American Potato Journal

, Volume 65, Issue 11, pp 621–631 | Cite as

Isolaton, partial purification and characterization of a potato peel glycoalkaloid glycosidase

  • A. A. Bushway
  • R. J. Bushway
  • C. H. Kim


The enzymes involved in the hydrolysis of the rhamnose moieties fromα-chaconine were isolated and partially purified by ammonium sulfate precipitation from the peels of Kennebec and Wauseon potatoes. Enzyme activity was found to be present in the 60 to 80% ammonium sulfate precipitate. Enzyme activity was increased by the use of non-ionic detergents with a mixture of Triton X-100:Triton CF-54 providing the greatest increase in activity. The pH and temperature optimums for the enzymes from both varieties were found to be 6.0 and 42 C, respectively. The route ofα-chaconine metabolism (either through B1-or B2-chaconine) was dependent upon incubation temperature. The effect of substrate concentration on enzyme activity was determined for both varieties and the Kms calculated from Lineweaver-Burke double reciprocal plots. The Km values for the Kennebec and Wauseon rhamnosidases were found to be 9.2×10−4 and 1.7×10−5M, respectively.

Additional key words

α-Chaconine B1-Chaconine B2-Chaconine Kennebec Wauseon Rhamnosidase 


Las enzimas que intervienen en la hidrólisis de las fracciones de ramnosa de laα-chaconina fueron aisladas y parcialmente purificadas por precipitación con sufato de amonio, a partir de cáscaras de papa de las variedades Kennebec y Wauseon. Se encontró presencia de actividad enzimática en la fracción saturada (0,6 a 0,8) de sulfato de amonio. La actividad enzimática se incrementó usando detergentes no iónicos con una mezcla de Triton X-100: Triton CF-54, que proporciona, el mayor incremento de la actividad. El óptimo de pH y temperatura para las enzimas de ambas variedades fué de 6,0 y 42 C respectivamente. La ruta del metabolismo de laα-chaconina (sea ésta a través de chaconina B1 ó B2) dependió de la temperatura de incubación. Se determinó) el efecto de la concentración del substrato sobre la actividad enzimática para ambas variedades y el Kms se calculó por la función recíproca doble Lineweaver-Burke. Se encontró que los valores Km para las ramnosidasas de Kennebec y Wauseon fueron de 9,2×10−4 y l,7×10−5M, respectivamente.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Akeley, R.V., F.J. Stevenson and E.S. Schultz. 1948. Kennebec: A new potato variety resistant to late blight, mild mosaic and net necrosis. Am Potato J 25:351–361.Google Scholar
  2. 2.
    Bushway, A.A., E.D. Clegg and T.W. Keenan. 1977. Composition and synthesis of gangliosides in bovine testis, sperm and seminal plasma. Bio Reproduc 17:432–442.CrossRefGoogle Scholar
  3. 3.
    Bushway, A.A. and T.W. Keenan. 1978. Composition of three higher ganglioside homologs in bovine mammary tissue. Lipids 13:59–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Bushway, R.J., J.L. Bureau and D.F. McGann. 1983. α-Chaconine and α-solanine content of potato peels and potato peel products. J Food Sci 48:84–64.CrossRefGoogle Scholar
  5. 5.
    Chaube, S. and C.A. Swinyard. 1975. Teratological and toxicological studies of alkaloidal and phenolic compounds fromSolanum tuberosum L. Toxico Appl Phamacol 36: 227–237.CrossRefGoogle Scholar
  6. 6.
    Cunningham, C.E., R.V. Akeley, L.C. Peterson and T.E. Snyder. 1968. Wauseon: A new potato variety resistant to golden nematode with good processing quality. Am Potato J 45:146–149.Google Scholar
  7. 7.
    Filadelfi, M.A. 1980. Isolation of chaconines fromSolanum tuberosum L. Ph.D. thesis, University of Guelph, Ontario, Canada.Google Scholar
  8. 8.
    Guseva, A.R. and V.A. Paseshichenko. 1957. Enzymatic degradation of potato glycoalkaloids. Biochem. (USSR) 22:792–799. Engl. transl., Consultants Bureau, New York.Google Scholar
  9. 9.
    Hansen, A.A. 1925. Two fatal cases of potato poisoning. Science 61:340–341.PubMedCrossRefGoogle Scholar
  10. 10.
    Harris, F.W. and T. Cockburn. 1918. Alleged poisoning by potatoes. Analyst (London) 59:431.Google Scholar
  11. 11.
    Harris, H. and M. Whittaker. 1959. Differential response of human serum cholinesterase types to an inhibitor in potato. Nature 183:1803.CrossRefGoogle Scholar
  12. 12.
    Heftman, E. 1967. Biochemistry of steroidal saponins and glycoalkaloids. Lloydia 30:209–223.Google Scholar
  13. 13.
    Jadhav, S.J. and D.K. Salunkhe. 1973. Enzymatic glucosylation of solanidine. J Food Sci 38:1099–1100.CrossRefGoogle Scholar
  14. 14.
    Jadhav, S.J. and D.K. Salunkhe. 1975. Formation and control of chlorophyll and glycoalkaloids in tubers ofSolanum tuberosum L. and evaluation of glycoalkaloid toxicity. Adv Food Res 21:307–354.PubMedGoogle Scholar
  15. 15.
    Keeler, R.F., D. Brown, D.R. Douglas, G.F. Stalknect and S. Young. 1976. Teratogenicity of theSolanum alkaloid solasodine and of “Kennebec” potato sprouts in hamsters. Bull Environ Contam Toxicol 15:522–524.PubMedCrossRefGoogle Scholar
  16. 16.
    McCollum, G.D. and S.L. Sinden. 1979. Inheritance study of tuber glycoalkaloids in a wild potato,Solanum chaconese Bitter. Am Potato J 56:95–113.CrossRefGoogle Scholar
  17. 17.
    Mun, A.M., E.S. Barden, J.M. Wilson and J.M. Hogan. 1975. Teratogenic effect in early embryos of solanine and glycoalkaloids from potatoes infected with late-blight,Phytophthora infestans. Teratology 11:73–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Nishie, K. W.P. Norred and A.P. Swain. 1975. Pharmacology and toxicology of chaconine and tomatine. Res Chem Path Pharm 12:657–668.Google Scholar
  19. 19.
    Orgell, W.H., K.A. Vaidya and P.A. Dahm. 1958. Inhibition of human plasma cholinesterasein vitro by extracts of solanaceous plants. Science 128:1136–1137.PubMedCrossRefGoogle Scholar
  20. 20.
    Osman, S.F., R.M. Zacharius, E.B. Kalan, T.J. Fitzpatrick and S. Krulick. 1979. Stress metabolites of the potato and other solanaceous plants. J Food Protect 42: 502–507.Google Scholar
  21. 21.
    Roddick, J.G. 1979. Complex formation between solanaceous steroidal glycoalkaloids and free sterolsin vitro. Phytochemistry 18:1467–1470.CrossRefGoogle Scholar
  22. 22.
    Salunkhe, D.K. and M.T. Wu. 1979. Control of post harvest glycoalkaloid formation in potato tubers. J Food Protect 42:519–525.Google Scholar
  23. 23.
    Schreiber, K. 1963.In: The Alkaloids (R.H.F. Manske, Ed.). Chapter 1. Steroid alkaloids, the Solanum group. Academic Press, NY.Google Scholar
  24. 24.
    Schreiber, K. 1968.In: The Alkaloids: Chemistry and Physiology. (R.H.F. Manske, Ed.). Vol. 10. Academic Press, NY.Google Scholar
  25. 25.
    Sinden, S.L. and R.E. Webb. 1972. Effect of variety and location on the glycoalkaloid content of potatoes. Am Potato J 49:334–339.Google Scholar
  26. 26.
    Sinden, S.L. and R.E. Webb. 1974. Effect of environment on glycoalkaloid content of six potato varieties at 39 locations. USDA Tech Bull No. 1472.Google Scholar
  27. 27.
    Stain, K.G. 1951.In: The Chemistry and Technology of Food and Food Products. 2nd Ed. Interscience Publishers, NY.Google Scholar
  28. 28.
    Swain, A.P., T.J. Fitzpatrick, E.A. Talley, S.F. Herb and S.F. Osman. 1978. Enzymatic hydrolysis of α-chaconine and α-solanine. Phytochemistry 17:800–801.CrossRefGoogle Scholar
  29. 29.
    Willimott, S.G. 1933. An investigation of solanine poisoning. Analyst 58:431–439.CrossRefGoogle Scholar
  30. 30.
    Zitnak, A. 1968. Separation of glycoalkaloids fromSolanum tuberosum L. by thin layer chromatography. Proc Cen Hort Sci 3:75–87.Google Scholar

Copyright information

© Springer 1988

Authors and Affiliations

  • A. A. Bushway
    • 1
  • R. J. Bushway
    • 1
  • C. H. Kim
    • 1
  1. 1.Department of Food ScienceUniversity of MaineOrono

Personalised recommendations