Sprout inhibition in storage: Current status, new chemistries and natural compounds

  • Gale E. Kleinkopf
  • Nathan A. Oberg
  • Nora L. Olsen
Invited Review


A major component of managing potato quality in storage is effective sprout inhibition. Sprouting causes increased weight loss, reduced tuber quality and impedes air movement through the potato pile. The primary method to control sprouting in storage is with postharvest applications of isopropylN-(3-chlorophenyl) carbamate (chlorpropham; CIPC). CIPC inhibits sprout development by interfering with cell division. However, a recent Environmental Protection Agency mandate, from the requirements of the Food Quality Protection Act (FQPA) of 1996, resulted in a reduction in allowable CIPC residue on fresh potatoes in the United States from 50 ppm to 30 ppm.

This mandate coincides with tolerance reductions or restrictions for use of CIPC in other parts of the world. CIPC is an effective sprout inhibitor although factors such as storage conditions, application technology, and cultivar can impact that effectiveness. Alternative sprout inhibitors to CIPC continue to be evaluated. Essential oils (e.g., caraway, peppermint, spearmint, clove) or their components (e.g., s-carvone, eugenol), and hydrogen peroxide-based materials, physically damage the developing sprout and suppress sprout elongation. However, repeated or continuous application of these compounds may be necessary for efficacy. Substituted naphthalenes (e.g., dimethyl naphthalene, diisopropyl naphthalene) may help reduce the amount of CIPC applied and/or our dependency on CIPC for sprout suppression in storage. The objective of this review is to summarize the current use of CIPC for potato sprout inhibition in storage and to review the status of current research on other postharvest applied compounds or materials that may be used as alternatives for CIPC.

Additional key words

Sprout suppression CIPC chlorpropham potato postharvest 


Uno de los componentes mas importantes en el manejo de la calidad de la papa almacenada es la inhibición del brotamiento. El brotamiento produce un incremento en la pérdida de peso, tubérculos de baja calidad e impide el movimiento de aire a través de las pilas de papa almacenada. El método principal para el control del brotamiento en el almacén es la aplicación de isopropilN-(3-clorofenil) carbamato (clorprofam; CIPC). El CIPC inhibe el desarrollo de los brotes porque interfiere con la división celular. Sin embargo, un mandate reciente sobre requisites de la Agencia de Protección Ambiental, en el Acta de Protección de la Calidad de los Alimentos (FQPA) de 1996, dio como resultado la reducción de 50 ppm a 30 ppm de residuos de CIPC, permisible en la papa fresca para consumo en los Estados Unidos.

Este mandato coincide con las reducciones de tolerancia o de restricciones para el uso de CIPC en otras partes del mundo. El CIPC es un inhibidor efectivo del brotamiento, aunque factores tales como, condiciones de almacenaje, tecnologia de aplicación y el cultivar mismo pueden tener impacto sobre esa efectividad. Los aceites esenciales (por ejemplo, de la alcaravea, de diferentes closes de menta y del clavo de olor), o sus componentes (tales como el s-carvone, eugenol) y materiales con base de peróxido de hidrógeno, deteriorait físicamente los brotes en desarrollo y suprimen su alargamiento. Sin embargo, para su eficacia pueden ser necesarias repetidas o continuas aplicaciones de estos compuestos. En reemplazo, se puede reducir la cantidad de CIPC aplicada y/o la dependencia en el CIPC para supresión del brotamiento en el almacén utilizando naftalenos (tales como dimetil naftaleno, diisopropil naftaleno). El objetivo de esta revisión es resumir el uso actual del CIPC como inhibidor del brotamiento de las papas almacenadas y hacer un examen de la situación actual de la investigación sobre otros compuestos aplicados, después de la cosecha o materiales que puedan ser utilizados como una alternativa para el CIPC.

Literature Cited

  1. Afek U, J Orenstein, and E Nuriel. 2000. Using HPP (Hydrogen Peroxide Plus) to inhibit potato sprouting during storage. Am J Potato Res 77:63–65.Google Scholar
  2. Alam SMM, DP Murr, and L Kristof. 1994. The effect of ethylene and of inhibitors of protein and nucleic acid synthesis on dormancy break and subsequent sprout growth. Potato Res 37:25–33.CrossRefGoogle Scholar
  3. Aliaga TJ, and W Feldheim. 1985. Inhibition of sprouting of stored potatoes by the essential oil of the Muna Plant (Minthostachys species) from South America. Ernahrung 9:254–256.Google Scholar
  4. Anonymous. 2001. DECCO 271 Aerosol Potato Sprout Inhibitor Label. Elf Atochem North America. Monrovia, CA, USA. pp 1–2.Google Scholar
  5. Beveridge JL, J Dalziel, and HJ Duncan. 1981a. The assessment of some volatile organic compounds as sprout suppressants for ware and seed potatoes. Potato Res 24:61–76.CrossRefGoogle Scholar
  6. Beveridge JL, J Dalziel, and HJ Duncan. 1981b. Dimethylnaphthalene as a sprout suppressant for seed and ware potatoes. Potato Res 24:77–88.CrossRefGoogle Scholar
  7. Beveridge JL, J Dalziel, and HJ Duncan. 1983. Headspace analysis of laboratory samples of potato tubers treated with 1,4-dimethylnaphthalene, carvone, pulegone and citral. J Sci Food Agric 34:164–168.CrossRefGoogle Scholar
  8. Brandt TL, GE Kleinkopf, NL Olsen, and S Love. 2003. Storage management for Umatillia Russet potatoes. University of Idaho, College of Agricultural and Life Sciences, Bulletin 839.Google Scholar
  9. Burton WG. 1958. Experiments on the use of alcohol vapours to suppress the sprouting of stored potatoes. Eur Potato J 1:42–51.CrossRefGoogle Scholar
  10. Buta JG, and HE Moline. 1998. Methyl jasmonate extends shelf life and reduces microbial contamination of fresh-cut celery and peppers. J Agric Food Chem 46:1253–1256.CrossRefGoogle Scholar
  11. Caccioni DR, and M Guizzardi. 1994. Inhibition of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components. J Essent Oil Res 6:173–179.Google Scholar
  12. Caldiz DO, LV Fernandez, and MH Inchausti. 2001. Maleic hydrazide effects on tuber yield, sprouting characteristics, and French fry processing quality in various potato (Solanum tuberosum L.) cultivars grown under Argentinian conditions. Am J Potato Res 78:119–128.Google Scholar
  13. Coleman WK. 1998. Carbon dioxide, oxygen and ethylene effects on potato tuber dormancy release and sprout growth. Ann Bot 82:21–27.CrossRefGoogle Scholar
  14. Coleman WK, G Lonergan, and P Silk. 2001. Potato sprout growth suppression by menthone and neomenthol, volatile oil components ofMinthostachys, Satureja, andMentha species. Am J Potato Res 78:345–354.Google Scholar
  15. Corsini D, G Stallknecht, and W Sparks. 1979. Changes in chlorpropham residues in stored potatoes. Am Potato J 56:43–50.CrossRefGoogle Scholar
  16. Daniels-Lake BJ, RK Prange, W Kalt, CL Liew, J Walsh, P Dean, and R Coffin. 1996. The effects of ozone and 1,8-cineole on sprouting, fry color and sugars of stored Russet Burbank potatoes. Am Potato J 73:469–181.CrossRefGoogle Scholar
  17. de Vries RG. 1999. Sprout inhibiting and/or anti-fungal composition for potatoes. U.S. Patent 6,001,773 issued 14 December 1999.Google Scholar
  18. Denisen EL. 1953. Response of Kennebec potatoes to maleic hydrazide. Proc Am Soc Hort Sci 62:411–421.Google Scholar
  19. Droby S, R Porat, L Cohen, B Weiss, B Shapiro, S Philsoph-Hadas, and S Meir. 1999. Suppressing green mold decay in grapefruit with postharvest methyl jasmonate application. J Am Soc Hort Sci 124:184–188.Google Scholar
  20. Elmer OH. 1932. Growth inhibition of potato sprouts by the volatile products of apple. Science 75:193.PubMedCrossRefGoogle Scholar
  21. Farag RS, ZY Daw, and SH Abo-Raya. 1989. Influence of some spice essential oils onAspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci 54:74–76CrossRefGoogle Scholar
  22. Farooqi AHA, KK Agarwal, S Fatima, A Ahmad, S Sharma, and S Kumar. 2001. Anti-sprouting agent for potato tuber and a method for producing the same. U.S. Patent 6,313,073 issued 6 November 2001.Google Scholar
  23. Filmer AA, and DC Land. 1978. The accumulation of volatile substances in a large modern potato store. J Sci Food Agric 29:219.CrossRefGoogle Scholar
  24. Filmer AAE, and JC Rhodes. 1984. An assessment of 1,4,6-trimethylnaphthalene as a sprout suppressant for stored potato tubers. Potato Res 27:383–392.CrossRefGoogle Scholar
  25. Filmer AAE, and JC Rhodes. 1985. Investigation of sprout-growthinhibitory compounds in the volatile fraction of potato tubers. Potato Res 28:361–377.CrossRefGoogle Scholar
  26. Forsythe D, and JM Forsythe. 2002. Methods for treating potatoes. U.S. Patent 6,375,999 Bl issued 23 April 2002.Google Scholar
  27. Franklin EW, and NR Thompson. 1953. Some effects of maleic hydrazide on stored potatoes. Am Potato J 30:289–295.CrossRefGoogle Scholar
  28. Frazier MJ, GE Kleinkopf, and TL Brandt. 1998. Effects of spearmint and peppermint oil used as alternative sprout and disease suppressants. Am J Potato Res 75:276. (abst)Google Scholar
  29. Frazier MJ, GE Kleinkopf, and TL Brandt. 2000. Spearmint oil and peppermint oil used as alternative sprout suppressants. Am J Potato Res 77:399. (abst)Google Scholar
  30. Gichohi EG, and MK Pritchard. 1995. Storage temperature and maleic hydrazide effects on sprouting, sugars and fry color of Shepody potatoes. Am Potato J 72:737–747.CrossRefGoogle Scholar
  31. Guenthner JF, MV Wiese, AD Pavlista, JB Sieczka, and J Wyman. 1999. Assessment of pesticide use in the U.S. potato industry. Am J Potato Res 76:25–29.Google Scholar
  32. Heikes DL. 1985. Mass spectral identification of a metabolite of chlorpropham in potatoes. J Agric Food Chem 33:246–249.CrossRefGoogle Scholar
  33. Highlands ME, JJ Licciiardello, and CE Cunningham. 1952. Reducing sugar content of Maine-grown potatoes treated with maleic hydrazide. Am Potato J 29:255–227.CrossRefGoogle Scholar
  34. Hughes DL, B Takahashi, H Timm, and M Yamaguchi. 1973. Influence of ethylene on sprout development of seed tubers. Am Potato J 50:439–444.CrossRefGoogle Scholar
  35. Jeong J-C, RK Prange, and BJ Daniels-Lake. 2002. Long-term exposure to ethylene affects polyamine levels and sprout development in ‘Russet Burbank’ and ‘Shepody’ potatoes. J Am Soc Hort Sci 127:122–126.Google Scholar
  36. Kader AA 1985. Ethylene-induced senescence and physiological disorders in harvested horticultural crops. Hort Sci 20:54–57.Google Scholar
  37. Kameyama K, and H Ito. 2000. Twenty-six years of commercialization on potato irradiation at Shihoro, Japan. Radiation Physics and Chemistry 57:227–230.CrossRefGoogle Scholar
  38. Kim ML, EE Ewing, and JG Sieczka. 1972. Effects of chlorpropham on sprouting of individual potato eyes and on plant emergence. Am Potato J 49:420–431.CrossRefGoogle Scholar
  39. Kim-Kang H. 1991. Metabolism of C-14 chlorpropham in stored potatoes-nature of the residue in potatotes. XenoBiotic Laboratories, Inc. Report No. RPT0066.Google Scholar
  40. Kleinkopf GE, TL Brandt, MJ Frazier, and G Moller. 1997. CIPC residues on stored Russet Burbank potatoes: 1. Maximum label application. Am Potato J 74:107–117.CrossRefGoogle Scholar
  41. Kleinkopf GE, and MJ Frazier. 2002. Alternative sprout suppressants for stored potatoes. University of Idaho, College of Agricultural and Life Sciences. Proceedings: Winter Commodity Schools 34:183–187.Google Scholar
  42. Lewis MD, GE Kleinkopf, and KK Shetty. 1997. Dimethylnaphthalene and diisopropylnaphthalene for sprout control in storage: 1. Application methodology and efficacy. Am Potato J 74:183–197.CrossRefGoogle Scholar
  43. Lulai E, PH Orr, and MT Glynn. 1995. Natural suppression of sprouting in stored potatoes using jasmonates. U.S. Patent 5,436,226 issued 25 July 1995.Google Scholar
  44. Lulai E, PH Orr, and MT Glynn. 1997. Suppression of sprouting in stored potatoes using aromatic acids. U.S. Patent 5,635,452 issued 3 June 1997.Google Scholar
  45. Marth PC, and ES Shultz. 1952. A new sprout inhibitor for potato tubers. Am Potato J 29:268–278.CrossRefGoogle Scholar
  46. Masefield J, and GR Dietz. 1983. Food irradiation: the evaluation of commercial opportunities. CRC Crit Rev Food Sci Nutr 19:259–272.Google Scholar
  47. Meigh DF. 1969. Suppression of sprouting in stored potatoes by volatile organic compounds. J Sci Food Agric 20:159–164.CrossRefGoogle Scholar
  48. Meigh DF, AAE Filmer, and R Self. 1973. Growth-inhibitory volatile aromatic compounds produced bySolanum tuberosum tubers. Phytochem 12:987–993.CrossRefGoogle Scholar
  49. Moroby BL, and WF Sun. 1987. Isolation and identification of chlorpropham and two of its metabolites in potatoes by GC-MS. Chemosphere 16:1457–1462.CrossRefGoogle Scholar
  50. Morgan CR. 1989. Apparatus for applying sprout inhibitor to stored potatoes. U.S. Patent No. 4,887,525 Issued 19 December 1989.Google Scholar
  51. Oberg NA. 2000. Effect of methyl jasmonate and anisic acid on stored potato tuber quality. M.S. Thesis. College of Agriculture, University of Idaho, Moscow, ID.Google Scholar
  52. Oberg NA, and GE Kleinkopf. 2000. Effect of methyl jasmonate on stored potato quality. Am J Potato Res 77:414. (abst)Google Scholar
  53. Oosterhaven K, KJ Hartmans, and JJC Scheffer. 1995a Inhibition of potato sprout growth by carvone enantiomers and their bioconversion in sprouts. Potato Res 38:219–230.CrossRefGoogle Scholar
  54. Oosterhaven K, KJ Hartmans, JJC Scheffer, and LHW van der Plas. 1995b. Inhibitory effect of S-carvone on wound healing of potato tuber tissue. Physiologia Plant 93:225–232.CrossRefGoogle Scholar
  55. Parthier B. 1991. Jasmonates, new regulators of plant growth and development: many facts and a few hypothesis on their actions. Bot Acta 104:446–454.Google Scholar
  56. Paterson DR, SH Wittwer, LE Weller, and HM Sell. 1952. The effect of preharvest foliar sprays of maleic hydrazide on sprout inhibition and storage quality of potatoes. Plant Physiol 27:135–142.PubMedGoogle Scholar
  57. Prange R, W Kalt, B Daniels-Lake, C Liew, J Walsh, P Dean, R Coffin, and R Page. 1997. Alternatives to currently used potato sprout suppressants. Postharvest News and Information 8(3):37–41.Google Scholar
  58. Prange RK, W Kalt, BJ Daniels-Lake, CL Liew, RT Page, JR Walsh, P Dean, and R Coffin. 1998. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. J Am Soc Hort Sci 123:463–469.Google Scholar
  59. Riggle BD, and RK Schafer. 1997. Sprout inhibition compositions comprising chlorpropham and substituted naphthalenes and methods of using same. U.S. Patent 5,622,912 issued 22 April 1997.Google Scholar
  60. Rosa JT. 1925. Shortening the rest period of potatoes with ethylene gas. Potato Association of America, Potato News Bulletin 2:363–365.Google Scholar
  61. Rylski I, L Rappaport, and HK Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiology 53:658–662.PubMedGoogle Scholar
  62. Sembdner G, and B Parthier. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Ann Rev Plant Physiol Plant Mol Biol 44:569–589.CrossRefGoogle Scholar
  63. Slininger PJ, KD Burkhead, DA Schisler, and RJ Bothast. 2000. Biological control of sprouting in potatoes. U.S. Patent 6,107,247 issued 22 August 2000.Google Scholar
  64. Sorce C, R Lorenzi, and P Ranalli. 1997. The effects of (S)-(+)-carvone treatments on seed potato tuber dormancy and sprouting. Potato Res 40:155–161.CrossRefGoogle Scholar
  65. Sparks WC. 1984. Effect of maleic hydrazide on the yield, grade, quality, and sprout inhibition of various potato varieties. Proc of the Winter Commodity Schools, Pocatello, ID. Univ of Idaho, College of Agriculture, Moscow, ID. pp. 182–185.Google Scholar
  66. Stephen NH, and HJ Duncan. 1984. Potato sprout suppressant activity of some substituted naphthalenes. Proc 9th Trienn Conf EAPR, Interlaken pp. 321–322.Google Scholar
  67. Struckmeyer BE, GG Weis, and JA Schoenemann. 1981. Effect of two forms of maleic hydrazide on the cell structure at the midsection, stem and bud ends of the cortical and perimedullary regions of Russet Burbank tubers. Am Potato J 58:611–618.CrossRefGoogle Scholar
  68. Suttle JC. 2000. The role of endogenous hormones in potato tuber dormancyIn: JD Viemont and J Crabbe (eds), Dormancy in Plants—From Whole Plant Behaviour to Cellular Control. CAB International, New York. pp 211–226.Google Scholar
  69. Thomas P. 1983. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops. CRC Crit Rev Food Sci Nutr 19:327–379.CrossRefGoogle Scholar
  70. Thompson DP. 1989. Fungitoxic activity of essential oil components on food storage fungi. Mycologia 81:151–153.CrossRefGoogle Scholar
  71. Timm H, DL Hughes, and ML Weaver. 1986. Effect of exposure time of ethylene on potato sprout development. Am Potato J 63:655–666.CrossRefGoogle Scholar
  72. Urbain WM. 1989. Food irradiation: the past fifty years as prologue to tomorrow. Food Technol 43:76,92.Google Scholar
  73. Vanden Berg JH, and EE Ewing. 1991. Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization: a review. Am Potato J 68:781–794.CrossRefGoogle Scholar
  74. Vaughn KC, and LP Lehnen. 1991. Mitotic disrupter herbicides. Weed Sci 39:450–457.Google Scholar
  75. Vaughn SF, and GF Spencer. 1991. Volatile monoterpenes inhibit potato tuber sprouting. Am Potato J 68:821–831.CrossRefGoogle Scholar
  76. Vaughn SF, GF Spencer, and RG Powell. 1992. Inhibition of potato spouting using volatile monoterpenes. U.S. Patent No. 5,139,562 issued 18 August 1992.Google Scholar
  77. Vaughn SF, and GF Spencer. 1993. Naturally-occurring aromatic compounds inhibit potato tuber sprouting. Am Potato J 70:527–533.CrossRefGoogle Scholar
  78. Vaughn SF, and GF Spencer. 1994. Antifungal activity of natural compounds against thiabendazole-resistantFusarium sambucinum strains. J Agric Food Chem 42:200–203.CrossRefGoogle Scholar
  79. Vokou D, S Vareltzidou, and P Katinakis. 1993. Effects of aromatic plants on potato storage: sprout suppression and antimicrobial activity. Agric Eco Env 47:223–235.CrossRefGoogle Scholar
  80. Wang CY, JG Buta, HE Moline, and HW Hruschka. 1980. Potato sprout inhibition by camptothecin, a naturally occurring plant growth regulator. J Am Soc Hort Sci 105:120–124.Google Scholar
  81. Weis GG, JA Schoenemann, and MD Groskopp. 1980. Influence of time of application of maleic hydrazide on the yield and quality of Russet Burbank potatoes. Am Potato J 57:197–204.CrossRefGoogle Scholar
  82. Wessel PNF, and R Wustman. 1990. Sprout inhibiting effects of a propham-chlorpropham mixture and its residue pattern in ware potatoes stored under warm conditions. Trop Agric 67:262–266.Google Scholar
  83. Yada RY, RH Coffin, MK Keenan, M Fitts, C Dufault, and GCC Tai. 1991. The effect of maleic hydrazide (potassium salt) on potato yield, sugar content and chip color of Kennebec and Norchip cultivars. Am Potato J 68:705–709.CrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Gale E. Kleinkopf
    • 1
  • Nathan A. Oberg
    • 1
  • Nora L. Olsen
    • 2
  1. 1.University of Idaho, Kimberly Research and Extension CenterKimberly
  2. 2.University of Idaho, Twin Falls Research and Extension CenterTwin Falls

Personalised recommendations