Skip to main content

Utilization of potatoes for life support systems in space. I. Cultivar-photoperiod interactions

Abstract

The productive potential of potatoes (Solanum tuberosum L. cvs. Norland, Superior, Norchip, and Kennebec) was assessed for life support systems being proposed for space stations and/or lunar colonies. Plants were grown in walk-in growth rooms for 15 weeks at 20 C under 12-, 16- and 20-h photoperiods of 400 μmol mt-2st-1 photosynthetic photon flux (PPF). Norland yielded the greatest tuber fresh weight, producing 2.3, 2.4, and 2.9 kg/plant under 12-, 16-, and 20-h photoperiods, respectively. The respective yields for the other cultivars under 12-, 16-, and 20-h were: Superior, 1.9, 1.5, and 1.8 kg/plant; Norchip, 1.8, 1.4, and 2.0 kg/plant; and Kennebec, 2.3, 0.2, and 0.8 kg/plant. Shoot and total plant biomass increased with lengthening photoperiods except for Kennebec, which showed increased shoot growth but no change in total growth with the longer photoperiods. Kennebec shoot growth under the 20-h photoperiod, and to some extent under 16-h, was noticeably stunted with shortened internodes. In addition, leaves of these plants showed mild chlorosis with rusty “flecking” of the surfaces. The harvest index (ratio of tuber yield/total biomass) was highest for all cultivars under the 12-h photoperiod, with a maximum of 0.69 for Norland. Similarly, the tuber yield per input of irradiant energy also was highest under 12-h for all cultivars. The tuber yield expressed on an area basis for the highest yielding treatment (Norland under 20-h) equaled 2.2 kg dry matter mt-2. Over 15 weeks this equates to a productivity of 20.7 g tuber dry matter mt-2 dayt-1. Assuming 3.73 kcal per g tuber dry matter and a daily human dietary requirement of 2800 kcal, then 36 m2 of potatoes could supply the daily energy requirement for one human. Potential for increasing productivity is discussed.

Resumen

Se determinó el potencial productivo de las papas (Solanum tuberosum L., cultivares Norland, Superior, Norchip, y Kennebec) en los sistemas propuestos para mantener la vida en las estaciones espaciales y/o lunares. Se cultivaron plantas, en cámaras de crecimiento que permitían el ingreso, durante 15 semanas, a 20°C, y bajo 12, 16, y 20 horas de fotoperíodo con un flujo de fotones fotosintéticos de 400 mol por metro cuadradoy por segundo. El cultivar Norland rindió el mayor peso fresco de tubérculos, produciendo 2,3; 2,4; y 2,9 kg/planta bajo 12, 16, y 20 horas de fotoperíodo respectivamente. Los rendimientos correspondientes a los otros cultivares, bajo 12, 16, y 20 horas fueron: Superior, 1,9; 1,5; y 1,8 kg/planta; Norchip, 1,8; 1,4; y 2,0 kg/planta; y Kennebec, 2,3; 0,2; y 0,8 kg/planta.

Los brotes y la biomasa total de la planta aumentaron con la longitud de los fotoperíodos excepto para Kennebec, cultivar que mostró con los fotoperiodos más largos un aumento en el crecimiento de los brotes, pero sin cambios en el crecimiento total. El crecimiento de los brotes en Kennebec, bajo el fotoperíodo de 20 horas, y hasta cierto punto con el de 16 horas, fue detenido notablemente dando lugar a entrenudos más cortos. Además, las hojas de estas plantas mostraron una leve clorosis y un moteado rojizo sobre sus superficies. El índice de cosecha (relación entre el rendimiento en tubérculos y la biomasa total), bajo el fotoperiodo de 12 horas, fue más alto para todos los cultivares con un máximo de 0,69 para Norland. Similarmente, el rendimiento en tubérculos por cantidad de energía radiante recibida fue también el más alto para todos los cultivares, bajo un fotoperíodo de 12 horas.

El rendimiento en tubérculos, para el tratamiento con el mayor rendimiento (Norland bajo 20 horas), expresado en base a superficie, alcanzó 2,2 kg de materia seca por metro cuadrado. En 15 semanas esto équivale a una productividad de 20,7 g de materia seca de tubérculo por metro cuadrado por día. Dado que por gramo de materia seca de tubérculo se tienen 3,73 kcal, y que en la dieta humana se requieren 2 800 kcal por día, se tendrfa que 36 m2 de papas podrían abastecer los requerimientos diarios de energía para una persona. Se discute el potencial para incrementar la productividad.

This is a preview of subscription content, access via your institution.

Literature Cited

  1. 1.

    Batutis, E.J. and E.E. Ewing. 1982. Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol 69:672–674.

    PubMed  Google Scholar 

  2. 2.

    Bodlaender, K.B.A. 1963. Influence of temperature, radiation, and photoperiod on development and yield, pp. 199–210.In: The growth of the potato. Butterworths, London.

    Google Scholar 

  3. 3.

    Chapman, H.W. 1958. Tuberization in the potato plant. Physiol Plant 11:215–224.

    Article  Google Scholar 

  4. 4.

    Driver, C.M. and J.G. Hawkes. 1943. Photoperiodism in the potato. Imp Bur Plant Breeding and Genet, Cambridge, England.

    Google Scholar 

  5. 5.

    Ewing, E.E. and P.F. Wareing. 1978. Shoot, stolon, and tuber formation on potato (Solanum tuberosum L.) cuttings in response to photoperiod. Plant Physiol 61:348–353.

    PubMed  Article  Google Scholar 

  6. 6.

    Gregory, L.E. 1956. Some factors for tuberization in the potato plant. Am J Bot 43:281–288.

    Article  CAS  Google Scholar 

  7. 7.

    Hammer, P.A., T.W. Tibbitts, R.W. Langhans and J.C. McFarlane. 1978. Base-line growth studies of‘Grand Rapids’ lettuce in controlled environments. J Am Soc Hortic Sci 103:649–655.

    Google Scholar 

  8. 8.

    Hammes, P.S. and P.C. Nel. 1975. The effect of photoperiod on growth and yield of potatoes (Solanum tuberosum L.) in controlled environments. Agroplantae 7:7–121.

    Google Scholar 

  9. 9.

    Hillman, W.S. 1956. Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Am J Bot 43:89–96.

    Article  Google Scholar 

  10. 10.

    Hoff, J.E., J.M. Howe and C.A. Mitchell. 1982. Nutritional and cultural aspects of plant species selection for a regenerative life support system. NASA Contract Report 166324. Moffett Field, CA.

    Google Scholar 

  11. 11.

    Hussey, G. and N.J. Stacey. 1981.In vitro propagation of potato (Solanum tuberosum L.). Ann Bot 48:787–796.

    Google Scholar 

  12. 12.

    MacElroy, R.D. and J. Bredt. 1985. Controlled ecological life support system. Life support systems in space travel: current concepts and future directions of CELSS. NASA Conf Pub 2378. XXV COSPAR Meeting, Graz, Austria.

  13. 13.

    Mason, R.M. and J.L. Cardon. 1982. Controlled ecological life support system. Research and development guidelines. NASA Conf Pub 2232. Moffett Field, CA.

    Google Scholar 

  14. 14.

    McCown, B.H. and I. Kass. 1977. Effect of production temperature of seed potatoes on subsequent yielding potential. Am Potato J 54:277–287.

    Article  Google Scholar 

  15. 15.

    Mendoza, H.A. and F.L. Haynes. 1976. Variability for photoperiodic reaction among diploid and tetraploid potato clones from three taxonomic groups. Am Potato J 53:319–332.

    Article  Google Scholar 

  16. 16.

    Parfitt, D.E., S.J. Peloquin and N.A. Jorgensen. 1982. The nutritional value of pressed potato vine silage. Am Potato J 59:415–423.

    Google Scholar 

  17. 17.

    Roztropowicz, S. and K. Rykaczewska. 1982. Influence of light intensity on growth and yield of the potato. Biuletyn Instytutu Ziemniaka 27:101–109.

    Google Scholar 

  18. 18.

    Smith, O. 1977. Potatoes: production, storing, processing. AVI Pub., Westport, CT.

    Google Scholar 

  19. 19.

    Steward, F.C., U. Moreno and W.M. Roca. 1981. Growth, form and composition of potato plants as affected by environment. Ann Bot 48:1–45 (suppl. 2).

    Google Scholar 

  20. 20.

    Tibbitts, T.W. and D.K. Alford. 1982. Controlled ecological life support system use of higher plants. NASA Conf Pub 2231. Moffett Field, CA.

    Google Scholar 

  21. 21.

    Werner, H.O. 1942. Relative response of several varieties of potatoes to progressively changing temperatures and photoperiods controlled to simulate “northern” and “southern” conditions. Am Potato J 19:30–40.

    Article  Google Scholar 

  22. 22.

    Wheeler, R.M. and T.W. Tibbitts. 1984. Controlled ecological life support system higher plant flight experiments. NASA Contract Report 177323. Moffett Field, CA.

    Google Scholar 

  23. 23.

    Zaag, van der D.E. and W.G. Burton. 1978. Potential yield of the potato crop and its limitations, pp. 7–22.In: Survey Papers, 7th Trien Conf Eur Assoc Potato Res, Warsaw, Poland.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raymond M. Wheeler.

Additional information

Supported by College of Agric. and Life Sci., Univ. of Wisconsin, Madison, and NASA Cooperative Agreements NCC 2-136 and NCC 2-301.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wheeler, R.M., Tibbitts, T.W. Utilization of potatoes for life support systems in space. I. Cultivar-photoperiod interactions. American Potato Journal 63, 315–323 (1986). https://doi.org/10.1007/BF02854441

Download citation

Key Words

  • Solanum tuberosum
  • irradiance
  • controlled ecological life support systems
  • bioregenerative life support systems