAS  Google Scholar 

  60. Yamamuro Y, Hori K, Tanaka J, et al. Septo-hippocampal cholinergic system under the discrimination learning task in the rat: a microdialysis study with the dual-probe approach.Brain Res. 1995;684:1–7.

    PubMed  CAS  Google Scholar 

  61. Moor E, Schirm E, Jacso J, et al. Involvement of medial septal glutamate and GABAA receptors in behaviour-induced acetylcholine release in the hippocampus: a dual probe microdialysis study.Brain Res. 1998;789:1–8.

    PubMed  CAS  Google Scholar 

  62. Arnold HM, Nelson CL, Neigh GN, et al. Systemic and intraaccumbens administration of amphetamine differentially affects cortical acetylcholine release.Neuroscience. 2000;96:675–685.

    PubMed  CAS  Google Scholar 

  63. Zetterstrom T, Sharp T, Marsden CA, et al. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine.J Neurochem. 1983;41:1769–1773.

    PubMed  CAS  Google Scholar 

  64. Sharp T, Zetterstrom T, Ljungberg T, et al. A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis.Brain Res. 1987;401:322–330.

    PubMed  CAS  Google Scholar 

  65. Parada M, Hernandez L, Schwartz D, et al. Hypothalamic infusion of amphetamine increases serotonin, dopamine and norepinephrine.Physiol Behav. 1988;44:607–610.

    PubMed  CAS  Google Scholar 

  66. Okuda C, Segal DS, Kuczenski R. Deprenyl alters behavior and caudate dopamine through an amphetamine-like action.Pharmacol Biochem Behav. 1992;43:1075–1080.

    PubMed  CAS  Google Scholar 

  67. Melega WP, Cho AK, Schmitz D, et al. 1-methamphetamine pharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived 1-methamphetamine.J Pharmacol Exp Ther. 1999;288:752–758.

    PubMed  CAS  Google Scholar 

  68. Pira L, Mongeau R, Pani L. The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex.Eur J Pharmacol. 2004;504:61–64.

    PubMed  CAS  Google Scholar 

  69. Ma S, Morilak DA. Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress.J Neuroendocrinol. 2005;17:22–28.

    PubMed  CAS  Google Scholar 

  70. Kushikata T, Hirota K, Kotani N, et al. Isoflurane increases norepinephrine release in the rat preoptic area and the posterior hypothalamus in vivo and in vitro: relevance to thermoregulation during anesthesia.Neuroscience. 2005;131:79–86.

    PubMed  CAS  Google Scholar 

  71. Williams JM, Steketee JD. Time-dependent effects of repeated cocaine administration on dopamine transmission in the medial prefrontal cortex.Neuropharmacology. 2005;48:51–61.

    PubMed  CAS  Google Scholar 

  72. Fadda P, Scherma M, Fresu A, et al. Dopamine and serotonin release in dorsal striatum and nucleus accumbens is differentialy modulated by morphine in DBA/2J and C57BL/6J mice.Synapse. 2005;56:29–38.

    PubMed  CAS  Google Scholar 

  73. Yoshimoto K, McBride WJ, Lumeng L, et al. Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens.Alcohol. 1992;9:17–22.

    PubMed  CAS  Google Scholar 

  74. Yim HJ, Schallert T, Randall PK, et al. Comparison of local and systemic ethanol effects on extracellular dopamine concentration in rat nucleus accumbens by microdialysis.Alcohol Clin Exp Res. 1998;22:367–374.

    PubMed  CAS  Google Scholar 

  75. Gonzales RA, Weiss F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens.J Neurosci. 1998;18:10663–10671.

    PubMed  CAS  Google Scholar 

  76. Nurmi M, Sinclair JD, Kiianmaa K. Dopamine release during ethanol drinking in AA rats.Alcohol Clin Exp Res. 1998;22:1628–1633.

    PubMed  CAS  Google Scholar 

  77. Yoshimoto K, Ueda S, Kato B, et al. Alcohol enhances characteristic releases of dopamine and serotonin in the central nucleus of the amygdala.Neurochem Int. 2000;37:369–376.

    PubMed  CAS  Google Scholar 

  78. Phillips TJ, Brown KJ, Burkhart-Kasch S, et al. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors.Nat Neurosci. 1998;1:610–615.

    PubMed  CAS  Google Scholar 

  79. Budygin EA, Phillips PE, Robinson DL, et al. Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats.J Pharmacol Exp Ther. 2001;297:27–34.

    PubMed  CAS  Google Scholar 

  80. Olive MF, Nannini MA, Ou CJ, et al. Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release.Eur J Pharmacol. 2002;437:55–61.

    PubMed  CAS  Google Scholar 

  81. Sharp T, Bramwell SR, Clark D, et al. In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to, 5-hydroxytryptaminergic neuronal activity.J Neurochem. 1989;53:234–240.

    PubMed  CAS  Google Scholar 

  82. Sprouse JS, Bradberry CW, Roth RH, et al. 3,4-Methylenedioxymethamphetamine-induced release of serotonin and inhibition of dorsal raphe cell firing: potentiation by L-tryptophan.Eur J Pharmacol. 1990;178:313–320.

    PubMed  CAS  Google Scholar 

  83. Ferre S, Artigas F. Clozapine decreases serotonin extracellular levels in the nucleus accumbens by a dopamine receptor-independent mechanism.Neurosci Lett. 1995;187:61–64.

    PubMed  CAS  Google Scholar 

  84. Dailey JW, Reith ME, Steidley KR, et al. Carbamazepine-induced release of serotonin from rat hippocampus in vitro.Epilepsia. 1998;39:1054–1063.

    PubMed  CAS  Google Scholar 

  85. Voigt JP, Kienzle F, Sohr R, et al. Feeding and 8-OH-DPAT-related release of serotonin in the rat lateral hypothalamus.Pharmacol Biochem Behav. 2000;65:183–189.

    PubMed  CAS  Google Scholar 

  86. Hayashi M, Nakai T, Bandoh T, et al. Acute effect of simultaneous administration of tryptophan and ethanol on serotonin metabolites in the locus coeruleus in rats.Eur J Pharmacol. 2003;462:61–66.

    PubMed  CAS  Google Scholar 

  87. Luparini MR, Garrone B, Pazzagli M, et al. A cortical GABA-5HT interaction in the mechanism of action of the antidepressant trazodone.Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:1117–1127.

    PubMed  CAS  Google Scholar 

  88. Celik T, Goren MZ, Cinar K, et al. Fatigue of cholestasis and the serotoninergic neurotransmitter system in the rat.Hepatology. 2005;41:731–737.

    PubMed  CAS  Google Scholar 

  89. Owen JC, Whitton PS. Effects of amantadine and budipine on antidepressant drug-evoked changes in extracellular 5-HT in the frontal cortex of freely moving rats.Br J Pharmacol. 2005;145:587–592.

    PubMed  CAS  Google Scholar 

  90. Hernandez L, Lee F, Hoebel BG. Simultaneous microdialysis and amphetamine infusion in the nucleus accumbens and striatum of freely moving rats: increase in extracellular dopamine and serotonin.Brain Res Bull. 1987;19:623–628.

    PubMed  CAS  Google Scholar 

  91. Stenfors C, Ross SB. Changes in extracellular 5-HIAA concentrations as measured by in vivo microdialysis technique in relation to changes in 5-HT release.Psychopharmacology (Berl). 2004;172:119–128.

    CAS  Google Scholar 

  92. Rollema H, Clarke T, Sprouse JS, et al. Combined administration of a 5-hydroxytryptamine (5-HT)1D antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo.J Neurochem. 1996;67:2204–2207.

    PubMed  CAS  Google Scholar 

  93. Stenfors C, Magnusson T, Larsson LG, et al. Synergism between 5-HT1B/1D and 5-HT1A receptor antagonists on turnover and release of 5-HT in guinea-pig brain in vivo.Naunyn Schmiedebergs Arch Pharmacol. 1999;359:110–116.

    PubMed  CAS  Google Scholar 

  94. Segovia J, Tossman U, Herrera-Marschitz M, et al. Gamma-aminobutyric acid release in the globus pallidus in vivo after a 6-hydroxydopamine lesion in the substantia nigra of the rat.Neurosci Lett. 1986;70:364–368.

    PubMed  CAS  Google Scholar 

  95. Butcher SP, Sandberg M, Hagberg H, et al. Cellular origins of endogenous amino acids released into the extracellular fluid of the rat striatum during severe insulin-induced hypoglycemia.J Neurochem. 1987;48:722–728.

    PubMed  CAS  Google Scholar 

  96. Wang J, Shen LL, Cao YX, et al. Effects of electroacupuncture on pressor response to angiotensin-(1–7) by amino acid release in the rostral ventrolateral medulla.Acupunct Electrother Res. 2003;28:25–34.

    PubMed  CAS  Google Scholar 

  97. Touchon JC, Holmer HK, Moore C, et al. Apomorphine-induced alterations in striatal and substantia nigra pars reticulata glutamate following unilateral loss of striatal dopamine.Exp Neurol. 2005;193:131–140.

    PubMed  CAS  Google Scholar 

  98. Ahmad S, Fowler LJ, Whitton PS. Effects of acute and chronic lamotrigine treatment on basal and stimulated extracellular amino acids in the hippocampus of freely moving rats.Brain Res. 2004;1029:41–47.

    PubMed  CAS  Google Scholar 

  99. Quertemont E, de Neuville J, De Witte P. Changes in the amygdala amino acid microdialysate after conditioning with a cue associated with ethanol.Psychopharmacology (Berl). 1998;139:71–78.

    CAS  Google Scholar 

  100. Dahchour A, De Witte P. Ethanol and amino acids in the central nervous system: assessment of the pharmacological actions of acamprosate.Prog Neurobiol. 2000;60:343–362.

    PubMed  CAS  Google Scholar 

  101. Dahchour A, Quertemont E, De Witte P. Acute ethanol increases taurine but neither glutamate nor GABA in the nucleus accumbens of male rats: a microdialysis study.Alcohol Alcohol. 1994;29:485–487.

    PubMed  CAS  Google Scholar 

  102. Dahchour A, Quertemont E, De Witte P. Taurine increases in the nucleus accumbens microdialysate after acute ethanol administration to naive and chronically alcoholised rats.Brain Res. 1996;735:9–19.

    PubMed  CAS  Google Scholar 

  103. Quertemont E, Goffaux V, Vlaminck AM, et al. Oral taurine supplementation modulates ethanol-conditioned stimulus preference.Alcohol. 1998;16:201–206.

    PubMed  CAS  Google Scholar 

  104. Quertemont E, Lallemand F, Colombo G, et al. Taurine and ethanol preference: a microdialysis study using Sardinian alcohol-preferring and non-preferring rats.Eur Neuropsychopharmacol. 2000;10:377–383.

    PubMed  CAS  Google Scholar 

  105. Katner SN, Weiss F. Neurochemical characteristics associated with ethanol preference in selected alcohol-preferring and-nonpreferring rats: a quantitative microdialysis study.Alcohol Clin Exp Res. 2001;25:198–205.

    PubMed  CAS  Google Scholar 

  106. Piepponen TP, Kiianmaa K, Ahtee L. Effects of ethanol on the accumbal output of dopamine, GABA and glutamate in alcohol-tolerant and alcohol-nontolerant rats.Pharmacol Biochem Behav. 2002;74:21–30.

    PubMed  CAS  Google Scholar 

  107. Quertemont E, Linotte S, de Witte P. Differential taurine responsiveness to ethanol in high- and low-alcohol sensitive rats: a brain microdialysis study.Eur J Pharmacol. 2002;444:143–150.

    PubMed  CAS  Google Scholar 

  108. Dahchour A, De Witte P. Effect of repeated ethanol withdrawal on glutamate microdialysate in the hippocampus.Alcohol Clin Exp Res. 1999;23:1698–1703.

    PubMed  CAS  Google Scholar 

  109. Dahchour A, De Witte P, Bolo N, et al. Central effects of acamprosate: part 1. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in ethanol withdrawn rats.Psychiatry Res. 1998;82:107–114.

    PubMed  CAS  Google Scholar 

  110. Dahchour A, De Witte P. Taurine blocks the glutamate increase in the nucleus accum bens microdialysate of ethanol-dependent rats.Pharmacol Biochem Behav. 2000;65:345–350.

    PubMed  CAS  Google Scholar 

  111. Dahchour A, De Witte P. Excitatory and inhibitory amino acid changes during repeated episodes of ethanol withdrawal: an in vivo microdialysis study.Eur J Pharmacol. 2003;459:171–178.

    PubMed  CAS  Google Scholar 

  112. Dahchour A, De Witte P. Acamprosate decreases the hypermotility during repeated ethanol withdrawal.Alcohol. 1999;18:77–81.

    PubMed  CAS  Google Scholar 

  113. Dahchour A, De Witte P. Effects of acamprosate on excitatory amino acids during multiple ethanol withdrawal periods.Alcohol Clin Exp Res. 2003;27:465–470.

    PubMed  CAS  Google Scholar 

  114. Rooyackers O. Microdialysis to investigate tissue amino acid kinetics.Curr Opin Clin Nutr Metab Care. 2005;8:77–82.

    PubMed  CAS  Google Scholar 

  115. Timmerman W, Westerink BH. Brain microdialysis of GABA and glutamate: what does it signify?Synapse. 1997;27:242–261.

    PubMed  CAS  Google Scholar 

  116. Baker DA, McFarland K, Lake RW, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse.Nat Neurosci. 2003;6:743–749.

    PubMed  CAS  Google Scholar 

  117. Lada MW, Vickroy TW, Kennedy RT. High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis online with capillary electrophoresis with laser-induced fluorescence detection.Anal Chem. 1997;69:4560–4565.

    PubMed  CAS  Google Scholar 

  118. Lada MW, Vickroy TW, Kennedy RT. Evidence for neuronal origin and metabotropic receptor-mediated regulation of extracellular glutamate and aspartate in rat striatum in vivo following electrical stimulation of the prefrontal cortex.J Neurochem. 1998;70:617–625.

    Article  PubMed  CAS  Google Scholar 

  119. Rooyackers O, Myrenfors P, Nygren J, et al. Insulin stimulated glucose disposal in peripheral tissues studied with microdialysis and stable isotope tracers.Clin Nutr. 2004;23:743–752.

    PubMed  CAS  Google Scholar 

  120. Horn TF, Engelmann M. In vivo microdialysis for nonapeptides in rat brain—a practical guide.Methods. 2001;23:41–53.

    PubMed  CAS  Google Scholar 

  121. Lindefors N, Brodin E, Ungerstedt U. Amphetamine facilitates the in vivo release of neurokinin A in the nucleus accumbens of the rat.Eur J Pharmacol. 1989;160:417–420.

    PubMed  CAS  Google Scholar 

  122. Lindefors N, Brodin E, Ungerstedt U. Subchronic haloperidol treatment decreases the in vivo release of tachykinins in rat substantia nigra.Eur J Pharmacol. 1989;161:95–98.

    PubMed  CAS  Google Scholar 

  123. Gruber SH, Mathe AA. Effects of typical and atypical antipsychotics on neuropeptide Y in rat brain tissue and microdialysates from ventral striatum.J Neurosci Res. 2000;61:458–463.

    PubMed  CAS  Google Scholar 

  124. Landgraf R, Neumann I, Holsboer F, et al. Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat.Eur J Neurosci. 1995;7:592–598.

    PubMed  CAS  Google Scholar 

  125. Vasilaki A, Papasava D, Hoyer D, et al. The somatostatin receptor (sst1) modulates the release of somatostatin in the nucleus accumbens of the rat.Neuropharmacology. 2004;47:612–618.

    PubMed  CAS  Google Scholar 

  126. Olive MF, Koenig HN, Nannini MA, Hodge CW. Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine.J Neurosci. 2001;21:RC184.

    PubMed  CAS  Google Scholar 

  127. Roth-Deri I, Schindler CJ, Yadid G. A critical role for beta-endorphin in cocaine-seeking behavior.Neuroreport. 2004;15:519–521.

    PubMed  CAS  Google Scholar 

  128. Herz A. Endogenous opioid systems and alcohol addiction.Psychopharmacology (Berl). 1997;129:99–111.

    CAS  Google Scholar 

  129. Solinas M, Zangen A, Thiriet N, et al. Beta-endorphin elevations in the ventral tegmental area regulate the discriminative effects of delta-9-tetrahydrocannabinol.Eur J Neurosci. 2004;19:3183–3192.

    PubMed  CAS  Google Scholar 

  130. Beinfeld MC, Connolly KJ, Pierce RC. Cocaine treatment increases extracellular cholecystokinin (CCK) in the nucleus accumbens shell of awake, freely moving rats, an effect that is enhanced in rats that are behaviorally sensitized to cocaine.J Neurochem. 2002;81:1021–1027.

    PubMed  CAS  Google Scholar 

  131. Emmett MR, Andren PE, Caprioli RM. Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis/mass spectrometry.J Neurosci Methods. 1995;62:141–147.

    PubMed  CAS  Google Scholar 

  132. Haskins WE, Wang Z, Watson CJ, et al. Capillary LC-MS2 at the attomole level for monitoring and discovering endogenous peptides in microdialysis samples collected in vivo.Anal Chem. 2001;73:5005–5014.

    PubMed  CAS  Google Scholar 

  133. Sijbesma H, Schipper J, Molewijk HE, et al. 8-hydroxy-2-(di-N-propylamino)tetralin increases the activity of adenylate cyclase in the hippocampus of freely-moving rats.Neuropharmacology. 1991;30:967–975.

    PubMed  CAS  Google Scholar 

  134. Mi Z, Herzer WA, Zhang Y, Jackson EK. 3-isobutyl-1-methylxanthine decreases renal cortical interstitial levels of adenosine and inosine.Life Sci. 1994;54:277–282.

    PubMed  CAS  Google Scholar 

  135. Wu HQ, Fuxe K, Schwarcz R. Neuronal A1 receptors mediate increase in extracellular kynurenic acid after local intrastriatal adenosine infusion.J Neurochem. 2004;90:621–628.

    PubMed  CAS  Google Scholar 

  136. Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.Nat Neurosci. 1999;2:358–363.

    PubMed  CAS  Google Scholar 

  137. Yamamoto M, Koshimura K, Sohmiya M, et al. Effect of erythropoietin on nitric oxide production in the rat hippocampus using in vivo brain microdialysis.Neuroscience. 2004;128:163–168.

    PubMed  CAS  Google Scholar 

  138. Hara S, Mukai T, Kurosaki K, et al. Characterization of suppression of nitric oxide production by carbon monoxide poisoning in the striatum of free-moving rats, as determined by in vivo brain microdialysis.Brain Res. 2003;979:27–36.

    PubMed  CAS  Google Scholar 

  139. Yang WP, Oshida Y, Wu W, et al. Effect of daily voluntary running on in vivo insulin action in rat skeletal muscle and adipose tissue as determined by the microdialysis technique.Int J Sports Med. 1995;16:99–104.

    PubMed  CAS  Google Scholar 

  140. Rosdahl H, Hamrin K, Ungerstedt U, et al. A microdialysis method for the in situ investigation of the action of large peptide molecules in human skeletal muscle: detection of local metabolic effects of insulin.Int J Biol Macromol. 2000;28:69–73.

    PubMed  CAS  Google Scholar 

  141. Canal CE, McNay EC, Gold PE. Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine-xylazine: an in vivo microdialysis study.Physiol Behav. 2005;84:245–250.

    PubMed  CAS  Google Scholar 

  142. Gardenfors F, Nilsson A, Ungerstedt U, et al. Adverse biochemical and physiological effects of prostacyclin in experimental brain oedema.Acta Anaesthesiol Scand. 2004;48:1316–1321.

    PubMed  CAS  Google Scholar 

  143. Hamrin K, Henriksson J. Local effect of vanadate on interstitial glucose and lactate concentrations in human skeletal muscle.Life Sci. 2005;76:2329–2338.

    PubMed  CAS  Google Scholar 

  144. Djurhuus CB, Gravholt CH, Nielsen S, Pedersen SB, Moller N, Schmitz O. Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans.Am J Physiol Endocrinol Metab. 2004;286:E488-E494.

    PubMed  CAS  Google Scholar 

  145. Richterova B, Stich V, Moro C, et al. Effect of endurance training on adrenergic control of lipolysis in adipose tissue of obese women.J Clin Endocrinol Metab. 2004;89:1325–1331.

    PubMed  CAS  Google Scholar 

  146. Djurhuus CB, Gravholt CH, Nielsen S, et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans.Am J Physiol Endocrinol Metab. 2002;283:E172-E177.

    PubMed  CAS  Google Scholar 

  147. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.N Engl J Med. 1993;329:977–986.

    Google Scholar 

  148. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).Lancet. 1998;352:837–853.

    Google Scholar 

  149. Nakahara D, Nakamura M, Iigo M, et al. Bimodal circadian secretion of melatonin from the pineal gland in a living CBA mouse.Proc Natl Acad Sci USA. 2003;100:9584–9589.

    PubMed  CAS  Google Scholar 

  150. Perreau-Lenz S, Kalsbeek A, Van Der Vliet J, et al. In vivo evidence for a controlled offset of melatonin synthesis at dawn by the suprachiasmatic nucleus in the rat.Neuroscience. 2005;130:797–803.

    PubMed  CAS  Google Scholar 

  151. Hoffner L, Nielsen JJ, Langberg H, et al. Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in human skeletal muscle interstitium.J Physiol. 2003;550:217–225.

    PubMed  Google Scholar 

  152. Garvin S, Dabrosin C. Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo.Cancer Res. 2003;63:8742–8748.

    PubMed  CAS  Google Scholar 

  153. Sandeep TC, Andrew R, Homer NZ, et al. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone.Diabetes. 2005;54:872–879.

    PubMed  CAS  Google Scholar 

  154. Pau KY, Lee CJ, Cowles A, et al. Possible involvement of norepinephrine transporter activity in the pulsatility of hypothalamic gonadotropin-releasing hormone release: influence of the gonad.J Neuroendocrinol. 1998;10:21–29.

    PubMed  CAS  Google Scholar 

  155. Lindley SE, Bengoechea TG, Wong DL, et al. Mesotelencephalic dopamine neurochemical responses to glucocorticoid administration and adrenalectomy in Fischer 344 and Lewis rats.Brain Res. 2002;958:414–422.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf.

Additional information

Published: April 7, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Peris, J., Zhong, L. et al. Microdialysis as a tool in local pharmacodynamics. AAPS J 8, 26 (2006). https://doi.org/10.1007/BF02854892

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02854892

Keywords

Navigation